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Abstract. We study the chromatic symmetric function on graphs, and show that its
kernel is spanned by the modular relations. We generalise this result to the chromatic
quasisymmetric function on nestohedra, a family of generalised permutahedra. We
use this description of the kernel of the chromatic symmetric function to find other
graph invariants that may help us tackle the tree conjecture.
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1 Introduction

Chromatic function on graphs

For a graph G with vertex set V(G), a colouring f of the graph G is a map f : V(G)→N.
A colouring is proper if no edge is monochromatic. Stanley defines in [14] the chromatic
symmetric function of G in commuting variables {xi}i≥1 as

ΨG(G) = ∑ f x f ,

where we write x f = ∏v∈V(G) x f (v), and the sum runs over proper colourings of the
graph G. Note that ΨG(G) is in the ring Sym of symmetric functions, which is a Hopf
subalgebra of QSym, the ring of quasisymmetric functions. A long standing conjecture
in this subject, commonly referred to as the tree conjecture, is that if two trees T1, T2 are
not isomorphic, then ΨG(T1) 6= ΨG(T2).

When V(G) = [n], the natural ordering on the vertices allows us to consider a non-
commutative analogue of ΨG, as done by Gebhard and Sagan in [5]. They define the
chromatic symmetric function on non-commutative variables {ai}i≥1 as

ΨG(G) = ∑ f a f ,
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where we write a f = ∏n
v=1 a f (v), and we sum over the proper colourings f of G.

Note that ΨG(G) is also symmetric in the variables {ai}i≥1. Such functions are called
word symmetric functions. The ring of word symmetric functions, WSym for short, was
introduced in [12], and is sometimes called the ring of symmetric functions in non-
commutative variables.

We consider graphs whose vertex sets are of the form [n] for some n ≥ 0, where we
convention that [0] = ∅, and write G for the free linear space generated by such graphs.
This can be endowed with a Hopf algebra structure, as described by Schmitt in [13].

In this paper we describe generators for ker ΨG and ker ΨG. A similar problem was
already considered for posets. In [4], Féray studies ΨPos, the Gessel quasisymmetric
function defined on the poset Hopf algebra, and describes a set of generators of its
kernel.

Some elements of the kernel of ΨG have previously been constructed independently
in [7] by Guay-Paquet and in [9] by Orellana and Scott. These relations, called modular
relations, extend naturally to the non-commutative case. We introduce them now.

Given a graph G and an edge set E that is disjoint from E(G), let G ∪ E denote the
graph G with the edges in E added to it. In [7] and [9], it was observed that for a graph
G, if we have edges e3 ∈ G and e1, e2 6∈ G such that {e1, e2, e3} forms a triangle, then

ΨG(G)−ΨG(G ∪ {e1})−ΨG(G ∪ {e2}) + ΨG(G ∪ {e1, e2}) = 0 . (1.1)

Figure 1: Example of a modular relation.

For such a graph G, we call the formal
sum G−G∪{e1}−G∪{e2}+G∪{e1, e2}
in G a modular relation on graphs. An ex-
ample is given in Figure 1. Our first goal
is to show that these modular relations
span the kernel of the chromatic symmet-
ric function.

Theorem 1.1 (Kernel and image of ΨG). The modular relations span ker ΨG. The image of
ΨG is WSym.

Two graphs G1, G2 are said to be isomorphic if there is a bijection between the vertices
that preserves edges. For the commutative version of the symmetric function, if two
isomorphic graphs G1, G2 are given, we know that ΨG(G1) and ΨG(G2) are the same.
The formal sum in G given by G1 − G2 is called an isomorphism relation on graphs.

Theorem 1.2 (Kernel and image of ΨG). The modular relations and the isomorphism relations
generate the kernel of the commutative chromatic symmetric function ΨG. The image of ΨG is
Sym.

The second part of this theorem follows from previous work. For instance, in [3],
several bases of Sym are constructed that are of the form {ΨG(Gλ)|λ ` n}.



The kernel of chromatic quasisymmetric functions on graphs and nestohedra 3

In the last section of this paper we introduce a new graph invariant Ψ̃(G). That
modular relations on graphs are in the kernel of Ψ̃ is easy to see. It will follow from
Theorem 1.2 that ker ΨG ⊆ ker Ψ̃. This reduces the tree conjecture in ΨG to this new
invariant Ψ̃G.

