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A bijective proof of the hook-length formula for
skew shapes
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Abstract. Recently, Naruse presented a beautiful cancellation-free hook-length formula
for skew shapes. The formula involves a sum over objects called excited diagrams, and
the term corresponding to each excited diagram has hook lengths in the denominator,
like the classical hook-length formula due to Frame, Robinson and Thrall.

In this extended abstract, we present a simple bijection that proves an equivalent recur-
sive version of Naruse’s result, in the same way that the celebrated hook-walk proof
due to Green, Nijenhuis and Wilf gives a bijective (or probabilistic) proof of the hook-
length formula for ordinary shapes. In particular, we also give a new bijective proof of
the classical hook-length formula, quite different from the known proofs.
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1 Introduction

The celebrated hook-length formula gives an elegant product expression for the number of
standard Young tableaux (all definitions are given in Section 2):

A AR
f [Tuep h(u)

The formula also gives dimensions of irreducible representations of the symmetric
group, and is a fundamental result in algebraic combinatorics. The formula was discov-
ered by Frame, Robinson and Thrall in [4]. Since then, it has been reproved, generalized
and extended in several different ways, and applied in a number of fields ranging from
algebraic geometry to probability, and from group theory to the analysis of algorithms.

In an important development, Green, Nijenhuis and Wilf introduced the hook walk,
which proves a recursive version of the hook-length formula by a combination of a
probabilistic and a short induction argument [6]. Zeilberger converted this hook-walk
proof into a bijective proof [21]. With time, several variations of the hook walk have
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been discovered, most notably the g-version of Kerov [8]. In [2], a weighted version
of the identity is given, with a natural bijective proof in the spirit of the hook-walk
proof. Also of note are the proofs of Franzblau and Zeilberger [5] and Novelli, Pak and
Stoyanovskii [16]. See also [19], [3], [10] for some proofs of the hook-length formula for
shifted tableaux. There are also a great number of proofs of the more general Stanley’s
hook-content formula (see e.g. [20, Corollary 7.21.4]), see for example [18, 11].

There is no (known) product formula for the number of standard Young tableaux of a
skew shape, even though some formulas have been known for a long time. For example,
[20, Corollary 7.16.3] gives a determinantal formula; we can compute the numbers via
Littlewood-Richardson coefficients with the formula fA/# =¥, ci}lv fY, and there is also
a beautiful formula due to Okounkov and Olshanski [17]. The formula states that

o= MEL T (g — ), 1)

l_[ue[A] h(u) TERST(p,L(A)) ue(u]

where RST(y, () is the set of reverse semistandard tableaux, tableaux with entries 1,...,/¢
with weakly decreasing rows and strictly decreasing columns, and c(u) = j —1i is the
content of the cell u = (i, ). See also [13, Section 10.3].

In 2014, Hiroshi Naruse [15] presented and outlined a proof of a remarkable can-
cellation-free generalization for skew shapes, somewhat similar in spirit to Okounkov—
Olshanski’s.

An excited move means that we move a cell of a diagram diagonally (right and down),
provided that the cells to the right, below and diagonally down-right are not in the dia-
gram. Let £(A/pu) denote the set of all excited diagrams (see [7]) of shape A/u, diagrams
in [A] obtained by taking the diagram of y and performing series of excited moves in all
possible ways. Naruse’s formula says that

M=t Y TT ﬁ 1.2)

DeE(A/ 1) u€[A]\D
where all the hook lengths are evaluated in [A].

In [13], Morales, Pak and Panova give two different g-analogues of Naruse’s formula:
for the skew Schur functions, and for counting reverse plane partitions of skew shapes.
The proofs of the former employ a combination of algebraic and bijective arguments,
using the factorial Schur functions and the Hillman—Grassl correspondence. The proof
of the latter uses the Hillman—Grassl correspondence and is combinatorial. See also [14].

