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Abstract. For any finite Dynkin type, we construct a universal associahedron whose
normal fan contains all g-vector fans of that type as sections.

Résumé. Pour tout type Dynkin fini, nous construisons un associaèdre universel dont
l’éventail normal contient tous les éventails de g-vecteurs de ce type comme sections.

A generalized associahedron is a polytope which realizes the cluster complex of a finite
type cluster algebra of S. Fomin and A. Zelevinsky [2, 3]. Generalized associahedra were
first constructed by F. Chapoton, S. Fomin and A. Zelevinsky [1] using d-vectors. Further
realizations were obtained by C. Hohlweg, C. Lange and H. Thomas [6] using g-vectors.
However, these realizations are limited to the special case when the initial seed is acyclic.
Our first contribution is to lift this constraint.

Theorem. For any finite type initial exchange matrix B◦, the g-vector fan Fg(B◦) with respect
to B◦ is the normal fan of a generalized associahedron Asso(B◦).

When we start from an acyclic initial exchange matrix, our construction precisely re-
covers the associahedra of [6]. These can all be obtained by deleting inequalities from
the facet description of the permutahedron of the corresponding finite reflection group.
The main difficulty to extend this approach to arbitrary initial exchange matrices lies
in the fact that this property, intriguing as it might be, is essentially a coincidence. In
fact, the hyperplane arrangement H supporting the g-vector fan is no longer the Coxeter
arrangement of a finite reflection group. To overcome this situation, we develop an al-
ternative approach based on a uniform understanding of the linear dependences among
adjacent cones in the g-vector fan. In fact, not only we cover uniformly all finite type
g-vector fans, but we actually treat them simultaneously with a universal object.

Theorem. For any given finite Dynkin type Γ, there exists a universal associahedron Assoun(Γ)
such that, for any initial exchange matrix B◦ of type Γ, the generalized associahedron Asso(B◦)
is a suitable projection of the universal associahedron Assoun(Γ). In particular, all g-vector fans
of type Γ are sections of the normal fan of the universal associahedron Assoun(Γ).

See the long version [7] of this extended abstract for details and complete proofs.
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1 Type A universal associahedra from triangulations

Before addressing the problem in full generality, we illustrate the results in type A using
triangulations of polygons. We consider 2n + 6 points on the unit circle alternately
colored black and white, and let Ω◦ (resp. Ω•) denote the convex hull of the white
(resp. black) points. Let T be a triangulation of Ω◦ (resp. of Ω•), let δ ∈ T, and let γ

be a diagonal of Ω• (resp. of Ω◦). When γ crosses δ, we define ε(δ ∈ T, γ) to be 1,
−1, or 0 depending on whether γ crosses the quadrilateral formed by the two triangles
of T incident to δ as a Z, as a Z, or in a corner. If γ and δ do not cross, then we
set ε(δ∈T, γ) = 0. The following definition is illustrated in Figure 1.

Definition 1.1. Fix an arbitrary reference triangulation T◦ of Ω◦. For a diagonal δ• of Ω•,
we define the g-vector of δ• with respect to T◦ as g

(
T◦, δ•

)
:=
[
ε
(
δ◦∈T◦, δ•

)]
δ◦∈T◦

∈ RT◦ .
For any diagonal δ• of Ω• and triangulation T• of Ω• with δ• ∈ T•, we define the c-vector
of δ• ∈ T• with respect to T◦ as c

(
T◦, δ• ∈ T•

)
:=
[
− ε
(
δ•∈T•, δ◦

)]
δ◦∈T◦

.
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Figure 1: Two triangulations T◦ and T• with the corresponding g- and c-vectors.

For two triangulations T◦ of Ω◦ and T• of Ω•, the sets g(T◦, T•) := {g(T◦, δ•) | δ•∈T•}
and c(T◦, T•) := {c(T◦, δ• ∈ T•) | δ• ∈ T•} are dual bases. Moreover, the g-vectors sup-
port a complete simplicial fan realizing the simplicial complex of collections of pairwise
non-crossing diagonals of Ω•. See Section 3 for basic notions of polyhedral geometry.

