Séminaire Lotharingien de Combinatoire **80B** (2018) Article #10, 12 pp.

The kernel of chromatic quasisymmetric functions on graphs and nestohedra

Raul Penaguiao*1

¹Department of Mathematics, University of Zürich, Zürich

Abstract. We study the chromatic symmetric function on graphs, and show that its kernel is spanned by the modular relations. We generalise this result to the chromatic quasisymmetric function on nestohedra, a family of generalised permutahedra. We use this description of the kernel of the chromatic symmetric function to find other graph invariants that may help us tackle the tree conjecture.

Keywords: chromatic symmetric function, combinatorial Hopf algebras, generalized permutahedra

This is an extended abstract, of which the full version [10] is yet to be published.

1 Introduction

Chromatic function on graphs

For a graph *G* with vertex set V(G), a colouring *f* of the graph *G* is a map $f : V(G) \to \mathbb{N}$. A colouring is *proper* if no edge is monochromatic. Stanley defines in [14] the *chromatic* symmetric function of *G* in commuting variables $\{x_i\}_{i\geq 1}$ as

$$\Psi_{\mathbf{G}}(G) = \sum_f x_f \,,$$

where we write $x_f = \prod_{v \in V(G)} x_{f(v)}$, and the sum runs over proper colourings of the graph *G*. Note that $\Psi_{\mathbf{G}}(G)$ is in the ring *Sym* of symmetric functions, which is a Hopf subalgebra of *QSym*, the ring of quasisymmetric functions. A long standing conjecture in this subject, commonly referred to as the *tree conjecture*, is that if two trees T_1, T_2 are not isomorphic, then $\Psi_{\mathbf{G}}(T_1) \neq \Psi_{\mathbf{G}}(T_2)$.

When V(G) = [n], the natural ordering on the vertices allows us to consider a noncommutative analogue of Ψ_G , as done by Gebhard and Sagan in [5]. They define the chromatic symmetric function on non-commutative variables $\{a_i\}_{i\geq 1}$ as

$$\Psi_{\mathbf{G}}(G) = \sum_{f} \mathbf{a}_{f},$$

^{*}raul.penaguiao@math.uzh.ch; the author appreciates the support of the SNF grant number 172515.

where we write $\mathbf{a}_f = \prod_{v=1}^n \mathbf{a}_{f(v)}$, and we sum over the proper colourings *f* of *G*.

Note that $\Psi_{\mathbf{G}}(G)$ is also symmetric in the variables $\{\mathbf{a}_i\}_{i\geq 1}$. Such functions are called *word symmetric functions*. The ring of word symmetric functions, **WSym** for short, was introduced in [12], and is sometimes called the ring of symmetric functions in non-commutative variables.

We consider graphs whose vertex sets are of the form [n] for some $n \ge 0$, where we convention that $[0] = \emptyset$, and write **G** for the free linear space generated by such graphs. This can be endowed with a Hopf algebra structure, as described by Schmitt in [13].

In this paper we describe generators for ker Ψ_G and ker Ψ_G . A similar problem was already considered for posets. In [4], Féray studies Ψ_{Pos} , the Gessel quasisymmetric function defined on the poset Hopf algebra, and describes a set of generators of its kernel.

Some elements of the kernel of Ψ_{G} have previously been constructed independently in [7] by Guay-Paquet and in [9] by Orellana and Scott. These relations, called *modular relations*, extend naturally to the non-commutative case. We introduce them now.

Given a graph *G* and an edge set *E* that is disjoint from E(G), let $G \cup E$ denote the graph *G* with the edges in *E* added to it. In [7] and [9], it was observed that for a graph *G*, if we have edges $e_3 \in G$ and $e_1, e_2 \notin G$ such that $\{e_1, e_2, e_3\}$ forms a triangle, then

$$\Psi_{\mathbf{G}}(G) - \Psi_{\mathbf{G}}(G \cup \{e_1\}) - \Psi_{\mathbf{G}}(G \cup \{e_2\}) + \Psi_{\mathbf{G}}(G \cup \{e_1, e_2\}) = 0.$$
(1.1)

For such a graph *G*, we call the formal sum $G - G \cup \{e_1\} - G \cup \{e_2\} + G \cup \{e_1, e_2\}$ in **G** a *modular relation on graphs*. An example is given in Figure 1. Our first goal is to show that these modular relations span the kernel of the chromatic symmetric function.

Figure 1: Example of a modular relation.

Theorem 1.1 (Kernel and image of Ψ_G). The modular relations span ker Ψ_G . The image of Ψ_G is WSym.

Two graphs G_1 , G_2 are said to be isomorphic if there is a bijection between the vertices that preserves edges. For the commutative version of the symmetric function, if two isomorphic graphs G_1 , G_2 are given, we know that $\Psi_{\mathbf{G}}(G_1)$ and $\Psi_{\mathbf{G}}(G_2)$ are the same. The formal sum in **G** given by $G_1 - G_2$ is called an *isomorphism relation on graphs*.

Theorem 1.2 (Kernel and image of $\Psi_{\mathbf{G}}$). The modular relations and the isomorphism relations generate the kernel of the commutative chromatic symmetric function $\Psi_{\mathbf{G}}$. The image of $\Psi_{\mathbf{G}}$ is *Sym*.

The second part of this theorem follows from previous work. For instance, in [3], several bases of *Sym* are constructed that are of the form $\{\Psi_{\mathbf{G}}(G_{\lambda}) | \lambda \vdash n\}$.