The purpose of this extended abstract is to give a bijective proof of an equivalent,
recursive version of Naruse’s result, in the same way that the hook walk gives a bijective
(or probabilistic) proof of the classical hook-length formula. The bijection is quite easy
to explain, and, in particular, gives a new bijective proof of the classical hook-length
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formula, rather different from the hook-walk proof or the proof due to Novelli-Pak-
Stoyanovskii.

Our main result (Theorem 3.4) is a polynomial identity, which specializes to the
recursive version of equation (1.2). It was pointed out by Morales and Panova (personal
communication) that the identity is equivalent to the identity [7, equation (5.2)]. See also
Section 5.

In Section 2, we give basic definitions and notation. In Section 3, we motivate equa-
tion (3.5) and show how it implies (1.2). In Section 4, we use a version of the bumping
algorithm on tableaux to prove the identity bijectively. We finish with some closing re-
marks in Section 5. The technical proofs are presented in the full version of the paper
([9, Section 5]).

2 Basic definitions and notation

A partition is a weakly decreasing finite sequence of positive integers A = (A1, Az, ..., Ay).
We call |[A| = Ay + -+ - + Ay the size of A and ¢ = ¢(A) the length of A. We write A; = 0
for i > ¢(A). The diagram of A is [A] = {(i,j): 1 <i < {(A),1 <j < A;}. We call the
elements of [A] the cells of A. For partitions y and A, we say that p is contained in A,
u C A, if [u] € [A]l. We say that A/p is a skew shape of size |A/u| = |A| — |u|, and the
diagram of A/pis [A/pu] = [A]\ [p]. We write p <A if p C A and |A/p| = 1. In this case,
we also say that A covers u. We often omit parenthesis and commas, so we could write
A = 6522 instead of A = (6,5,2,2).

A corner of A is a cell that can be removed from [A], i.e., a cell (i,j) € [A] satisfying
(i4+1,7),(i,j+1) & [A]. An outer corner of A is a cell that can be added to [A], i.e., a cell
(i,j) ¢ [A] satisfying i = 1or (i—1,j) € [A]and j = 1 or (i,j —1) € [A]. The rank of
Ais r(A) = max{i: A; > i}. The square [1,7(A)] x [1,7(A)] is called the Durfee square of
A. The partition 6522 has corners (1,6), (2,5) and (4,2), outer corners (1,7), (2,6), (3,3)
and (5,1), and rank 2.

The conjugate of a partition A is the partition A’ whose diagram is the transpose of [A];
in other words, A} = max{i: A; > j}. For example, for A = 6522, we have A\’ = 442221.
The hook length of the cell (i,j) € [A] is defined by h(i,j) = A; + )L;. —i—j+1. For
example, the hook length of the cell (1,2) € [6522] is 8. The hook of a cell u = (i,j) € [A]
isHu)={@G7):j]<j <A U{{,j):i<i < /\;} Obviously, we have |H(u)| = h(u).
The diagram [A] is the disjoint union of H(i,i), 1 <i < r(A).

A standard Young tableau (or SYT) of shape A is a bijective map T: [A] — {1,...,|Al},
(Z,]) — Tl']', satisfying Ti]' < Ti,j+1 if (i,j), (i,j—l— 1) € [)L] and Tl']' < Ti-l-l,j if (i,j), (1 + 1,j) €
[A]. The number of SYT’s of shape A is denoted by f*. The following illustrates f3? = 5:
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1[2]3] 1[2]4] 1]2]5] 1[3]4] 1]13]5]
4[5 3[5 3[4 2[5 2[4

The hook-length formula gives a product expression for the number of standard Young

tableaux: f* = %}"() For example, f3 = —4 13 = O-
uE

Analogously, if 4 C A, we can define a standard Young tableau of skew shape A/
asamap T: [A/pu] = {1,...,|A/ul}, (i,j) = Ty, satisfying T;; < T; ;1 if (,), (i,j + 1) €
[A/u] and Tj; < Tiyq if (i), (i +1,j) € [A/pu]. The number of SYT’s of shape A/u is
denoted by f*/#. The following illustrates f*3/% = 9:

1]2] 1]3] 1[4] 1[5] 2]3] 2[4] 2[5] 3[4] 3]5]
[314[5] [2]4[5] [2[3[5] [2[3[4] [1[4[5] [1[3]5] [1[3[4] [1[2[5] [1[2]4

Suppose that D C [A]. If (i,j) € D, (i+1,j),(i,j+1),(i+1,j+1) € [A]\ D, then an
excited move with respect to A is the replacement of D with D’ = D\ {(3,j)} U{(i+1,j +
1)}. If u C A, then an excited diagram of shape A/u is a diagram contained in [A] that
can be obtained from [y] with a series of excited moves. Let £(A/u) denote the set of all
excited diagrams of shape A/yu. The following shows £ (43/2):

- M e
As stated in the Introduction, Naruse’s formula (1.2) says that

f)\/}l:‘)\/yyl Z H h()

De&(A/u) uelr

where all the hook lengths are evaluated in [A]. For example, the formula confirms that
1 1 1 _
f#/2 =5l <3-1.3-2‘1 T Iz T 5~4~3.1.3) =9

3 A polynomial identity

It is clear that both sides of (1.2) are equal to 1 if A = u. Since the minimal entry of a
standard Young tableau of shape A/u must be in an outer corner of p which lies in A,
we have fA/#F = Yuaver f AV where Yu<vca denotes the sum over all partitions v that
are contained in A and cover u. To prove equation (1.2), it is enough to show that its
right-hand satisfies the same recursion. After multiplying with [T,y (1), we see that
the statement is equivalent to the following identity:

(IM=1uh) Y Tlhw)= ) ¥ T[hw (3.1)

De&(A/pu)ueb y<vCA De&(A/v)ueD
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Example 3.1. Take = 2 and A = 43. The three excited diagrams on page 4 show that
the left-hand side of (3.1) equals (7 —2) (5-4+5-1+2-1) = 135. On the other hand,
there are two partitions v that cover y, and together they give three excited diagrams:

= M e

That means that the right-hand side of (3.1) equals 5-4-3+5-4-3+45-3-1 = 135.

Fori,j=1,2,..., define

.1 |

xi:/\i—z+§, y]:/\;—]—l-i (32)
Clearly, for a cell u = (i,j) € [A], we have h(u) = Aj+ A —i—j+1 = xi+y;

Furthermore, since [A] is the disjoint union of hooks H(i,i), 1 <i < r(A), we have

Al =x1+y1+ 20 T V) (3.3)

For A = 43, we have x| = 3%, v = 1%, xy = 13, Yy = %, and indeed |A| = x1 +y1 +
x3 + Yo = 7. Equation (3.1) is therefore equivalent to the following;:

r(A)
(Z(xi+yi)—|u|> Y. Il Gi+yp= Y Y I (xity) (34

i=1 De&(A/n) (ij)eD pu<vCA De&(A/v) (i,j)eD

Note that this is not a valid polynomial identity for every A, u: the right-hand side is
a homogeneous polynomial (of degree |u| + 1), while the left-hand side is not (except if
u=@QoruZA). It represents a valid identity only for specific values of x;’s and y;’s.

However, we can replace |A| — |u| on the left-hand side of equation (3.1) with a certain
homogeneous linear polynomial (and h(u) again by x; +y; if u = (i,j)) and get a valid
polynomial identity. This identity specializes to (3.1) for appropriate values of x;’s and
yi’s. The motivation for the result is the following lemma, which holds even if u Z A.