The maps ΨG and ΨG arise as a more general construction in Hopf algebras. For a
Hopf algebra H, a character η of H is a linear map η : H → K that preserves the multi-
plicative structure and the unit of H. In [2], Aguiar, Bergeron, and Sottile define a combi-
natorial Hopf algebra as a pair (H, η) where H is a Hopf algebra and η : H→ K a character
of H. For any combinatorial Hopf algebra (H, η), a canonical Hopf algebra morphism
to QSym is constructed in [2]. The maps ΨG : G → Sym and ΨG : G → WSym are
Hopf algebra morphisms that can be obtained in such a manner: If we take the character
η(G) = 1[G has no edges], the canonical Hopf algebra morphism for (G, η) is exactly
the map ΨG. The map ΨG arises from a parallel result in Hopf monoids, as presented in
[10]. The Gessel quasisymmetric function ΨPos on posets arises similarly.

We present analogues to Theorems 1.1 and 1.2 in the combinatorial Hopf algebra of
nestohedra, which is a combinatorial Hopf subalgebra of generalised permutahedra.

Generalised Permutahedra

Generalised permutahedra are particular polytopes that include permutahedra, associa-
hedra and graph zonotopes. The reader can see some results in the topic in [11].

The Minkowski sum of two polytopes a, b is set as a+M b = {a + b|a ∈ a, b ∈ b}. The
Minkowski difference a−M b is defined as the unique polytope c that satisfies b+M c = a,
if it exists. We denote the Minkowski sum of several polytopes as M∑i ai.

If we let {ei|i ∈ I} be the canonical basis of RI , a simplex is a polytope of the form
sJ = conv{ej|j ∈ J} for non-empty J ⊆ I, and a generalised permutahedron in RI is a
polytope of the form

q =

 M∑
J 6=∅
aJ>0

aJsJ

−M

 M∑
J 6=∅
aJ<0

|aJ |sJ

 , (1.2)

for reals {aJ}∅ 6=J⊆I that can be either positive, negative or zero. We identify a gener-
alised permutahedron q with the list {aJ}∅ 6=J⊆I . Note that not every list of real numbers
will give us a generalised permutahedron, since the Minkowski difference is not always
defined.

A nestohedron is a generalised permutahedron where the coefficients aJ are non-
negative. For a nestohedron q, we denote F (q) ⊆ 2I \ ∅ as the family of sets J ⊆ I
such that aJ > 0. Finally, for a set A ⊆ 2I \ ∅, we write F−1(A) for the nestohedra
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q =
M∑J∈A sJ . Note that the nestohedra q and F−1(F (q)) are, in general, distinct, so

some care is needed with this notation. However, the face structure is the same, and we
will have an explicit combinatorial equivalence in Proposition 4.1.

In [1], Aguiar and Ardila define GP, a Hopf algebra structure on the linear space
generated by generalised permutahedra in Rn for n ≥ 0. The Hopf subalgebra Nesto
is the linear space generated by nestohedra. In [6], Grujić introduced a quasisymmetric
map in generalised permutahedra ΨGP : GP→ QSym that we will recall now.

For a polytope q ⊆ RI , Grujić defines a function f : I → N as q-generic if the face of
q given by arg minx∈q ∑i∈I f (i)xi =: q f ⊆ q, is a point. Equivalently, f is q-generic if it
lies in the interior of the normal cone of some vertex.

Then Grujić defines for {xi}i≥1 commutative variables, the quasisymmetric function:

ΨGP(q) = ∑
f is q-generic

x f . (1.3)

If we consider the character η(q) = 1[q is a point], then ΨGP is the canonical Hopf
algebra morphism associated with the combinatorial Hopf algebra (GP, η).

In [1], Aguiar and Ardila define the graph zonotope Z : G → GP, a Hopf algebra
morphism that is injective and maps ΨG to ΨGP. They also define other maps from other
combinatorial Hopf algebras, like matroids, to GP, that preserve the canonical Hopf
algebra morphisms. If we are able to describe ker ΨGP, then such maps Z : H → GP
give us some information on ker ΨH using that Z(ker ΨH) = ker ΨGP ∩ Z(H).

