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Abstract. In this extended abstract, we exploit the combinatorics and geometry of
triangulations of products of simplices to reinterpret and generalize a number of con-
structions in Catalan combinatorics. In our framework, the main role of “Catalan
objects” is played by (I, J)-trees: bipartite trees associated to a pair (I, J) of finite in-
dex sets that stand in simple bijection with lattice paths weakly above a lattice path
ν = ν(I, J). Such trees label the maximal simplices of a triangulation of a subpoly-
tope of the cartesian product of two simplices, which provides a geometric realization
of the ν-Tamari lattice introduced by Préville-Ratelle and Viennot. Dualizing this tri-
angulation, we obtain a polyhedral complex induced by an arrangement of tropical
hyperplanes whose 1-skeleton realizes the Hasse diagram of the ν-Tamari lattice, and
thus generalizes the simple associahedron. Specializing to the Fuss-Catalan case real-
izes the m-Tamari lattices as 1-skeleta of regular subdivisions of classical associahedra,
giving a positive answer to a question of F. Bergeron. The simplicial complex un-
derlying our triangulation has its h-vector given by a suitable generalization of the
Narayana numbers. We propose it as a natural generalization of the classical simpli-
cial associahedron, alternative to the rational associahedron of Armstrong, Rhoades
and Williams.

Our methods are amenable to cyclic symmetry, which we use to present type-B ana-
logues of our constructions. Notably, we define a partial order that generalizes the
type B Tamari lattice, introduced independently by Thomas and Reading, along with
corresponding geometric realizations.
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1 Introduction

The Tamari lattice is a partial order on Catalan objects that has attracted considerable
attention since it was first introduced by Tamari in his doctoral thesis in 1951 [18]. Its cov-
ering relation can be described in terms of flips in polygon triangulations, rotations on
binary trees and certain elementary transformation on Dyck paths. Many generalizations
of the Tamari lattice have been proposed. The m-Tamari lattice, a recent generalization
to Fuss-Catalan Dyck paths introduced by Bergeron and Préville-Ratelle [4], has raised
much interest. It has been further generalized by Préville-Ratelle and Viennot to the set
of lattice paths above any given lattice path ν, giving rise to the ν-Tamari lattice [13].

One of the striking characteristics of the Tamari lattice is that its Hasse diagram can
be realized as the edge graph of a polytope, the associahedron [6]. In [3, Figures 4
and 6], Bergeron presented geometric realizations of a few small m-Tamari lattices as the
edge graph of a subdivision of an associahedron, and asked if such realizations exist in
general. We provide a positive answer to this question (see Figure 1).

Theorem 1.1 (Corollary 2.3 and Theorem 2.11). Let ν be a lattice path. The Hasse diagram of
the ν-Tamari lattice can be realized geometrically as:

1. the dual of a regular triangulation of a subpolytope of the Cartesian product of two simplices,

2. the edge graph of a polyhedral complex induced by an arrangement of tropical hyperplanes.

1-Tamari n = 4 4-Tamari n = 3 2-Tamari n = 4

Figure 1: Geometric realizations of m-Tamari lattices by cutting classical associahedra
with tropical hyperplanes. Compare with [3, Figures 4, 5 and 6].

Our starting point is a ubiquitous triangulation An of certain subpolytope Un of the
Cartesian product of two n-simplices which has been rediscovered in various contexts
under different guises. To the best of our knowledge, its first appearances were in
[10] as a triangulation of a root polytope and in [17] as a fine mixed subdivision of
the Pitman-Stanley polytope. Some of its recent occurrences are as a triangulation of a
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Gelfand-Tseltsin polytope [12], a root polytope [11], and an order polytope [15]. We call
it the associahedral triangulation because, combinatorially, it is the join of a simplex with
the boundary complex of a simplicial (n− 1)-associahedron.

The fact that An is embedded in the product of two simplices has several advantages.
One can consider its restriction to faces of ∆n×∆n, which are also products of simplices.
As we will see, for each lattice path ν there is a pair I, J ⊆ [n], [n] such that the restriction
of An to its face ∆I × ∆J induces a triangulation AI,J dual to Tamν. Its cells are indexed
by (I, J)-forests, which endow ν-Dyck paths with a full simplicial complex structure, the
(I, J)-Tamari complex. The `th entry of its h-vector is equal to the number of ν-Dyck paths
with exactly ` valleys, generalizing the classical Narayana numbers for classical Dyck
paths. In the rational Catalan case, these numbers appeared in work of Armstrong,
Rhoades, and Williams [2], who introduced an alternative simplicial complex based on
lattice paths above a rational slope, called the rational associahedron.