In the last section of this paper we introduce a new graph invariant $\Psi(G)$. That modular relations on graphs are in the kernel of Ψ is easy to see. It will follow from Theorem 1.2 that ker $\Psi_{\mathbf{G}} \subseteq \ker \Psi$. This reduces the tree conjecture in $\Psi_{\mathbf{G}}$ to this new invariant $\Psi_{\mathbf{G}}$.

The maps $\Psi_{\mathbf{G}}$ and $\Psi_{\mathbf{G}}$ arise as a more general construction in Hopf algebras. For a Hopf algebra \mathbf{H} , a *character* η of \mathbf{H} is a linear map $\eta : \mathbf{H} \to \mathbb{K}$ that preserves the multiplicative structure and the unit of \mathbf{H} . In [2], Aguiar, Bergeron, and Sottile define a *combinatorial Hopf algebra* as a pair (\mathbf{H}, η) where \mathbf{H} is a Hopf algebra and $\eta : \mathbf{H} \to \mathbb{K}$ a character of \mathbf{H} . For any combinatorial Hopf algebra (\mathbf{H}, η) , a canonical Hopf algebra morphism to *QSym* is constructed in [2]. The maps $\Psi_{\mathbf{G}} : \mathbf{G} \to Sym$ and $\Psi_{\mathbf{G}} : \mathbf{G} \to WSym$ are Hopf algebra morphisms that can be obtained in such a manner: If we take the character $\eta(G) = \mathbb{1}[G$ has no edges], the canonical Hopf algebra morphism for (\mathbf{G}, η) is exactly the map $\Psi_{\mathbf{G}}$. The map $\Psi_{\mathbf{G}}$ arises from a parallel result in Hopf monoids, as presented in [10]. The Gessel quasisymmetric function $\Psi_{\mathbf{Pos}}$ on posets arises similarly.

We present analogues to Theorems 1.1 and 1.2 in the combinatorial Hopf algebra of nestohedra, which is a combinatorial Hopf subalgebra of generalised permutahedra.

Generalised Permutahedra

Generalised permutahedra are particular polytopes that include permutahedra, associahedra and graph zonotopes. The reader can see some results in the topic in [11].

The Minkowski sum of two polytopes $\mathfrak{a}, \mathfrak{b}$ is set as $\mathfrak{a} +_M \mathfrak{b} = \{a + b | a \in \mathfrak{a}, b \in \mathfrak{b}\}$. The Minkowski difference $\mathfrak{a} -_M \mathfrak{b}$ is defined as the unique polytope \mathfrak{c} that satisfies $\mathfrak{b} +_M \mathfrak{c} = \mathfrak{a}$, if it exists. We denote the Minkowski sum of several polytopes as $^M \sum_i \mathfrak{a}_i$.

If we let $\{e_i | i \in I\}$ be the canonical basis of \mathbb{R}^I , a *simplex* is a polytope of the form $\mathfrak{s}_J = conv\{e_j | j \in J\}$ for non-empty $J \subseteq I$, and a generalised permutahedron in \mathbb{R}^I is a polytope of the form

$$\mathbf{q} = \begin{pmatrix} M \sum_{\substack{J \neq \emptyset \\ a_J > 0}} a_J \mathbf{s}_J \end{pmatrix} -_M \begin{pmatrix} M \sum_{\substack{J \neq \emptyset \\ a_J < 0}} |a_J| \mathbf{s}_J \end{pmatrix}, \qquad (1.2)$$

for reals $\{a_J\}_{\emptyset \neq J \subseteq I}$ that can be either positive, negative or zero. We identify a generalised permutahedron q with the list $\{a_J\}_{\emptyset \neq J \subseteq I}$. Note that not every list of real numbers will give us a generalised permutahedron, since the Minkowski difference is not always defined.

A *nestohedron* is a generalised permutahedron where the coefficients a_J are nonnegative. For a nestohedron \mathfrak{q} , we denote $\mathcal{F}(\mathfrak{q}) \subseteq 2^I \setminus \emptyset$ as the family of sets $J \subseteq I$ such that $a_I > 0$. Finally, for a set $A \subseteq 2^I \setminus \emptyset$, we write $\mathcal{F}^{-1}(A)$ for the nestohedra $\mathfrak{q} = {}^{M} \sum_{J \in A} \mathfrak{s}_{J}$. Note that the nestohedra \mathfrak{q} and $\mathcal{F}^{-1}(\mathcal{F}(\mathfrak{q}))$ are, in general, distinct, so some care is needed with this notation. However, the face structure is the same, and we will have an explicit combinatorial equivalence in Proposition 4.1.

In [1], Aguiar and Ardila define **GP**, a Hopf algebra structure on the linear space generated by generalised permutahedra in \mathbb{R}^n for $n \ge 0$. The Hopf subalgebra **Nesto** is the linear space generated by nestohedra. In [6], Grujić introduced a quasisymmetric map in generalised permutahedra $\Psi_{\mathbf{GP}} : \mathbf{GP} \to QSym$ that we will recall now.

For a polytope $\mathfrak{q} \subseteq \mathbb{R}^{I}$, Grujić defines a function $f : I \to \mathbb{N}$ as \mathfrak{q} -generic if the face of \mathfrak{q} given by $\arg \min_{x \in \mathfrak{q}} \sum_{i \in I} f(i)x_i =: \mathfrak{q}_f \subseteq \mathfrak{q}$, is a point. Equivalently, f is \mathfrak{q} -generic if it lies in the interior of the normal cone of some vertex.

Then Grujić defines for $\{x_i\}_{i>1}$ commutative variables, the quasisymmetric function:

$$\Psi_{\mathbf{GP}}(\mathfrak{q}) = \sum_{f \text{ is } \mathfrak{q}\text{-generic}} x_f.$$
(1.3)

If we consider the character $\eta(q) = \mathbb{1}[q \text{ is a point}]$, then Ψ_{GP} is the canonical Hopf algebra morphism associated with the combinatorial Hopf algebra (**GP**, η).