We discuss now a non-commutative version of ΨGP, for which we will establish an
analogue of Theorem 1.1 to nestohedra. Consider the Hopf algebra of word quasisym-
metric functions WQSym, a version of QSym in non-commutative variables introduced
in [8].

For a generalised permutahedron q and non-commutative variables {ai}i≥1, we set

ΨGP(q) = ∑
f is q-generic

a f .

It is easily seen (and shown in [10]) that ΨGP(q) is a word quasisymmetric function.
This defines a Hopf algebra morphism between GP and WQSym. Let us call ΨNesto and
ΨNesto to the restrictions of ΨGP and ΨGP to Nesto, respectively.

Our next theorems describe the kernel of the maps ΨNesto and ΨNesto, using two types
of relations. The simple relations presented in Proposition 4.1 convey that when the
coefficients aI that are positive in q1 and q2 are the same, then ΨGP(q1) = ΨGP(q2). The
modular relations are exhibited in Theorem 4.2. These generalise the ones for graphs,
in the sense that the graph zonotope embedding Z : G → GP, presented in [1], maps
modular relations on graphs to modular relations on nestohedra.

Theorem 1.3 (Kernel of ΨNesto). The space ker ΨNesto is generated by the simple relations and
modular relations on nestohedra.
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In Definition 2.4 we define a proper subspace SC of WQSym. It is shown in the
bottom of Page 10 that SC = im ΨNesto is a Hopf algebra. The dimension of SCn is
computed in [10], where in particular it is shown that it is exponentially smaller than
the dimension of WQSymn.

Two generalised permutahedra q1, q2 are isomorphic if one can be obtained from the
other by permuting the coordinates. If q1, q2 are isomorphic, the commutative chromatic
quasisymmetric functions ΨGP(q1) and ΨGP(q2) are the same. We call to q1 − q2 an
isomorphism relation on nestohedra.

Theorem 1.4 (Kernel and image of ΨNesto). The space ker ΨNesto is generated by the modular
relations and the isomorphism relations. The image of ΨNesto is QSym.

A description of ker ΨNesto is less general than a description of ker ΨGP. Nevertheless,
most of the combinatorial objects embedded in GP are also in Nesto, such as graphs and
matroids, so the result in the Nesto Hopf subalgebra can already be used to help us on
other kernel problems.

Notation: We will use boldface for Hopf algebras in non-commutative variables, their
elements, like word symmetric functions, and the associated combinatorial objects, for
sake of clarity.

2 Preliminaries

For an equivalence relation ∼ on a set A, we call [x]∼ to the equivalence class of x in ∼,
and we write [x] when ∼ is clear from context. We write both E(∼) and A/ ∼ for the
set of equivalence classes of ∼.

2.1 Linear algebra preliminaries

The following easy linear algebra lemmas will be useful to compute generators of the
kernels and the images of Ψ and Ψ. These lemmas describe a sufficient condition for a
set B to span the kernel of a linear map φ : V → W. The proofs of these lemmas are
basic linear algebra and can be found in [10].

Lemma 2.1. Let V be a finite dimensional vector space with a basis {ai|i ∈ [m]}, φ : V → W
be a linear map, and B = {bj|j ∈ J} ⊆ ker φ be a family of relations.

Assume that there exists I ⊆ [m] such that:

• the elements (φ(ai))i∈I form a linearly independent family in W,

• for i ∈ [m] \ I we have ai = b + ∑m
k=i+1 λkak for some b ∈ B and some scalars λk;
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Then B spans ker φ. Additionally, we have that (φ(ai))i∈I is a basis of the image of φ.

The following lemma will help us deal with the composition Ψ = comu ◦Ψ, where
comu is the commutator projection, that sends ai to xi. In the lemma we give a sufficient
condition for a natural enlargement of the set B to generate ker Ψ.

Lemma 2.2. We will use the same notation as in Lemma 2.1. Let φ1 : W → W ′ be a linear map
and call φ′ = φ1 ◦ φ. Take an equivalence relation ∼ in {ai}i∈[m] that satisfies φ′(ai) = φ′(aj)
whenever ai ∼ aj. Define C = {ai − aj| ai ∼ aj} and write φ′([ai]) = φ′(ai) with no ambiguity.