Lemma 3.2. For arbitrary partitions A,y and x = Ay —k+ 3, yx = A, — k + 3, we have

Al =lul= Y, x4+ Y w
—HiTl =pi—j

Note that while k, i and j appearing in the sums can be arbitrarily large, the summa-
tion is finite since Ay —k = iy —k = —k and A} — k = p; — k = —k for large k.
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Example 3.3. We continue with the previous example, i.e., take 4 = 2 and A = 43. We
have

M =K1 = (3,
1

,—3,—4,-5,...) (yi—1)i>1= (1,—-2,-3,—4,...)
(A, —K)g>1= (1,0,—-1,-3,-5 1,-3,—4

1
01_ ;s 1_61_71"') (,11;_])]21: (01_

where elements of (A —k)i>1 and (A} — k)i>1 are underlined if they do not appear in
(pi —i)i>1 and (y] —Jj)j>1- Indeed, [A| — |u| = x1 +y1 = 5. For p = 431 and A = 765521,

N

(M =K== (6
M=Fg=1= (5

4,
3,

= LN

3/ ’ 7/ 8/ ) (]/ll - l)l>1 - (3
—6,—8 2

-5 ,—2,—4,-5,...)
“1,-4,-6,-8,-9,..) (W ~j1= (20,-1,-3,-5

1, 1
0 s 01_1_ ’ /_61“')

and [A| = [u| =x1 +x0+x3+ x5 +y1 +y2 +y3 +ye = 18.

The following theorem is our main result. It is a subtraction-free polynomial identity,
which, by Lemma 3.2, specializes to equation (3.1) when x; = A; —i + 3 and yj = A;. -

j+ %, and therefore implies the hook-length formula for skew diagrams.
Theorem 3.4. For arbitrary partitions A, p and commutative variables x;,y;, we have
(£t T u)] £ Twtw-E £ @) es
Bi: A=k Bi: Al —k De&(A/u) (i,j)eD p<vCA De&(A/v) (i,j)eD
—Hi =Hj=i

Example 3.5. For y = 2 and A = 43, we have the following identity (valid for commuta-
tive variables x1, y1, X2, Y2, X3, Y3).

(x1+y1) ((x1 +y1) (%1 +y2) + (x1 +y1) (2 +y3) + (x2 +y2) (x2 + y3))
= (x1+y1)(x1 +y2)(x1+y3) + (x1+y1) (x1 +y2) (2 +y1) + (x1 +y1) (x2 +y3) (2 +y1)-

For p = 431 and A = 765521, the first term on the left is x; + x2 + x3 + x5 + Y1 + y2 +
Y3 + Yo, the second term is a sum of 14080 monomials, and the right-hand side is a sum
of 112640 monomials.

The (bijective) proof of Theorem 3.4 is the content of the next section.

4 The bijection

First, we interpret the two sides of equation (3.5) in terms of certain tableaux. To motivate
the definition, look at the following excited diagram for y = 431 and A = 765521:
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]

Instead of actually moving the cells of y, write an integer in a cell of y that indicates
how many times it moves (diagonally) from the original position. For the above example,
we get the following tableau of shape y = 431:

0[0[1]1]
1]2

0
1

It is easy to see that the (non-negative integer) entries of the resulting tableau are
weakly increasing along rows and columns (in other words, that the tableau is a reverse
plane partition): for example, if one cell is to the left of another, we cannot make an excited
move on it until we make an excited move on its right neighbor. Also, every tableau
with non-negative integer entries and weakly increasing rows and columns corresponds
to a valid excited diagram, provided that the entry r in row i and column ; satisfies

j +1 < Ajy,. Furthermore, it is enough to check this inequality only for the corners of y.
See also flagged tableaux in [13, Section 3.2].

The contribution [](; jjep(x; +y;) of an excited diagram D can be written as

IT Gier, +yiery),
(@j)elp]

where T is the corresponding tableau of shape y with non-negative integer entries and
weakly increasing rows and columns. To extract the monomials from the product, choose
either x;. 1, or yj 1, for each (i, ) € [u]. Write the number Tj; in position (7, ) in black if
we choose ¥y 1, and in red if we choose yj, 1, Call a tableau with non-negative integer
black or red entries and weakly increasing rows and columns a bicolored tableau. Denote
by B(u) the (infinite unless 1 = @) set of bicolored tableaux of shape y, and denote by
B(u,A) the (finite) set of bicolored tableaux T of shape p that satisfy j + T; < )\iJrTi]. for
all (i,j) € [u]. The weight of a bicolored tableau T of shape u is

w(T) = H Xit+T;; H Yi+T;
(i,j)eb(T) (i,7)€[TI\b(T)
where b(T) is the set of black entries of T.