In [1], Aguiar and Ardila define the graph zonotope $Z : \mathbf{G} \to \mathbf{GP}$, a Hopf algebra morphism that is injective and maps $\Psi_{\mathbf{G}}$ to $\Psi_{\mathbf{GP}}$. They also define other maps from other combinatorial Hopf algebras, like matroids, to \mathbf{GP} , that preserve the canonical Hopf algebra morphisms. If we are able to describe ker $\Psi_{\mathbf{GP}}$, then such maps $Z : \mathbf{H} \to \mathbf{GP}$ give us some information on ker $\Psi_{\mathbf{H}}$ using that $Z(\ker \Psi_{\mathbf{H}}) = \ker \Psi_{\mathbf{GP}} \cap Z(\mathbf{H})$.

We discuss now a non-commutative version of Ψ_{GP} , for which we will establish an analogue of Theorem 1.1 to nestohedra. Consider the Hopf algebra of word quasisymmetric functions **WQSym**, a version of *QSym* in non-commutative variables introduced in [8].

For a generalised permutahedron q and non-commutative variables $\{a_i\}_{i\geq 1}$, we set

$$\Psi_{\mathbf{GP}}(\mathfrak{q}) = \sum_{f \text{ is } \mathfrak{q} - \text{generic}} \mathbf{a}_f$$

It is easily seen (and shown in [10]) that $\Psi_{GP}(q)$ is a word quasisymmetric function. This defines a Hopf algebra morphism between **GP** and **WQSym**. Let us call Ψ_{Nesto} and Ψ_{Nesto} to the restrictions of Ψ_{GP} and Ψ_{GP} to **Nesto**, respectively.

Our next theorems describe the kernel of the maps Ψ_{Nesto} and Ψ_{Nesto} , using two types of relations. The simple relations presented in Proposition 4.1 convey that when the coefficients a_I that are positive in q_1 and q_2 are the same, then $\Psi_{GP}(q_1) = \Psi_{GP}(q_2)$. The modular relations are exhibited in Theorem 4.2. These generalise the ones for graphs, in the sense that the graph zonotope embedding $Z : \mathbf{G} \to \mathbf{GP}$, presented in [1], maps modular relations on graphs to modular relations on nestohedra.

Theorem 1.3 (Kernel of Ψ_{Nesto}). The space ker Ψ_{Nesto} is generated by the simple relations and modular relations on nestohedra.

In Definition 2.4 we define a proper subspace **SC** of **WQSym**. It is shown in the bottom of Page 10 that $SC = im \Psi_{Nesto}$ is a Hopf algebra. The dimension of SC_n is computed in [10], where in particular it is shown that it is exponentially smaller than the dimension of **WQSym**_{*n*}.

Two generalised permutahedra q_1 , q_2 are isomorphic if one can be obtained from the other by permuting the coordinates. If q_1 , q_2 are isomorphic, the commutative chromatic quasisymmetric functions $\Psi_{GP}(q_1)$ and $\Psi_{GP}(q_2)$ are the same. We call to $q_1 - q_2$ an **isomorphism relation on nestohedra**.

Theorem 1.4 (Kernel and image of Ψ_{Nesto}). The space ker Ψ_{Nesto} is generated by the modular relations and the isomorphism relations. The image of Ψ_{Nesto} is **QSym**.

A description of ker Ψ_{Nesto} is less general than a description of ker Ψ_{GP} . Nevertheless, most of the combinatorial objects embedded in **GP** are also in **Nesto**, such as graphs and matroids, so the result in the **Nesto** Hopf subalgebra can already be used to help us on other kernel problems.

Notation: We will use boldface for Hopf algebras in non-commutative variables, their elements, like word symmetric functions, and the associated combinatorial objects, for sake of clarity.

2 Preliminaries

For an equivalence relation \sim on a set A, we call $[x]_{\sim}$ to the equivalence class of x in \sim , and we write [x] when \sim is clear from context. We write both $\mathcal{E}(\sim)$ and A/\sim for the set of equivalence classes of \sim .

2.1 Linear algebra preliminaries

The following easy linear algebra lemmas will be useful to compute generators of the kernels and the images of Ψ and Ψ . These lemmas describe a sufficient condition for a set \mathcal{B} to span the kernel of a linear map $\phi : V \to W$. The proofs of these lemmas are basic linear algebra and can be found in [10].

Lemma 2.1. Let *V* be a finite dimensional vector space with a basis $\{a_i | i \in [m]\}, \phi : V \to W$ be a linear map, and $\mathcal{B} = \{b_j | j \in J\} \subseteq \ker \phi$ be a family of relations.

Assume that there exists $I \subseteq [m]$ such that:

- the elements $(\phi(a_i))_{i \in I}$ form a linearly independent family in W,
- for $i \in [m] \setminus I$ we have $a_i = b + \sum_{k=i+1}^m \lambda_k a_k$ for some $b \in \mathcal{B}$ and some scalars λ_k ;

Then \mathcal{B} spans ker ϕ . Additionally, we have that $(\phi(a_i))_{i \in I}$ is a basis of the image of ϕ .

The following lemma will help us deal with the composition $\Psi = \text{comu} \circ \Psi$, where comu is the commutator projection, that sends \mathbf{a}_i to x_i . In the lemma we give a sufficient condition for a natural enlargement of the set \mathcal{B} to generate ker Ψ .