Theorem 1.2. For any reference triangulation T◦ of Ω◦, the collection of cones
Fg(T◦) :=

{
R≥0g(T◦, T•)

∣∣ T• triangulation of Ω•
}

,
together with all their faces, forms a complete simplicial fan, called the g-vector fan of T◦.

We prove that this fan is realized by the following associahedra. For a diagonal δ•
of Ω•, we denote by h(δ•) the number of diagonals of Ω• crossed by δ•.
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Theorem 1.3. For any reference triangulation T◦ of Ω◦, the g-vector fan Fg(T◦) is the normal
fan of the T◦-associahedron Asso(T◦) defined equivalently as

(i) the convex hull of the points p
(
T◦, T•

)
:= ∑δ•∈T• h(δ•) c(T◦, δ• ∈ T•) for all triangula-

tions T• of Ω•, or
(ii) the intersection of the hyperplanes H≤

(
T◦, δ•

)
:=
{

v ∈ RT◦
∣∣ 〈 g(T◦, δ•) | v 〉 ≤ h(δ•)

}
for

all diagonals δ• of Ω•.

When the triangulation T◦ has no internal triangle, the T◦-associahedron was con-
structed by C. Hohlweg and C. Lange in [5].

The geometry of these realizations depends on T◦. However, the crucial observation
is that h(δ•) does not depend on T◦.

Definition 1.4. Let ∆(Ω◦) be the set of all diagonals of Ω◦. The universal T◦-associahedron
Assoun(Ω◦) ⊆ R∆(Ω◦) is the convex hull of the points pun(T•) := ∑δ•∈T• h(δ•) u(δ• ∈ T•)
for all triangulations T• of Ω•, where u(δ• ∈ T•) :=

[
− ε
(
δ•∈T•, δ◦

)]
δ◦∈∆(Ω◦)

∈ R∆(Ω◦).

This polytope has the following universal property.

Theorem 1.5. For any reference triangulation T◦ of Ω◦, the orthogonal projection of the univer-
sal associahedron Assoun(Ω◦) on the coordinate subspace RT◦ is the T◦-associahedron Asso(T◦).

This extended abstract explains this result for arbitrary finite type cluster algebras.

2 Finite type cluster algebras

Cluster algebras. We work in the ambient field Q(x1, . . . , xn, p1, . . . , pm) of rational ex-
pressions in n + m variables with coefficients in Q and denote by Pm its abelian multi-
plicative subgroup generated by the elements {pi}i∈[m]. Given p = ∏i∈[m] pai

i ∈ Pm we

write {p}+ := ∏i∈[m] pmax(ai,0)
i and {p}− := ∏i∈[m] p−min(ai,0)

i so that p = {p}+ {p}−1
− .

A seed Σ is a triple (B, P, X) where
• the exchange matrix B is an integer n× n skew-symmetrizable matrix, i.e., such that

there exist a diagonal matrix D with −BD = (BD)T,
• the coefficient tuple P is any subset of n elements of Pm,
• the cluster X is a set of cluster variables, n rational functions in the ambient field that

are algebraically independent over Q(p1, . . . , pm).
To shorten our notation we think of rows and columns of B, as well as elements of P,
as being labelled by the elements of X: we write B = (bxy)x,y∈X and P = {px}x∈X.
Moreover we say that a cluster variable x (resp. a coefficient p) belongs to Σ = (B, P, X)
to mean x ∈ X (resp. p ∈ P).

Given a seed Σ = (B, P, X) and a cluster variable x ∈ Σ, we can construct a new
seed µx(Σ) = Σ′ = (B′, P′, X′) by mutation in direction x, where:



4 Christophe Hohlweg, Vincent Pilaud, and Salvatore Stella

• the new cluster X′ is obtained from X by replacing x with the cluster variable x′

defined by the following exchange relation:

xx′ = {px}+ ∏
y∈X, bxy>0

ybxy + {px}− ∏
y∈X, bxy<0

y−bxy

and leaving the remaining cluster variables unchanged so that Xr {x} = X′r {x′}.
• the row (resp. column) of B′ indexed by x′ is the negative of the row (resp. column)

of B indexed by x, while all other entries satisfy b′yz = byz +
1
2

(
|byx|bxz + byx|bxz|

)
,

• the elements of the new coefficient tuple P′ are obtained by a related mutation rule.
As mutations are involutions, they define an equivalence relation on the set of all seeds.