As most “non-crossing objects”, An has a “non-nesting” analogue: the staircase trian-
gulation of ∆n×∆n restricted to Un. It already appeared as the standard triangulation of
an order polytope in [16], and was also considered in the references mentioned above.
In our previous work [5] we applied a cyclic shift to this triangulation to produce the
Dyck path triangulation of ∆n × ∆n in our study of extendability of partial triangulations.

If we apply the same cyclic procedure to An, we obtain a flag regular triangulation Cn
of ∆n × ∆n. Its maximal cells are indexed by centrally symmetric triangulations of a
(2n+ 2)-gon and its dual complex is a cyclohedron. We call it the cyclohedral triangulation.
Restricting to its faces, we obtain a type B analogue of AI,J , whose maximal cells are
indexed by cyclic (I, J)-trees. These trees can be naturally endowed with a poset structure,
the cyclic (I, J)-Tamari poset, which generalizes the type B Tamari lattice, independently
discovered by Thomas [19] and Reading [14]. Using the same techniques, we obtain
type-B analogues of Theorem 1.1 (Corollary 2.3 and Theorem 3.10).

2 Type A

2.1 The associahedral triangulation

Let N denote the set of natural numbers including the zero, and N the same set with
numbers decorated with an overline. If n is a natural number, define [n] := {0, 1, . . . , n},
and likewise [n] := {0, 1, . . . , n}. Regard N tN as the totally ordered set with covering
relations i ≺ i and i ≺ i + 1. Given nonempty finite sets I ⊂ N and J ⊂ N, denote
by KI,J the complete bipartite graph with node set I t J and arc set {(i, j) : i ∈ I, j ∈ J}.
To avoid confusion, we reserve the names vertices and edges exclusively for simplicial and
polyhedral complexes, and call nodes and arcs the corresponding graph notions.
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The Cartesian product of two standard simplices is the convex polytope:

∆n × ∆m := conv
{
(ei, ej) : i ∈ [n], j ∈ [m]

}
⊂ Rn+m+2,

where ei and ej denote the standard basis vectors of Rn+1 and Rm+1, respectively. We
have introduced the overlined indices to distinguish the labels of the two factors.

Given a triangulation of an (n + 2)-gon Pn+2, we define a subgraph of K[n],[n] by
mapping edges of the triangulation to arcs of K[n],[n] as exemplified in Figure 2 for n = 4,
where nodes of the parts [n] and [n] are drawn black and white, respectively. It is not
difficult to show that graphs obtained this way are spanning trees of K[n],[n]; we call them
([n], [n])-trees.

Figure 2: From a triangulation of P6 to spanning tree of K[4],[4].

Spanning trees of K[n],[n] can be identified with maximal subsimplices of ∆n × ∆n:
a tree T is identified with the simplex conv{(ei, ej) : (i, j) ∈ T} [7]. This identification
leads to the following theorem, which has been rediscovered in a number of contexts.

Theorem 2.1 ([10, 17]). The set of ([n], [n])-trees indexes the maximal simplices of a flag regular
triangulation of the subpolytope Un of ∆n × ∆n, defined as:

Un := conv
{
(ei, ej) : 0 ≤ i ≤ j ≤ n

}
⊆ ∆n × ∆n.

We call it the n-associahedral triangulation An because two maximal simplices are adjacent if
and only if the corresponding triangulations of Pn+2 differ by a flip.

Faces of ∆n × ∆m are polytopes of the form ∆I × ∆J := conv
{
(ei, ej) : i ∈ I, j ∈ J

}
,

where I ⊆ [n], J ⊆ [n]. Given such a pair (I, J) of subsets, it is natural to consider the
restriction UI,J := Un ∩ ∆I × ∆J and the corresponding restriction of the associahedral
triangulation An to UI,J . We call this restricted triangulation the (I, J)-associahedral tri-
angulation. Its maximal simplices are given by (I, J)-trees, which are characterized as
follows.

Definition 2.2. Let I ⊂ N and J ⊂ N be nonempty finite subsets. An (I, J)-forest is a
subgraph of KI,J that is
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1. Increasing: each arc (i, j) fulfills i ≺ j; and

2. Non-crossing: it does not contain two arcs (i, j) and (i′, j′) satisfying i ≺ i′ ≺ j ≺ j′.

An (I, J)-tree is a maximal (I, J)-forest. An (I, J)-tree is shown in Figure 3.