Lemma 2.2. We will use the same notation as in Lemma 2.1. Let $\phi_1 : W \to W'$ be a linear map and call $\phi' = \phi_1 \circ \phi$. Take an equivalence relation \sim in $\{a_i\}_{i \in [m]}$ that satisfies $\phi'(a_i) = \phi'(a_j)$ whenever $a_i \sim a_j$. Define $C = \{a_i - a_j | a_i \sim a_j\}$ and write $\phi'([a_i]) = \phi'(a_i)$ with no ambiguity.

Assume the hypothesis in Lemma 2.1 and, additionally, suppose that $(\phi'([a_i]))_{[a_i] \in \mathcal{E}(\sim)}$ is linearly independent. Then ker ϕ' is generated by $\mathcal{B} \cup \mathcal{C}$ and $(\phi'([a_i]))_{[a_i] \in \mathcal{E}(\sim)}$ is a basis of im ϕ' .

2.2 Hopf algebras and associated combinatorial objects

In the following, all the Hopf algebras **H** have a grading, denoted as $\mathbf{H} = \bigoplus_{n \ge 0} \mathbf{H}_n$.

An *integer composition*, or simply a composition, of *n*, is a list $\alpha = (\alpha_1, \dots, \alpha_k)$ of positive integers which sum is *n*. We write $\alpha \models n$. We denote $l(\alpha)$ for the length of the list and we denote as C_n the set of compositions of size *n*.

An *integer partition*, or simply a partition, of *n* is a non-increasing list $\lambda = (\lambda_1, \dots, \lambda_k)$ of positive integers which sum is *n*. We denote $\lambda \vdash n$. We write $l(\lambda)$ for the length of the list and we denote as \mathcal{P}_n the set of partitions of size *n*. By disregarding the order of the parts on a composition α we obtain a partition denoted $\lambda(\alpha)$.

A set partition $\pi = {\pi_1, \dots, \pi_k}$ of a set *I* is a collection of non-empty disjoint subsets of *I*, called *blocks*, that cover *I*. We write $\pi \vdash I$. We denote $l(\pi)$ for the length of the set partition. We write \mathbf{P}_I for the family of set partitions of *I*, or simply \mathbf{P}_n if I = [n]. By counting the elements on each block we obtain an integer partition denoted $\lambda(\pi) \vdash \#I$. We identify a set partition $\pi \in \mathbf{P}_I$ with an equivalence relation \sim_{π} on *I*, where $x \sim_{\pi} y$ if $x, y \in I$ are on the same block of π .

A set composition $\vec{\pi} = S_1 | \cdots | S_l$ of I is a list of non-empty disjoint subsets of I that cover I. We write $\vec{\pi} \models I$. We denote $l(\vec{\pi})$ for the length of the set composition. We call C_I to the family of set compositions of I, or simply C_n if I = [n]. By disregarding the order of a set composition $\vec{\pi}$, we obtain a set partition $\lambda(\vec{\pi}) \vdash I$. By counting the elements on each block we obtain a composition $\alpha(\vec{\pi}) \models \#I$. A set composition $\vec{\pi}$ is naturally identified with a total preorder $P_{\vec{\pi}}$ on I, where $x P_{\vec{\pi}} y$ if $x \in S_i, y \in S_j$ for $i \leq j$.

A *colouring* of the set *I* is a function $f : I \to \mathbb{N}$. The set composition type $\vec{\pi}(f)$ of a colouring $f : I \to \mathbb{N}$ is the set composition obtained after deleting the empty sets of $f^{-1}(1)|f^{-1}(2)|\cdots$.

We recall that in partitions and in set partitions, it is defined a classical *coarsening* order \leq , where we say that $\lambda \leq \tau$ (resp. $\pi \leq \tau$) if τ is obtained from π by adding some parts (resp. if τ is obtained from π by merging some blocks).

Recall that the homogeneous component $QSym_n$ (resp. Sym_n , $WSym_n$, $WQSym_n$) of the Hopf algebra QSym (resp. Sym, WSym, WQSym) has a monomial basis indexed by compositions (resp. partitions, set partitions, set compositions). We will denote this basis by $\{M_{\alpha}\}_{\alpha \in C_n}$ (resp. $\{m_{\lambda}\}_{\lambda \in \mathcal{P}_n}$, $\{\mathbf{m}_{\pi}\}_{\pi \in \mathbf{P}_n}$, $\{\mathbf{M}_{\pi}\}_{\pi \in \mathbf{C}_n}$).

2.3 Monomial basis and nestohedra Hopf algebra

For a non-empty set $A \subseteq [n]$ and a set composition $\vec{\pi} \in \mathbf{C}_n$, we construct the set $A_{\vec{\pi}} = \{\text{minima of A in } P_{\vec{\pi}}\}$. We say that $A_{\vec{\pi}} = pt$ if $A_{\vec{\pi}}$ is a singleton. The following lemma is part of the folklore of generalised permutahedra and is shown in [10].

Lemma 2.3 (Vertex normal cone characterization). Let \mathfrak{q} be a nestohedron. A colouring f is \mathfrak{q} -generic if and only if $A_{\vec{\pi}(f)} = pt$ for every $A \in \mathcal{F}(\mathfrak{q})$. Furthermore, the face \mathfrak{q}_f that minimizes $\sum_i f(i)x_i$ only depends on the set composition $\vec{\pi}(f)$.

We write $q_{\vec{\pi}}$ for the face q_f for any f of set composition type $\vec{\pi}$, without ambiguity. For $\vec{\pi} \in \mathbf{C}_n$, we define the *fundamental nestohedron* as $\mathfrak{p}^{\vec{\pi}} = \mathcal{F}^{-1} \{A \subseteq [n] | A_{\vec{\pi}} = pt\}$.