Fix a seed Σ◦ = (B◦, P◦, X◦) and call it initial. Up to an automorphism of the ambient
field we will assume that X◦ = {x1, . . . , xn} and drop X◦ from our notation.

Definition 2.1 ([4, Definition 2.11]). The (geometric type) cluster algebra A(B◦, P◦) is the
ZPm-subring of the ambient field generated by all the cluster variables in all the seeds
mutationally equivalent to the initial seed Σ◦.

The simplest possible choice of coefficient tuple in the initial seed, namely m = 0 and
P◦ = {1}i∈[n], gives rise to the cluster algebra without coefficients Afr(B◦).

Finite type. We only deal with cluster algebras of finite type i.e., cluster algebras having
only a finite number of cluster variables. Being of finite type is a property that depends
only on the exchange matrix in the initial seed and not on the coefficient tuple.

The Cartan companion of an exchange matrix B is the symmetrizable matrix A(B)
given by axy = 2 if x = y and axy = −|bxy| otherwise.

Theorem 2.2 ([3, Theorem 1.4]). The cluster algebra A(B◦, P◦) is of finite type if and only if
there exists an exchange matrix B obtained by a sequence of mutations from B◦ such that its Car-
tan companion is a Cartan matrix of finite type. Moreover the type of A(B) is determined by B◦.

In accordance with this statement, when talking about the (cluster) type of A(B◦, P◦)
or B◦ we will refer to the Cartan type of A(B). We reiterate that the Cartan type of A(B◦)
need not be finite: being of finite type is a property of the mutation class.

For a finite type cluster algebra A(B◦, P◦), we will consider the root system of A(B◦).
To avoid any confusion later on let us state clearly the conventions we use here: for
us simple roots {αx}x∈X◦ and fundamental weights {ωx}x∈X◦ are two basis of the same
vector space V; the matrix relating them is the Cartan matrix A(B◦). Fundamental
weights are the dual basis to simple coroots {α∨x }x∈X◦ , while simple roots are the dual
basis to fundamental coweights {ω∨x }x∈X◦ ; coroots and coweights are two basis of the
dual space V∨ and they are related by the transpose of the Cartan matrix.

A finite type exchange matrix B◦ is said to be acyclic if A(B◦) is itself a Cartan matrix
of finite type and cyclic otherwise. An acyclic finite type exchange matrix is said to be
bipartite if each of its rows consists either of non-positive or non-negative entries.
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Principal coefficients and g- and c-vectors. Among all the cluster algebras having a
fixed initial exchange matrix, a central role is played by those with principal coefficients.

Definition 2.3 ([4, Definition 3.1]). A cluster algebra is said to have principal coefficients (at
the initial seed) if its ambient field is Q(x1, . . . , xn, p1, . . . , pn) and the initial coefficient
tuple consists of the generators of Pn i.e., P◦ = {pi}i∈[n]. In this case we will write
Apr (B◦) for A(B◦, {pi}i∈[n]), and we reindex the generators {pi}i∈[n] of Pn by {px}x∈X◦ .

Cluster algebras with principal coefficients are Zn-graded (in the basis {ωx}x∈X◦
of V). The degree function deg(B◦, ·) on Apr (B◦) is obtained by setting deg(B◦, x) :=ωx
and deg(B◦, px) := ∑y∈X◦ −byxωy for any x ∈ X◦. This assignment makes all exchange
relations and all cluster variables in Apr (B◦) homogeneous [4] and it justifies the defini-
tion of the following family of integer vectors associated to cluster variables.

Definition 2.4 ([4]). The g-vector g(B◦, x) of a cluster variable x ∈ Apr (B◦) is its degree.
We denote by g(B◦, Σ) := {g(B◦, x) | x ∈ Σ} the set of g-vectors of the cluster variable in
the seed Σ of Apr (B◦).

The next definition gives another family of integer vectors, introduced implicitly
in [4], that are relevant in the structure of Apr (B◦).