Corollary 2.3. Let I ⊂ N, J ⊂ N be nonempty finite sets. The set of (I, J)-trees indexes
the maximal simplices of a flag regular triangulation of UI,J , induced by the height function
h(i, j) = −(j− i)2. We call it the (I, J)-associahedral triangulation AI,J .

2.2 The (I, J)-Tamari lattice and ν-Dyck paths

We say that two (I, J)-trees T and T′ are related by a flip if there are arcs (i, j) and (i′, j′)
such that T′ := T \ (i, j) ∪ (i′, j′). Such flip can occur if and only if (i, j) is neither a leaf
nor the arc (min I, max J). If i′ > i and j′ > j, we say that T′ is obtained from T by an
increasing flip, and symbol this by the relation T <I,J T′.

Lemma 2.4. The transitive closure of the relation T <I,J T′ is a partial order on the set of
(I, J)-trees that defines a lattice. We call it the (I, J)-Tamari lattice TamI,J .

The significance of the (I, J)-Tamari lattice stems from the close relation between
(I, J)-trees and lattice paths, which we now explain. Recall that a lattice path ν is a
sequence of east (E) and north (N) steps in Z2 starting at (0, 0). A ν-path is a lattice path
with the same endpoints as ν and lying weakly above ν.

Let I ⊂N, J ⊂N be nonempty finite subsets such that min I t J ∈ I and max I t J ∈ J
(this implies that (I, J)-trees are trees in the graph-theoretical sense). We can assume
without loss of generality that I t J = [n] is a partition, because for the definition of
(I, J)-trees only the relative positions of I and J matter.

To (I, J) we associate a lattice path ν(I, J) from (0, 0) to (|I| − 1, |J| − 1) constructed
as follows: for 1 ≤ k ≤ n− 1, the k-th step of ν(I, J) is an east step E if k ∈ I and a north
step N if k ∈ J. Now, to an (I, J)-tree T we associate the unique lattice path ρ(T) from
(0, 0) to (|I| − 1, |J| − 1) having at height k − 1 as many lattice points as the degree of
the kth node of J in T. We illustrate this construction in Figure 3.

Proposition 2.5. Let I, J be nonempty subsets of N with min(I t J) ∈ I and max(I t J) ∈ J,
and let ν = ν(I, J). Then ρ is a bijection from the set of (I, J)-trees to the set of ν-paths. Moreover,
for each path ν from (0, 0) to (a, b) there is a partition I, J of [a + b + 1] such that ν(I, J) = ν.

In [13], Préville-Ratelle and Viennot introduced a lattice structure on the set of ν-paths
that they called the ν-Tamari lattice. It extends the classical Tamari lattice on Dyck paths,
as well as its generalizations for Fuss-Catalan paths. As it turns out, this lattice is equiv-
alent to the (I, J)-Tamari lattice under the bijection ρ. An example of this equivalence is
shown in Figure 4.
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Figure 3: An (I, J)-trees for I = {0, 1, 2, 5, 6, 9} and J = {3, 4, 7, 8, 10}, and the corre-
sponding ν(I, J)-path ρ(T).

Theorem 2.6. The (I, J)-Tamari lattice TamI,J is isomorphic to the ν(I, J)-Tamari lattice Tamν(I,J).

Figure 4: The (I, J)-Tamari lattice for I = {0, 1, 3, 4, 6, 7}, J = {2, 5, 8}, next to the
ν(I, J)-Tamari lattice.

2.3 The (I, J)-Tamari complex and (I, J)-Narayana numbers

We call the simplicial complex underlying the (I, J)-associahedral triangulation AI,J the
(I, J)-Tamari complex AI,J . It shares many properties with boundaries of simplicial asso-
ciahedra. For instance, the links of its faces are joins of Tamari complexes. It has a nice
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interplay with the (I, J)-Tamari order, which can be used to define a shelling of AI,J that
brings about a natural expression for the entries of the h-vector of AI,J .

Lemma 2.7. Let O = (T1, T2, . . . , Tr) be an ordering of the (I, J)-trees that is a linear extension
of the (I, J)-Tamari lattice or of its opposite lattice. Then O is a shelling order for AI,J .

Theorem 2.8. The h-vector (h0, h1, . . .) of the (I, J)-Tamari complex is determined by:

h` =
∣∣{T : (I, J)-tree with exactly ` non-leaf nodes in J \ {jmax}

}∣∣
= number of ν(I, J)-paths with exactly ` valleys,

where a valley of a path is an occurrence of EN.