On set compositions, we write that $\vec{\pi}_1 \leq \vec{\pi}_2$ whenever for any non-empty $A \subseteq [n]$ we have $A_{\vec{\pi}_1} = pt \Rightarrow A_{\vec{\pi}_2} = pt$. Equivalently, $\vec{\pi}_1 \leq \vec{\pi}_2$ if $\mathcal{F}(\mathfrak{p}^{\vec{\pi}_1}) \subseteq \mathcal{F}(\mathfrak{p}^{\vec{\pi}_2})$. Note that this makes \leq into a preorder, which we call the *singleton commuting preorder* or *SC preorder*.

Additionally, we define the equivalence relation \sim in C_n as $\vec{\pi} \sim \vec{\tau}$ if $\mathfrak{p}^{\vec{\pi}} = \mathfrak{p}^{\vec{\tau}}$. A combinatorial interpretation of this equivalence relation can be found below in Proposition 2.5, which also motivates the name of the preorder defined above.

Define $N_{[\vec{\pi}]} = \sum_{\vec{\tau} \sim \vec{\pi}} M_{\vec{\tau}} \in WQSym$, which forms a linear independent family. The following is a corollary of the proof of Theorem 1.3:

Definition 2.4. The singleton commuting space **SC** is the span of $\{\mathbf{N}_{[\vec{\pi}]} : [\vec{\pi}] \in \bigcup_{n>0} \mathbf{C}_n / \sim\}$.

The following proposition gives us a way to describe the equivalence classes of \sim . In particular, in [10], it allows us to compute the dimensions of **SC**_{*n*}. The proof can be found in [10].

Proposition 2.5. For $\vec{\pi}, \vec{\tau} \in C_I$, we have $\mathfrak{p}^{\vec{\pi}} = \mathfrak{p}^{\vec{\tau}}$ if and only if $\lambda(\vec{\pi}) = \lambda(\vec{\tau})$ and each $a, b \in I$ that satisfies both a $P_{\vec{\pi}}$ b and b $P_{\vec{\tau}}$ a are either singletons or in the same block in $\lambda(\vec{\pi})$.

From the definition of \leq , we have the following consequence of Lemma 2.3.

$$\Psi_{\rm GP}(\mathfrak{p}^{\vec{\pi}}) = \sum_{\vec{\pi} \leq \vec{\tau}} \mathbf{M}_{\vec{\tau}} \,. \tag{2.1}$$

As presented, (2.1) seems to shows that $(\Psi_{GP}(\mathfrak{p}^{\vec{\pi}}))_{\vec{\pi}\in C_n}$ writes triangularly with respect to the monomial basis. Since \leq is not an order, that is not the case, but we obtain a related result with this reasoning:

Lemma 2.6. The family $(\Psi(\mathfrak{p}^{[\vec{\pi}]}))_{[\vec{\pi}]\in C_n/\sim}$ forms a basis of SC.

The following lemma is helpful to show Theorem 1.4 and is shown in [10].

Lemma 2.7. There is an order \leq' on C_n that satisfies $\vec{\pi} \leq \vec{\tau} \Rightarrow \alpha(\vec{\pi}) \leq' \alpha(\vec{\tau})$.

3 Main theorems on graphs

With Lemma 2.1, we will show that the kernel of Ψ_{G} is spanned by the modular relations.

Figure 2: Example for proof of Theorem 1.1

Proof of Theorem 1.1. Recall that G_n is spanned by graphs with vertex set [n]. We choose an order \geq in this family of graphs in a way that the number of edges is non-decreasing.

For a set partition π of the vertex set [n], we define K_{π} as the graph where $\{i, j\} \in E(K_{\pi})$ if $i \sim_{\pi} j$. Then, it can be noted that $\Psi_{\mathbf{G}}(K_{\pi}^c) = \sum_{\tau \leq \pi} \mathbf{m}_{\tau}$ (see [5,

Proposition 3.2]), so we know that the transition matrix of $\{\Psi_{\mathbf{G}}(K_{\pi}^{c}) | \pi \in \mathbf{P}_{n}\}$ over the monomial basis of **WSym** is upper triangular, hence forms a basis set of **WSym** = im $\Psi_{\mathbf{G}}$.

In order to apply Lemma 2.1 to the set of modular relations on graphs, it suffices to show the following: if a graph *G* is not of the form K_{π}^c , then we can find a formal sum $G - G \cup \{e_1\} - G \cup \{e_2\} + G \cup \{e_1, e_2\}$ that is a modular relation. Indeed, *G* is the graph with least edges in that expression, so it is the smallest in the order \geq . If the above holds, Lemma 2.1 implies that the modular relations generate the space ker Ψ_G .

To find the desired modular relation, it is enough to find a triangle $\{e_1, e_2, e_3\}$ such that $e_1, e_2 \notin E(G)$ and $e_3 \in E(G)$. Consider τ , the set partition given by the connected components of G^c . By hypothesis, $G \neq K^c_{\tau}$, so there are vertices v, w in the same block of τ that are not neighbours in G^c . Without loss of generality we can take such u, w that are at distance 2 in G^c , so they have a common neighbour v in G^c . The edges $e_1 = \{v, u\}$, $e_2 = \{v, w\}$ and $e_3 = \{u, w\}$ form the desired triangle, concluding the proof.

Proof of Theorem 1.2. Our goal is to apply Lemma 2.2 to the map $\Psi_{\mathbf{G}} = \operatorname{comu} \circ \Psi_{\mathbf{G}}$ for the equivalence relation corresponding to graph isomorphism. First, if $\lambda(\pi) = \lambda(\tau)$ then K_{π}^{c} and K_{τ}^{c} are isomorphic graphs. Define without ambiguity $r_{\lambda(\pi)} = \Psi_{\mathbf{G}}(K_{\pi}^{c})$.