Assume the hypothesis in Lemma 2.1 and, additionally, suppose that (φ′([ai]))[ai]∈E(∼) is
linearly independent. Then ker φ′ is generated by B ∪ C and (φ′([ai]))[ai]∈E(∼) is a basis of
im φ′.

2.2 Hopf algebras and associated combinatorial objects

In the following, all the Hopf algebras H have a grading, denoted as H = ⊕n≥0Hn.
An integer composition, or simply a composition, of n, is a list α = (α1, · · · , αk) of

positive integers which sum is n. We write α |= n. We denote l(α) for the length of the
list and we denote as Cn the set of compositions of size n.

An integer partition, or simply a partition, of n is a non-increasing list λ = (λ1, · · · , λk)
of positive integers which sum is n. We denote λ ` n. We write l(λ) for the length of
the list and we denote as Pn the set of partitions of size n. By disregarding the order of
the parts on a composition α we obtain a partition denoted λ(α).

A set partition π = {π1, · · · , πk} of a set I is a collection of non-empty disjoint subsets
of I, called blocks, that cover I. We write π ` I. We denote l(π) for the length of the set
partition. We write PI for the family of set partitions of I, or simply Pn if I = [n]. By
counting the elements on each block we obtain an integer partition denoted λ(π) ` #I.
We identify a set partition π ∈ PI with an equivalence relation ∼π on I, where x ∼π y
if x, y ∈ I are on the same block of π.

A set composition ~π = S1| · · · |Sl of I is a list of non-empty disjoint subsets of I that
cover I. We write ~π |= I. We denote l(~π) for the length of the set composition. We
call CI to the family of set compositions of I, or simply Cn if I = [n]. By disregarding
the order of a set composition ~π, we obtain a set partition λ(~π) ` I. By counting the
elements on each block we obtain a composition α(~π) |= #I. A set composition ~π is
naturally identified with a total preorder P~π on I, where x P~π y if x ∈ Si, y ∈ Sj for i ≤ j.

A colouring of the set I is a function f : I → N. The set composition type ~π( f ) of
a colouring f : I → N is the set composition obtained after deleting the empty sets of
f−1(1)| f−1(2)| · · · .

We recall that in partitions and in set partitions, it is defined a classical coarsening
order ≤, where we say that λ ≤ τ (resp. π ≤ τ) if τ is obtained from π by adding some
parts (resp. if τ is obtained from π by merging some blocks).
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Recall that the homogeneous component QSymn (resp. Symn, WSymn, WQSymn) of
the Hopf algebra QSym (resp. Sym, WSym, WQSym) has a monomial basis indexed
by compositions (resp. partitions, set partitions, set compositions). We will denote this
basis by {Mα}α∈Cn (resp. {mλ}λ∈Pn , {mπ}π∈Pn , {M~π}~π∈Cn).

2.3 Monomial basis and nestohedra Hopf algebra

For a non-empty set A ⊆ [n] and a set composition ~π ∈ Cn, we construct the set
A~π = {minima of A in P~π}. We say that A~π = pt if A~π is a singleton. The following
lemma is part of the folklore of generalised permutahedra and is shown in [10].

Lemma 2.3 (Vertex normal cone characterization). Let q be a nestohedron. A colouring f is
q-generic if and only if A~π( f ) = pt for every A ∈ F (q). Furthermore, the face q f that minimizes
∑i f (i)xi only depends on the set composition ~π( f ).

We write q~π for the face q f for any f of set composition type ~π, without ambiguity.
For ~π ∈ Cn, we define the fundamental nestohedron as p~π = F−1{A ⊆ [n] |A~π = pt}.

On set compositions, we write that ~π1 � ~π2 whenever for any non-empty A ⊆ [n] we
have A~π1

= pt ⇒ A~π2
= pt. Equivalently, ~π1 � ~π2 if F (p~π1) ⊆ F (p~π2). Note that this

makes � into a preorder, which we call the singleton commuting preorder or SC preorder.
Additionally, we define the equivalence relation ∼ in Cn as ~π ∼ ~τ if p~π = p~τ . A

combinatorial interpretation of this equivalence relation can be found below in Proposi-
tion 2.5, which also motivates the name of the preorder defined above.