In analogy to the h-vectors of classical simplicial associahedra and their combinatorial
interpretation, which Theorem 2.8 generalizes, we designate the entries of the h-vector
of AI,J the (I, J)-Narayana numbers, or the ν-Narayana numbers when ν = ν(I, J).

2.4 The (I, J)-associahedron tropically

In [8], Develin and Sturmfels exhibited a beautiful duality between regular triangu-
lations of ∆n × ∆m and combinatorial types of generic arrangements of n + 1 tropical
hyperplanes in tropical projective space TPm. It was further studied combinatorially
in [1] and extended to subpolytopes of ∆n × ∆m in [9]. Applying this duality to the
(I, J)-associahedral triangulation allows us to propose a notion of (I, J)-associahedron. It
generalizes the geometric realization of the Hasse diagram of the classical Tamari lattice
as the graph of the (simple) associahedron. We provide a direct construction as a poly-
hedral complex. To this end, let h : {(i, j) ∈ I × J : i � j} → R be the height function
h(i, j) = −(j− i)2, which induces AI,J as a regular triangulation of UI,J (cf. Theorem 2.1).
We need the following characterization of interior simplices of AI,J

Lemma 2.9. The interior simplices of the (I, J)-associahedral complex AI,J are the (I, J)-forests
that include the arc (min I, max J) and have no isolated nodes. We refer to such (I, J)-forests as
covering (I, J)-forests.

Definition 2.10. The (I, J)-associahedron AssoI,J(h) is the polyhedral complex in R|J|−1

with vertices g(T), as T ranges over (I, J)-trees, whose kth coordinates equal:

g(T)k := ∑
(i,j)∈P(k)

±h(i, j), k ∈ J \ {max J}, (2.1)

where P(k) is the sequence of arcs traversed in the unique oriented path from k to max J
in T and the sign of each summand is positive if (i, j) is traversed from j to i and negative
otherwise.
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The cells of AssoI,J(h) are given by convex polytopes g(F), with F ranging over cover-
ing (I, J)-forests, whose dimension is one less than the number of connected components
of F, and whose vertices are given by:

g(F) = conv
{
g(T) : T is a (I, J)-tree containing F

}
. (2.2)

Theorem 2.11. The (I, J)-associahedron AssoI,J(h) is a polyhedral complex whose poset of cells
is anti-isomorphic to the poset of interior faces of the (I, J)-Tamari complex. Its 1-skeleton, ori-
ented according to a linear function, is isomorphic to the Hasse diagram of the (I, J)-Tamari
lattice.

We have depicted two (I, J)-associahedra in Figure 5; compare the one on the left
with Figure 4. We warmly invite the reader to reproduce them in a piece of paper.

Figure 5: (I, J)-associahedra for I = {0, 1, 3, 4, 6, 7}, J = {2, 5, 8} (left) and to I =

{0, 1, 2, 3}, J = {3, 4, 5} (right).

Figure 5 shows that (I, J)-associahedra are not convex in general. The following
theorem characterizes convexity and answers F. Bergeron’s question affirmatively [3,
Section 8].

Theorem 2.12. Let J′ = {j ∈ J : ∃ i1 ≺ i2 ≺ j}. The (I, J)-associahedron AssoI,J(h) is

convex if and only if I t J′ \max J does not have a consecutive pair of elements of J. In this case,
AssoI,J(h) is a regular polyhedral subdivision of a classical associahedron of dimension (|J′| − 1)
into cells that are Cartesian products of classical associahedra.
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3 Type B

3.1 The cyclohedral triangulation

The map from triangulations of an (n + 2)-gon to spanning trees of K[n],[n] in Section 2.1
can be extended to a map on centrally symmetric triangulations of a (2n + 2)-gon P2n+2
(hereafter cs-triangulations), as shown in Figure 6. We call the resulting graphs cyclic
([n], [n])-trees. We draw them on the surface of a cylinder, with arcs that possibly wind
around it.

Figure 6: From a cs-triangulation to a non-crossing alternating tree on the cylinder.

Theorem 3.1. The set of cyclic ([n], [n])-trees indexes the maximal simplices of a flag regular
triangulation of ∆n × ∆n. We call it the n-cyclohedral triangulation Cn because two maximal
simplices are adjacent if and only if the corresponding cs-triangulations differ by a flip.

Considering the restriction of Cn to faces of ∆n × ∆m leads to the following notion.