From the proof of Theorem 1.1, to apply Lemma 2.2 it is enough to establish that the family $(r_{\lambda})_{\lambda \in \mathcal{P}_n}$ is linearly independent. Indeed, it would follow that ker $\Psi_{\mathbf{G}}$ is generated by the modular relations and the isomorphism relations, and $(r_{\lambda})_{\lambda \in \mathcal{P}_n}$ is a basis of im $\Psi_{\mathbf{G}}$, which spans Sym_n via a dimension argument, concluding the proof.

9

The linear independence of $(r_{\lambda})_{\lambda \in \mathcal{P}_n}$ follows from the fact that its transition matrix over the monomial basis, under the coarsening order in integer partitions, is upper triangular. Indeed, since $\Psi_{\mathbf{G}}(K_{\pi}^c) = \sum_{\tau \leq \pi} \mathbf{m}_{\tau}$, if we let τ run over set partitions and σ run over integer partitions, we have

$$r_{\lambda(\pi)} = \Psi_{\mathbf{G}}(K^{c}_{\pi}) = \sum_{\tau \leq \pi} m_{\lambda(\tau)} = \sum_{\sigma \leq \lambda(\pi)} a_{\pi,\sigma} \ m_{\sigma} = m_{\lambda(\pi)} + \sum_{\sigma < \lambda(\pi)} a_{\pi,\sigma} \ m_{\sigma},$$

where $a_{\pi,\sigma} = #\{\tau \leq \pi | \lambda(\tau) = \sigma\}$, so $(r_{\lambda})_{\lambda \in \mathcal{P}_n}$ is linearly independent.

Remark 3.1. We have obtained in the proof of Theorem 1.2 that $(r_{\lambda})_{\lambda \vdash n}$ is a basis for Sym_n , different from other "chromatic bases" proposed in [3]. The proof gives us a recursive way to compute the coefficients ζ_{λ} on the span $\Psi_{\mathbf{G}}(G) = \sum_{\lambda} \zeta_{\lambda} r_{\lambda}$.

Similarly in the non-commutative case, we see that \mathbf{WSym}_n is spanned by $(\Psi_{\mathbf{G}}(K^c_{\pi}))_{\pi \vdash [n]}$, and so other coefficients arise. We can ask for combinatorial properties of these coefficients.

4 Main theorems on nestohedra

The following proposition is trivial when we consider (1.2).

Proposition 4.1 (Simple relations for Ψ_{Nesto}). *Take two nestohedra* $\mathfrak{q}_1 = {}^M \sum_{I \in 2^{[n]} \setminus \emptyset} a_I \mathfrak{s}_I$ and $\mathfrak{q}_2 = {}^M \sum_{I \in 2^{[n]} \setminus \emptyset} b_I \mathfrak{s}_I$ such that we have $a_I = 0 \Leftrightarrow b_I = 0$. Then $\Psi_{\text{GP}}(\mathfrak{q}_1) = \Psi_{\text{GP}}(\mathfrak{q}_2)$.

This proposition allows us to reduce the kernel problem on nestohedra to those nestohedra that satisfy $a_I \in \{0, 1\}$. We call these *primitive nestohedra*.

For non-empty sets $A \subseteq [n]$, we define Orth $A = \{\vec{\pi} \in \mathbf{C}_n | A_{\vec{\pi}} = pt\}$. We have:

Theorem 4.2 (Modular relations for Ψ_{Nesto}). Let $\{A_k | k \in K\}$ and $\{B_j | j \in J\}$ be two disjoint families of non-empty subsets of [n]. Let us write $\mathcal{K} = \bigcup_{k \in K} (\operatorname{Orth} A_k)^c$, and $\mathcal{J} = \bigcup_{j \in J} \operatorname{Orth} B_j$. Consider the nestohedron $\mathfrak{q} = \mathcal{F}^{-1}\{A_k | k \in K\}$. Suppose that $\mathcal{K} \cup \mathcal{J} = \mathbf{C}_n$. Then,

$$\sum_{T\subseteq J} (-1)^{\#T} \Psi_{\mathbf{GP}} \left[\mathfrak{q} +_M \mathcal{F}^{-1} \{ B_j | j \in T \} \right] = 0.$$

The proof of this result is done combinatorially, and is presented in [10].

Call $\sum_{T \subseteq J} (-1)^{\#T} [\mathfrak{q} +_M \mathcal{F}^{-1} \{B_j | j \in T\}]$ a modular relation on nestohedra. In Figure 3 we see such a modular relation for n = 4 and $\mathfrak{q} = \mathcal{F}^{-1} \{\{1, 4\}, \{1, 2, 4\}\}.$

If $l = G - G \cup \{e_1\} - G \cup \{e_2\} + G \cup \{e_1, e_2\}$ is a modular relation on graphs, the graph zonotope Z(l) is the modular relation on nestohedra corresponding to $\mathfrak{q} = Z(G)$, i.e. $\{A_k | k \in K\} = E(G), B_1 = e_1$ and $B_2 = e_2$. In this case, the condition $\mathcal{K} \cup \mathcal{J} = \mathbf{C}_n$ follows from the fact that no proper colouring of *G* is monochromatic in both e_1 and e_2 .

Recall the *fundamental nestohedra*, set as $\mathfrak{p}^{\vec{\pi}} = \mathcal{F}^{-1}\{A \subseteq [n] | A_{\vec{\pi}} = pt\}$, which depends only on the SC-equivalence class of $\vec{\pi}$ and we can write without ambiguity $\mathfrak{p}^{[\vec{\pi}]} = \mathfrak{p}^{\vec{\pi}}$.