Define N[~π] = ∑~τ∼~π M~τ ∈ WQSym, which forms a linear independent family. The
following is a corollary of the proof of Theorem 1.3:

Definition 2.4. The singleton commuting space SC is the span of {N[~π] : [~π] ∈ ⋃n≥0 Cn/ ∼}.

The following proposition gives us a way to describe the equivalence classes of ∼.
In particular, in [10], it allows us to compute the dimensions of SCn. The proof can be
found in [10].

Proposition 2.5. For ~π,~τ ∈ CI , we have p~π = p~τ if and only if λ(~π) = λ(~τ) and each
a, b ∈ I that satisfies both a P~π b and b P~τ a are either singletons or in the same block in λ(~π).

From the definition of �, we have the following consequence of Lemma 2.3.

ΨGP(p
~π) = ∑

~π�~τ
M~τ . (2.1)

As presented, (2.1) seems to shows that (ΨGP(p
~π))~π∈Cn writes triangularly with re-

spect to the monomial basis. Since � is not an order, that is not the case, but we obtain
a related result with this reasoning:
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Lemma 2.6. The family (Ψ(p[~π]))[~π]∈Cn/∼ forms a basis of SC.

The following lemma is helpful to show Theorem 1.4 and is shown in [10].

Lemma 2.7. There is an order ≤′ on Cn that satisfies ~π � ~τ ⇒ α(~π) ≤′ α(~τ).

3 Main theorems on graphs

With Lemma 2.1, we will show that the kernel of ΨG is spanned by the modular relations.

Figure 2: Example for proof of Theorem 1.1

Proof of Theorem 1.1. Recall that Gn is
spanned by graphs with vertex set [n]. We
choose an order ≥̃ in this family of graphs
in a way that the number of edges is non-
decreasing.

For a set partition π of the vertex set
[n], we define Kπ as the graph where
{i, j} ∈ E(Kπ) if i ∼π j. Then, it can be
noted that ΨG(Kc

π) = ∑τ≤π mτ (see [5,
Proposition 3.2]), so we know that the transition matrix of {ΨG(Kc

π)|π ∈ Pn} over the
monomial basis of WSym is upper triangular, hence forms a basis set of WSym = im ΨG.

In order to apply Lemma 2.1 to the set of modular relations on graphs, it suffices to
show the following: if a graph G is not of the form Kc

π , then we can find a formal sum
G− G ∪ {e1} − G ∪ {e2}+ G ∪ {e1, e2} that is a modular relation. Indeed, G is the graph
with least edges in that expression, so it is the smallest in the order ≥̃. If the above holds,
Lemma 2.1 implies that the modular relations generate the space ker ΨG.

To find the desired modular relation, it is enough to find a triangle {e1, e2, e3} such
that e1, e2 6∈ E(G) and e3 ∈ E(G). Consider τ, the set partition given by the connected
components of Gc. By hypothesis, G 6= Kc

τ , so there are vertices v, w in the same block
of τ that are not neighbours in Gc. Without loss of generality we can take such u, w that
are at distance 2 in Gc, so they have a common neighbour v in Gc. The edges e1 = {v, u},
e2 = {v, w} and e3 = {u, w} form the desired triangle, concluding the proof.

Proof of Theorem 1.2. Our goal is to apply Lemma 2.2 to the map ΨG = comu ◦ΨG for the
equivalence relation corresponding to graph isomorphism. First, if λ(π) = λ(τ) then
Kc

π and Kc
τ are isomorphic graphs. Define without ambiguity rλ(π) = ΨG(Kc

π).
From the proof of Theorem 1.1, to apply Lemma 2.2 it is enough to establish that the

family (rλ)λ∈Pn is linearly independent. Indeed, it would follow that ker ΨG is generated
by the modular relations and the isomorphism relations, and (rλ)λ∈Pn is a basis of im ΨG,
which spans Symn via a dimension argument, concluding the proof.
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The linear independence of (rλ)λ∈Pn follows from the fact that its transition matrix
over the monomial basis, under the coarsening order in integer partitions, is upper tri-
angular. Indeed, since ΨG(Kc

π) = ∑τ≤π mτ , if we let τ run over set partitions and σ run
over integer partitions, we have

rλ(π) = ΨG(Kc
π) = ∑

τ≤π

mλ(τ) = ∑
σ≤λ(π)

aπ,σ mσ = mλ(π) + ∑
σ<λ(π)

aπ,σ mσ ,

where aπ,σ = #{τ ≤ π|λ(τ) = σ}, so (rλ)λ∈Pn is linearly independent.