Example 4.1. The following are some bicolored tableaux in 5(431). A bicolored tableau
is in B(431,765521) if and only if T14 < 1, Tos < 2, T31 < 1, so the first three are in
B(431,765521) and the last one is not.
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0/ojo]o]| 0jof1]1] 1[1]1]1] 0[1]1]1]
0]1]1 0]2]2 1212 2]2]2
0] 1] 1] 2]

The weights of these tableaux are x3x2y2x3ya, X1y1X5y2Xay5, X2y3y3x5y3, and x1xX3y3x3y3-

We are ready to interpret both sides of equation (3.5). The left-hand side is the
enumerator (with respect to weight w) of the Cartesian product B(p, A) x W(u, A), where

W(n,A) = {xx: Ay —k # p; — i for all i} U{yg: Ay —k # pj —j for all j}.

The right-hand side is the enumerator of the set |J, B(v, A), where the union is over all
partitions v that cover y and are contained in A.

In the remainder of this section, we present a weight-preserving bijection between the
two sides. The map is a natural bumping algorithm. To describe it, we first describe the
insertion process: the process of inserting a variable z € {x1,y1, X2, 12, ...} into a bicolored
tableau T of shape p.

After some number of steps, i, j, w and S have certain values; in the beginning,
i=j=0,w=zand S =T. If w = xy, increase j by 1 (i.e., move to the next column) and
find the largest possible i (which can also be p 4+ 1if j = 1 or p} < p;_;) so that we can
replace S;; by a black k — i in position (i, ) and still have a weakly increasing column
with non-negative integers (such an i always exists). If, on the other hand, w = y,
increase i by 1 (i.e., move to the next row) and find the largest possible j (which can also
be y; +1if i = 1 or p; < p;_1) so that we can replace S;; by a red k — j in position (i, j)
and still have a weakly increasing row with non-negative integers.

Let w denote the value of the old S;; (i.e., XitS; if ;; is black and Yj+s;, if Sj; is red).
Continue with the procedure until (7,j) is an outer corner of y, and S is a bicolored
tableau of some shape v which covers u. The procedure returns this final S, which we
denote 9, (T, z).

Example 4.2. Take y = 431, the bicolored tableau

0/0]1]
1[1

T =

|OOO

and z = y;. Since we are inserting a y-variable, we insert it into the first row. The
variable y; can only be represented by a red 0 in the first column, so we write a red
0 in position (1,1), and the variable bumped out is x; (represented by the black 0 that
was in position (1,1) originally). Since this is an x-variable, we move to the right, and
insert it into the second column. The variable x; can only be represented by a black 0
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in the first row, so we write a black 0 in position (1,2), and the variable bumped out
is iy (represented by the red 0 that was in position (1,2) before). We have to insert it
into the second row, either as a red 1 in position (2,1) or a red 0 in position (2,2). Of
course, a red 1 in position (2,1) would give a decrease in column 1, so we insert it in
position (2,2), and bump out a black 1, representing x3. We insert x3 in column 3, either
as a black 2 in row 1 (but which makes the entry in (3,1) larger than the entry in (3,2))
or as a black 1 in row 2. Thus we write a black 1 in position (3,2) and bump out the
red 1 representing 4. We move to the next row: we can either write a red 3 in position
(3,1) or a red 2 in position (3,2). Both are possible, so we pick the latter option. Now
(i,j) = (3,2) is an outer corner of y, so we terminate the insertion process. Figure 1
illustrates the insertion process. Two numbers in a cell mean that we the number on the
left is bumping the number on the right. The last tableau is 431 (T, y1).

00[0]0]1| 0]oojo|1] 0jojo]1] 0/0]0]1] ojofJo|1]
0/1]1 0/1]1 0011 0|01 0/0]1
0 0 0 0 0[2

Figure 1: The insertion process from Example 4.2.