Figure 3: A modular relation on nestohedra for $q = \mathcal{F}^{-1}\{\{1, 4\}, \{1, 2, 4\}\}$.

We follow here roughly the same idea as in the graph case: We use the family of nestohedra $(\mathfrak{p}^{[\vec{\pi}]})_{[\vec{\pi}]\in \mathbf{C}_n/\sim}$ to apply Lemma 2.1, whose image by $\Psi_{\mathbf{GP}}$ is linearly independent and is rich enough to span the image.

Proof of Theorem 1.3. We will apply Lemma 2.1 with Proposition 4.1 and Theorem 4.2.

First recall that **Nesto**_{*n*} is a linear space generated by the nestohedra in \mathbb{R}^n . We choose a total order \geq on the nestohedra so that $\#\mathcal{F}(\mathfrak{q})$ is non decreasing.

Lemma 2.6 guarantees that $(\Psi_{GP}(\mathfrak{p}^{[\vec{\pi}]}))_{[\vec{\pi}]\in C_n/\sim}$ is linearly independent. Therefore, it suffices to show that for any primitive nestohedra \mathfrak{q} that is not a fundamental nestohedron, we can write some modular relation b as $b = \mathfrak{q} + \sum_i \lambda_i \mathfrak{q}_i$, where $\#\mathcal{F}(\mathfrak{q}) < \#\mathcal{F}(\mathfrak{q}_i) \forall i$.

Indeed, it would follow from Lemma 2.1 that the modular relations on nestohedra span ker Ψ_{Nesto} . As a consequence, im Ψ_{Nesto} is spanned by the sets $\{\Psi_{\text{GP}}(\mathfrak{p}^{[\vec{\pi}]}) | [\vec{\pi}] \in \mathbf{C}_n / \sim\}$ for each $n \ge 0$. From Lemma 2.6, this image is \mathbf{SC}_n .

To obtain the desired modular relation, we invoke Theorem 4.2 on $\{A \in \mathcal{F}(\mathfrak{q})\}$ and $\{B \notin \mathcal{F}(\mathfrak{q})\}$. Let us write $\mathcal{K} = \bigcup_{A \in \mathcal{F}(\mathfrak{q})} (\operatorname{Orth} A)^c$ and $\mathcal{J} = \bigcup_{B \notin \mathcal{F}(\mathfrak{q})} \operatorname{Orth} B$. We will first show that we have $\mathcal{K} \cup \mathcal{J} = \mathbf{C}_n$.

Take, for sake of contradiction, some $\vec{\pi} \notin \mathcal{K} \cup \mathcal{J}$. Note that $\vec{\pi} \notin \mathcal{K}$ is equivalent to $A_{\vec{\pi}} = pt$ for every $A \in \mathcal{F}(\mathfrak{q})$. Note as well that $\vec{\pi} \notin \mathcal{J}$ is equivalent to $B_{\vec{\pi}} \neq pt$ for every $B \notin \mathcal{F}(\mathfrak{q})$. Therefore, if $\vec{\pi} \notin \mathcal{K} \cup \mathcal{J}$, then $\mathfrak{q} = \mathfrak{p}^{\vec{\pi}}$, contradicting the assumption that \mathfrak{q} is not a fundamental nestohedron. We obtain that $\mathcal{K} \cup \mathcal{J} = \mathbf{C}_n$. Finally, note that

$$\mathfrak{q} + \sum_{\substack{T \subseteq \mathcal{F}(\mathfrak{q})^c \ T \neq \emptyset}} (-1)^{\#T} \left[\mathfrak{q} +_M \mathcal{F}^{-1}(T) \right] ,$$

is a modular relation of the desired form, concluding the hypothesis of Lemma 2.1. \Box

It also follows from Lemma 2.1 that im Ψ_{GP} is spanned by $\{N_{[\vec{\pi}]} : [\vec{\pi}] \in \bigcup_{n \ge 0} C_n / \sim \}$, and **SC** is a connected graded bialgebra, hence it is a Hopf algebra.

For the commutative case we will apply Lemma 2.2. Note that we already have a generator set of ker Ψ_{Nesto} , so similarly to the proof of Theorem 1.2, we just need to establish some linear independence.

Recall that two nestohedra \mathfrak{q}_1 and \mathfrak{q}_2 are isomorphic if there is a permutation matrix P such that $x \in \mathfrak{q}_2 \Leftrightarrow Px \in \mathfrak{q}_1$. Since we are in the commutative case now, if $\vec{\pi}_1$ and $\vec{\pi}_2$ share the same composition type, then $\mathfrak{p}^{\vec{\pi}_1}$ and $\mathfrak{p}^{\vec{\pi}_2}$ are isomorphic, and so we have $\Psi_{\mathbf{GP}}(\mathfrak{p}^{\vec{\pi}_1}) = \Psi_{\mathbf{GP}}(\mathfrak{p}^{\vec{\pi}_2})$. Set $R_{\alpha(\vec{\pi})} := \Psi_{\mathbf{GP}}(\mathfrak{p}^{\vec{\pi}})$ without ambiguity.

Proof of Theorem 1.4. We will apply Lemma 2.2 to the map $\Psi_{GP} = \text{comu} \circ \Psi_{GP}$ on the equivalence relation corresponding to the isomorphism of nestohedra.

From the proof of Theorem 1.3, to apply Lemma 2.2 it is enough to establish that the family $(R_{\alpha})_{\alpha \in C_n}$ is linearly independent. It would follow that ker $\Psi_{\mathbf{GP}}$ is generated by the modular relations and the isomorphism relations, and $(R_{\alpha})_{\alpha \in C_n}$ is a basis of im $\Psi_{\mathbf{G}}$, concluding the proof.