Definition 2.5. Given a seed Σ in Apr (B◦), the c-vector of a cluster variable x ∈ Σ is
the vector c(B◦, x ∈ Σ) := ∑y∈X◦ cyx αy of exponents of px = ∏y∈X◦(py)

cyx . We denote
by c(B◦, Σ) := {c(B◦, x ∈ Σ) | x ∈ Σ} the set of c-vectors of a seed Σ.

Our next task in this section is to discuss a duality relation in between c-vectors and
g-vectors. A first step is to recall the notion of the cluster complex of A(B◦, P◦): it is
the abstract simplicial complex whose vertices are the cluster variables of A(B◦, P◦) and
whose facets are its clusters. As it turns out, at least in the finite type cases, this complex
is independent of the choice of coefficients, see [3, Theorem 1.13] and [4, Conjecture 4.3].
In particular this means that, up to isomorphism, there is only one cluster complex for
each finite type: the one associated to Afr(B◦). We will use this remark later on to relate
cluster variables of different cluster algebras of the same finite type. Note also that, again
when A(B◦, P◦) is of finite type, the cluster complex is a pseudomanifold [3].

For a skew-symmetrizable exchange matrix B◦, the matrix B∨◦ := − BT
◦ is still skew-

symmetrizable. The cluster algebras Apr (B◦) and Apr (B∨◦ ) can be thought as dual to
each other. Indeed their types are Langlands dual of each other. Moreover their cluster
complexes are isomorphic: by performing the same sequence of mutations we can iden-
tify any cluster variable x of Apr (B◦) with a cluster variable x∨ of Apr (B∨◦ ), and any
seed Σ in Apr (B◦) with a seed Σ∨ in Apr (B∨◦ ). More importantly the following crucial
property holds.

Theorem 2.6 ([8, Theorem 1.2]). For any seed Σ of Apr (B◦), let Σ∨ be its dual in Apr (B∨◦ ).
Then the set of g-vectors g(B◦, Σ) and the set of c-vectors c(B∨◦ , Σ∨) form dual bases, that is〈

g(B◦, x)
∣∣ c(B∨◦ , y∨ ∈ Σ∨)

〉
= δx=y for any two cluster variables x, y ∈ Σ.
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In view of the above results, and since A(B∨◦ ) = A(B◦)T, the c-vectors of a finite type
cluster algebra Apr (B∨◦ ) can be understood as coroots for A(B◦) so that the g-vectors of
Apr (B◦) become weights. This justify our choice to define g-vectors in the weight basis
and c-vectors in the root basis.

Coefficient specialization and universal cluster algebra. We want to relate, within a
given finite type, cluster algebras with different choices of coefficients. Pick a finite
type exchange matrix B◦ and let A(B◦, P◦) ⊂ Q(x1, . . . , xn, p1, . . . , pm) and A(B◦, P◦) ⊂
Q(x1, . . . , xn, p1, . . . , p`) be any two cluster algebras having B◦ as exchange matrix in
their initial seed. As we said, cluster variables and seeds in these two algebras are in
bijection because their cluster complexes are isomorphic. Let us write x ↔ x and Σ↔ Σ
for this bijection. We will say that A(B◦, P◦) is obtained from A(B◦, P◦) by a coefficient
specialization if there exist a map of abelian groups η : Pm → P` such that, for any px
in some seed Σ of A(B◦, P◦), we have η({px}+) = {px}+ and η({px}−) = {px}− and
which extends in a unique way to a map of algebras that satisfy η(x) = x. Note that this
is not the most general definition (see [4, Definition 12.1 and Proposition 12.2]) but it will
suffice here. Armed with the notion of coefficient specialization we can now introduce
the last kind of cluster algebra of finite type we will need.

Definition 2.7 ([4, Definition 12.3 and Theorem 12.4]). Pick a finite type exchange matrix
B◦. The cluster algebra with universal coefficients Aun(B◦) is the unique (up to canonical
isomorphism) cluster algebra such that any other cluster algebra of the same type as B◦
can be obtained from it by a unique coefficient specialization.

Let us insist on the fact that, in view of the universal property it satisfies, Aun(B◦)
depends only on the type of B◦ and not on the exchange matrix B◦ itself. We keep B◦ in
the notation only to fix an embedding into the ambient field.