Definition 3.2. Let I ⊂ [n] and J ⊂ [n] be nonempty subsets, for some n ∈ N. A cyclic
(I, J)-forest is a subgraph F of KI,J that is cyclically non-crossing, in the following sense:{

(i, j), (i′, j′) ∈ F, and
j− i′ < j− i (mod n + 1)

=⇒ j′ − i′ ≤ j− i′ (mod n + 1) (3.1)

A cyclic (I, J)-tree is a maximal cyclic (I, J)-forest.

Corollary 3.3. Let I ⊂ [n] and J ⊂ [n] be nonempty subsets. The set of cyclic (I, J)-trees
indexes the maximal simplices of a flag regular triangulation of ∆I × ∆J , induced by the height
function h =

√
j− i (mod n + 1). We call it the (I, J)-cyclohedral triangulation CI,J .

3.2 The cyclic (I, J)-Tamari poset

Let T, T′ be cyclic (I, J)-trees such that T′ = T \ (i, j) ∪ (i′, j′). As in Section 2.2, we say
that T′ is obtained by an increasing flip from T if i′ > i, and write T <(I,J) T′ in this case.
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Lemma 3.4. The transitive closure of the relation T <I,J T′ is a partial order on the set of cyclic
(I, J)-trees. We call it the the cyclic (I, J)-Tamari poset TamB

I,J .

In [19], Thomas introduced a partial order on the cs-triangulations of a (2n + 2)-gon,
which he recognized as the type Bn Tamari lattice. Based on the following observation,
we present the cyclic (I, J)-Tamari poset as a generalization of the type Bn Tamari lattice.

Lemma 3.5. The Bn Tamari lattice of [19] is isomorphic to the cyclic ([n], [n])-Tamari poset.

Remark 3.6. As the name suggests, the cyclic (I, J)-Tamari poset is in general not a
lattice. We encourage the reader to check this for I = {0, 3, 4} and J = {1, 2}.

3.3 The cyclic (I, J)-Tamari complex

Let I ⊂ N, J ⊂ N be nonempty finite subsets. The cyclic (I, J)-Tamari complex CI,J is the
simplicial complex underlying the (I, J)-cyclohedral triangulation CI,J . Its h-vector can
be computed using its geometric realization as the triangulation CI,J of ∆I × ∆J .

Theorem 3.7. The h-vector of CI,J has entries hk(CI,J) = (|I|−1
k )(|J|−1

k ).

The Fuss-Catalan analogues of the Narayana numbers of type Bn are obtained when
|I| = mn + 1 and |J| = n + 1.

3.4 The cyclic (I, J)-associahedron tropically

We conclude this extended abstract with a notion of (I, J)-cyclohedron parallel to the
(I, J)-associahedron from Section 2.4. The development imitates that of Section 2.4, so
we merely present the corresponding results. Let h : {(i, j) ∈ [n] × [n]} → R be the
height function h(i, j) =

√
j− i (mod n + 1), which induces CI,J as a regular triangula-

tion of ∆I × ∆J .

Lemma 3.8. The interior simplices of CI,J are naturally indexed by cyclic (I, J)-forests that have
no isolated nodes. We refer to such cyclic (I, J)-forests as covering cyclic (I, J)-forests.

Definition 3.9. The (I, J)-cyclohedron CycloI,J(h) is the polyhedral complex in R|J|−1 with
vertices g(T), as T ranges over cyclic (I, J)-trees, with coordinates given by (2.1). The cells
of CycloI,J(h) are given by convex polytopes g(F), with F ranging over covering cyclic
(I, J)-forests, defined analogously as in (2.2).

Theorem 3.10. The (I, J)-cyclohedron CycloI,J(h) is a polyhedral complex whose poset of cells is
anti-isomorphic to the poset of interior faces of the cyclic (I, J)-Tamari complex. In particular, two
vertices are connected if and only if the corresponding cyclic (I, J) trees are related by a flip. That
is, the edge graph of CycloI,J(h) is isomorphic to the Hasse diagram of the cyclic (I, J)-Tamari
poset.
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Theorem 3.11. Let I, J be finite subsets of N with |I| ≥ 2 and |J| ≥ 3. Then supp(CycloI,J(h))

is convex if and only if J does not have a cyclically consecutive pair of elements. In this case,
CycloI,J(h) is a regular polyhedral subdivision of a classical cyclohedron of dimension (|J| − 1)
into cells that are Cartesian products of classical associahedra and at most one clasical cyclohedron.

Figure 7 shows an (I, J)-cyclohedron that is a subdivision of a classical cyclohedron.

Figure 7: (I, J)-cyclohedron for I = {0, 1, 3, 4, 6, 7}, J = {2, 5, 8}.
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