Remark 3.1. We have obtained in the proof of Theorem 1.2 that (rλ)λ`n is a basis for Symn,
different from other “chromatic bases” proposed in [3]. The proof gives us a recursive way to
compute the coefficients ζλ on the span ΨG(G) = ∑λ ζλrλ.

Similarly in the non-commutative case, we see that WSymn is spanned by (ΨG(Kc
π))π`[n],

and so other coefficients arise. We can ask for combinatorial properties of these coefficients.

4 Main theorems on nestohedra

The following proposition is trivial when we consider (1.2).

Proposition 4.1 (Simple relations for ΨNesto). Take two nestohedra q1 =
M∑I∈2[n]\∅ aIsI

and q2 =
M∑I∈2[n]\∅ bIsI such that we have aI = 0⇔ bI = 0. Then ΨGP(q1) = ΨGP(q2).

This proposition allows us to reduce the kernel problem on nestohedra to those nesto-
hedra that satisfy aJ ∈ {0, 1}. We call these primitive nestohedra.

For non-empty sets A ⊆ [n], we define Orth A = {~π ∈ Cn|A~π = pt}. We have:

Theorem 4.2 (Modular relations for ΨNesto). Let {Ak|k ∈ K} and {Bj|j ∈ J} be two disjoint
families of non-empty subsets of [n]. Let us write K = ∪k∈K(Orth Ak)

c, and J = ∪j∈J Orth Bj.
Consider the nestohedron q = F−1{Ak|k ∈ K}. Suppose that K ∪ J = Cn. Then,

∑T⊆J (−1)#T ΨGP

[
q+M F−1{Bj|j ∈ T}

]
= 0 .

The proof of this result is done combinatorially, and is presented in [10].
Call ∑T⊆J(−1)#T [q+M F−1{Bj|j ∈ T}

]
a modular relation on nestohedra. In Figure 3

we see such a modular relation for n = 4 and q = F−1{{1, 4}, {1, 2, 4}}.
If l = G − G ∪ {e1} − G ∪ {e2} + G ∪ {e1, e2} is a modular relation on graphs, the

graph zonotope Z(l) is the modular relation on nestohedra corresponding to q = Z(G),
i.e. {Ak|k ∈ K} = E(G), B1 = e1 and B2 = e2. In this case, the condition K ∪ J = Cn
follows from the fact that no proper colouring of G is monochromatic in both e1 and e2.

Recall the fundamental nestohedra, set as p~π = F−1{A ⊆ [n]|A~π = pt}, which depends
only on the SC-equivalence class of ~π and we can write without ambiguity p[~π] = p~π .
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Figure 3: A modular relation on nestohedra for q = F−1{{1, 4}, {1, 2, 4}}.

We follow here roughly the same idea as in the graph case: We use the family of
nestohedra (p[~π])[~π]∈Cn/∼ to apply Lemma 2.1, whose image by ΨGP is linearly indepen-
dent and is rich enough to span the image.

Proof of Theorem 1.3. We will apply Lemma 2.1 with Proposition 4.1 and Theorem 4.2.
First recall that Neston is a linear space generated by the nestohedra in Rn. We choose

a total order ≥ on the nestohedra so that #F (q) is non decreasing.
Lemma 2.6 guarantees that (ΨGP(p

[~π]))[~π]∈Cn/∼ is linearly independent. Therefore,
it suffices to show that for any primitive nestohedra q that is not a fundamental nestohe-
dron, we can write some modular relation b as b = q+∑i λiqi, where #F (q) < #F (qi) ∀i.

Indeed, it would follow from Lemma 2.1 that the modular relations on nestohedra
span ker ΨNesto. As a consequence, im ΨNesto is spanned by the sets {ΨGP(p

[~π])|[~π] ∈
Cn/ ∼} for each n ≥ 0. From Lemma 2.6, this image is SCn.

To obtain the desired modular relation, we invoke Theorem 4.2 on {A ∈ F (q)} and
{B 6∈ F (q)}. Let us write K = ∪A∈F (q)(Orth A)c and J = ∪B 6∈F (q) Orth B. We will first
show that we have K ∪ J = Cn.