Theorem 4.3. The insertion process described above always terminates and is a weight-preserving
bijection
Pu: B(u) x {x1,y1,x2,92,...} — UB(V),
v
where the union is over all partitions v which cover .

Of course, the bijection does not necessarily restrict to a bijection from L(y,A) =
B(u,A) x W(u,A) to R(u,A) = U, B(v,A), and does not immediately prove Theorem
3.4. Once we insert a variable from WW(u, A) into a bicolored tableau in B(u,A), the
resulting tableau can add an outer corner of y which is not in [A], or it can return a
bicolored tableau in B(v), v C A, which is not in B(v, A). For instance, the last example
produced a tableau in 5(432) \ B(432,765521).

If $,(T,z) € B(v) is not in R(y,A), we can remove the entry in the unique cell in
[v/u] and obtain a new variable z’ and a tableau T’ of shape u. Compute ¢, (T’,2') €
B(v'). If it is in R(y, A), terminate the procedure, otherwise remove the entry in the
unique cell in [/ /| and obtain a new variable z” and a tableau T” of shape . Continue
until the computed tableau is in R (y, A); the procedure returns this tableau as the result.
We call this the repeated insertion process.

Example 4.4. Take yu = 431, A = 765521,

0[0J0]1]
1[1] e B(431,765521)

T =

0
0]
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and z = y; € W(431,765521). We already computed

0joo[1]
P431(T,z) =[0]0[1] € B(432) \ B(432,765521).
0]2

Remove the red 2 from position (3,2), and insert z’ = 4 into the tableau

0ojofo]1]
T'=[0]0]1
0]
The result is
0/0]0]0]1]
l[]431(T/,Z/): 0101
0

which is an element of B(531,765521) C R(431,765521). Therefore the procedure ter-
minates and returns this last tableau.

Theorem 4.5. The repeated insertion process described above always terminates and is a weight-
preserving bijection
Your: B, A) x Wi, A) — [ JB(v, A),
1%

where the union is over all partitions v which cover u and are contained in A.

This proves (3.5) and hence the hook-length formula for skew shapes, equation (1.2).

5 Final remarks

Comparison of Naruse’s formula with others. Naruse’s formula seems better for many
applications, e.g. asymptotics; see for example [13, Section 9] and [12]. This extended
abstract presents another advantage: it has a natural bijective proof.

Connection to Ikeda-Naruse’s formula. It was pointed out by Morales and Panova (per-
sonal communicatio) that in [7, equation (5.2)], Ikeda and Naruse proved algebraically
that for a skew shape A/ that fits inside a d x (n —d) box, (F(A/1) — F(u/1))F(A/u) =
Yuewer F(A/v), where F(A/p) = Ypee(a/m [ ep(Zaita-it1 = Zagj-a)- In particu-

i=1
X\—i = Za4d—it1, 1 <1 < d, and Y—j = Zdrj-Al 1 <j < n—d (we always have

Ai+d—i+1#d+j— A;- since the difference is the hook length of the cell (i,)), and
get precisely (3.5).

lar, F(A/1) = Er(A) (ZAsd—iv1 — zdﬂ',A;). For n and d fixed, we introduce variables
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Bijective proof of Monk’s formula. It was pointed out by Sara Billey that formula
(3.5) is similar to the Monk’s formula for Schubert polynomials. Indeed, the double
Schubert polynomial of a permutation w is the sum over all RC-graphs D for w taking
[Tij)ep(xi +yj). It would be interesting to see if there is a connection between our
bijection and the bijective proof of Monk’s formula from [1].

Shifted skew shapes. An obvious open question is how to adapt the bijection to prove
the version of Naruse’s hook-length formula for shifted skew shapes. One would expect
that a version of such a bijection exists and is much more complicated than the one
presented here. It would be interesting to compare the level of difficulty with bijective
proofs of the usual hook-length formula for shifted shapes, see e.g. [3] and [10].
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