To show the linear independence of $(R_{\alpha})_{\alpha \in C_n}$, we write R_{α} on the monomial basis of QSym, and use the order \leq' mentioned in Lemma 2.7.

As a consequence of (2.1), if we write $A_{\vec{\pi},\beta} = \#\{\vec{\tau} \in \mathbf{C}_n | \vec{\pi} \leq \vec{\tau}, \alpha(\vec{\tau}) = \beta\}$, we have:

$$R_{\alpha(\vec{\pi})} = \Psi_{\mathbf{GP}}(\mathfrak{p}^{\vec{\pi}}) = \sum_{\vec{\pi} \leq \vec{\tau}} M_{\alpha(\vec{\tau})} = A_{\vec{\pi},\alpha(\vec{\pi})} M_{\alpha(\vec{\pi})} + \sum_{\alpha(\vec{\pi}) < \beta} A_{\vec{\pi},\beta} M_{\beta}, \qquad (4.1)$$

It is clear that $A_{\vec{\pi},\alpha(\vec{\pi})} > 0$, so independence follows, which completes the proof. \Box

5 A new graph invariant

Consider the ring $\mathbb{K}[[q_1, q_2, \dots; x_1, x_2, \dots]]$ on two countable families of commuting variables, and let *R* be such a ring modulo the relations $q_i(q_i - 1)^2 = 0$.

Consider the graph invariant $\tilde{\Psi}(G) = \sum_{f} x_{f} \prod_{i} q_{i}^{c_{G}(f,i)}$ in R, where the sum runs over **all** colourings f, and $c_{G}(f,i)$ stands for the number of monochromatic edges of colour i in the colouring f (i.e. edges $\{v_{1}, v_{2}\}$ such that $f(v_{1}) = f(v_{2}) = i$).

It is easy to see that if *l* is a modular relation on graphs, then $\tilde{\Psi}(l) = 0$. It follows that any modular relation is in ker $\tilde{\Psi}$. From Theorem 1.2 we have that ker $\Psi_{\mathbf{G}} \subseteq \ker \tilde{\Psi}$, so we obtain the following proposition.

Proposition 5.1. For any graphs G_1, G_2 , we have $\Psi_{\mathbf{G}}(G_1) = \Psi_{\mathbf{G}}(G_2) \Rightarrow \tilde{\Psi}(G_1) = \tilde{\Psi}(G_2)$.

If we find a graph invariant satisfying Proposition 5.1 that takes different values for any pair of non-isomorphic trees, we obtain a proof of the tree conjecture. We wish to use Theorem 1.2 to prove Proposition 5.1 for other invariants.

We have $\tilde{\Psi}(G)|_{q_i=0} = \Psi_G$, so ker $\tilde{\Psi} = \ker \Psi_G$. Hence, the tree conjectures in Ψ_G and in $\tilde{\Psi}$ are equivalent. The specialisations $\tilde{\Psi}(G)|_{q_i=1}$ and $\frac{d}{dq_i}\tilde{\Psi}(G)|_{q_i=1}$ are also allowed. Note that a priori, Ψ contains more information than Ψ_{G} , making a possible proof of the tree conjecture easier.

References

- [1] M. Aguiar and F. Ardila. "Hopf monoids and generalized permutahedra". 2017. arXiv: 1709.07504.
- [2] M. Aguiar, N. Bergeron, and F. Sottile. "Combinatorial Hopf algebras and generalized Dehn–Sommerville relations". *Compos. Math.* **142**.1 (2006), pp. 1–30. URL.
- [3] S. Cho and S. van Willigenburg. "Chromatic bases for symmetric functions". *Electron. J. Combin.* **23**.1 (2016), Paper 1.15, 7. URL.
- [4] V. Féray. "Cyclic inclusion-exclusion". SIAM J. Discrete Math. 29.4 (2015), pp. 2284–2311.
 DOI: 10.1137/140991364.
- [5] D.D. Gebhard and B.E. Sagan. "A chromatic symmetric function in noncommuting variables". J. Algebraic Combin. 13.3 (2001), pp. 227–255. DOI: 10.1023/A:1011258714032.
- [6] V. Grujić. "Faces of graphical zonotopes". Ars Math. Contemp. 13.1 (2017), pp. 227–234. URL.
- [7] M. Guay-Paquet. "A modular law for the chromatic symmetric functions of (3+ 1)-free posets". 2013. arXiv: 1306.2400.
- [8] J.-C. Novelli and J.-Y. Thibon. "Polynomial realizations of some trialgebras". FPSAC 2006 proceedings. 2006.
- [9] R. Orellana and G. Scott. "Graphs with equal chromatic symmetric functions". *Discrete Math.* **320** (2014), pp. 1–14. DOI: 10.1016/j.disc.2013.12.006.
- [10] R. Penaguiao. "The kernel of chromatic quasisymmetric functions on graphs and nestohedra". In preparation. 2017.
- [11] A. Postnikov, V. Reiner, and L. Williams. "Faces of generalized permutohedra". Doc. Math 13 (2008), pp. 207–273.
- [12] M.H. Rosas and B.E. Sagan. "Symmetric functions in noncommuting variables". *Trans. Amer. Math. Soc.* **358**.1 (2006), pp. 215–232. DOI: 10.1090/S0002-9947-04-03623-2.
- [13] W.R. Schmitt. "Incidence Hopf algebras". J. Pure Appl. Algebra 96.3 (1994), pp. 299–330.
 DOI: 10.1016/0022-4049(94)90105-8.
- [14] R.P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". *Adv. Math.* 111.1 (1995), pp. 166–194. DOI: 10.1006/aima.1995.1020.