Take, for sake of contradiction, some ~π 6∈ K ∪ J . Note that ~π 6∈ K is equivalent to
A~π = pt for every A ∈ F (q). Note as well that ~π 6∈ J is equivalent to B~π 6= pt for every
B 6∈ F (q). Therefore, if ~π 6∈ K ∪ J , then q = p~π , contradicting the assumption that q is
not a fundamental nestohedron. We obtain that K ∪ J = Cn. Finally, note that

q+ ∑T⊆F (q)c

T 6=∅
(−1)#T

[
q+M F−1(T)

]
,

is a modular relation of the desired form, concluding the hypothesis of Lemma 2.1.

It also follows from Lemma 2.1 that im ΨGP is spanned by {N[~π] : [~π] ∈ ⋃n≥0 Cn/ ∼
}, and SC is a connected graded bialgebra, hence it is a Hopf algebra.
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For the commutative case we will apply Lemma 2.2. Note that we already have a
generator set of ker ΨNesto, so similarly to the proof of Theorem 1.2, we just need to
establish some linear independence.

Recall that two nestohedra q1 and q2 are isomorphic if there is a permutation matrix
P such that x ∈ q2 ⇔ Px ∈ q1. Since we are in the commutative case now, if ~π1 and
~π2 share the same composition type, then p~π1 and p~π2 are isomorphic, and so we have
ΨGP(p

~π1) = ΨGP(p
~π2). Set Rα(~π) := ΨGP(p

~π) without ambiguity.

Proof of Theorem 1.4. We will apply Lemma 2.2 to the map ΨGP = comu ◦ΨGP on the
equivalence relation corresponding to the isomorphism of nestohedra.

From the proof of Theorem 1.3, to apply Lemma 2.2 it is enough to establish that the
family (Rα)α∈Cn is linearly independent. It would follow that ker ΨGP is generated by
the modular relations and the isomorphism relations, and (Rα)α∈Cn is a basis of im ΨG,
concluding the proof.

To show the linear independence of (Rα)α∈Cn , we write Rα on the monomial basis of
QSym, and use the order ≤′ mentioned in Lemma 2.7.

As a consequence of (2.1), if we write A~π,β = #{~τ ∈ Cn|~π � ~τ, α(~τ) = β}, we have:

Rα(~π) = ΨGP(p
~π) = ∑

~π�~τ
Mα(~τ) = A~π,α(~π)Mα(~π) + ∑

α(~π)<′β

A~π,βMβ , (4.1)

It is clear that A~π,α(~π) > 0, so independence follows, which completes the proof.

5 A new graph invariant

Consider the ring K[[q1, q2, · · · ; x1, x2, · · · ]] on two countable families of commuting vari-
ables, and let R be such a ring modulo the relations qi(qi − 1)2 = 0.

Consider the graph invariant Ψ̃(G) = ∑ f x f ∏i qcG( f ,i)
i in R, where the sum runs over

all colourings f , and cG( f , i) stands for the number of monochromatic edges of colour i
in the colouring f (i.e. edges {v1, v2} such that f (v1) = f (v2) = i).

It is easy to see that if l is a modular relation on graphs, then Ψ̃(l) = 0. It follows
that any modular relation is in ker Ψ̃. From Theorem 1.2 we have that ker ΨG ⊆ ker Ψ̃,
so we obtain the following proposition.

Proposition 5.1. For any graphs G1, G2, we have ΨG(G1) = ΨG(G2)⇒ Ψ̃(G1) = Ψ̃(G2).

If we find a graph invariant satisfying Proposition 5.1 that takes different values for
any pair of non-isomorphic trees, we obtain a proof of the tree conjecture. We wish to
use Theorem 1.2 to prove Proposition 5.1 for other invariants.

We have Ψ̃(G)|qi=0 = ΨG, so ker Ψ̃ = ker ΨG. Hence, the tree conjectures in ΨG and
in Ψ̃ are equivalent. The specialisations Ψ̃(G)|qi=1 and d

dqi
Ψ̃(G)|qi=1 are also allowed.
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Note that a priori, Ψ̃ contains more information than ΨG, making a possible proof of the
tree conjecture easier.
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