Rather than proving the existence and explaining the details of how such a universal
algebra is built, we will recall here one of its remarkable properties that follows directly
from the g-vector recursion [8, Proposition 4.2 (v)] and that we will need later on. De-
note by X (B◦) the set of all cluster variables in Aun(B◦) and let {p[x]}x∈X (B◦) be the
generators of P|X (B◦)|.

Theorem 2.8 ([9, Theorem 10.12]). The cluster algebra Aun(B◦) can be realized over P|X (B◦)|.
The coefficient tuple P = {px}x∈X at each seed Σ = (B, P, X) of Aun(B◦) is given by the formula
px = ∏y∈X (B◦) p[y][g(B

T ,yT);xT ] where [v; x] is the x-th coefficient of a vector v in the weight
basis (ωx)x∈X.

Remark 2.9. In view of this result, it is straightforward to produce the coefficient spe-
cialization morphism to get any cluster algebra with principal coefficients of type B◦
from Aun(B◦). Namely, for any seed Σ? = (B?, P?, X?) of Aun(B◦), we obtain Apr (B?) by
evaluating to 1 all the coefficients p[y] corresponding to cluster variables y not in Σ?.
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3 Polyhedral geometry and fans

A polyhedral cone is a subset of the vector space V defined equivalently as the positive
span of finitely many vectors or as the intersection of finitely many closed linear half-
spaces. We write R≥0Λ for the positive span of a set Λ of vectors of V. The faces of a
cone C are the intersections of C with its supporting hyperplanes. The 1-dimensional
(resp. codimension 1) faces of C are called rays (resp. facets) of C. A cone is simplicial if it
is generated by a set of independent vectors.

A polyhedral fan is a collection F of polyhedral cones of V such that
• if C ∈ F and F is a face of C, then F ∈ F ,
• the intersection of any two cones of F is a face of both.

A fan is simplicial if all its cones are, and complete if the union of its cones covers the am-
bient space V. For a simplicial fan F with rays X , the collection {X ⊆ X | R≥0X ∈ F}
of generating sets of the cones of F defines a pseudomanifold. The following statement
characterizes which pseudomanifolds are complete simplicial fans.

Proposition 3.1. Consider a pseudomanifold ∆ with vertex set X and a set of vectors {r(x)}x∈X
of V. For X ∈ ∆, let r(X) :=

{
r(x)

∣∣ x ∈ X
}

. Then the collection of cones
{

R≥0r(X)
∣∣ X ∈ ∆

}
forms a complete simplicial fan if and only if

1. there exists a facet X of ∆ such that r(X) is a basis of V and the open cones R>0r(X)
and R>0r(X′) are disjoint for any facet X′ of ∆ distinct from X;

2. for any two adjacent facets X, X′ of ∆ with X r {x} = X′ r {x′}, there is a linear de-
pendence γ r(x) + γ′ r(x′) + ∑y∈X∩X′ δy r(y) = 0 on r(X ∪ X′) where the coefficients γ

and γ′ have the same sign. (When these conditions hold, these coefficients do not vanish
and the linear dependence is unique up to rescaling.)

A polytope is a subset P of V∨ defined equivalently as the convex hull of finitely many
points or as a bounded intersection of finitely many closed affine halfspaces. The faces
of P are the intersections of P with its supporting hyperplanes. In particular, the dimen-
sion 0 (resp. dimension 1, resp. codimension 1) faces of P are called vertices (resp. edges,
resp. facets) of P. The (outer) normal cone of a face F of P is the cone in V generated by
the outer normal vectors of the facets of P containing F. The (outer) normal fan of P is
the collection of the (outer) normal cones of all its faces. We say that a complete polyhe-
dral fan in V is polytopal when it is the normal fan of a polytope in V∨. The following
statement provides a characterization of polytopality of complete simplicial fans.

Proposition 3.2. Consider a pseudomanifold ∆ with vertex set X and a set of vectors {r(x)}x∈X
of V such that F :=

{
R≥0r(X)

∣∣ X ∈ ∆
}

forms a complete simplicial fan. Assume that there
exists a map h : X → R>0 such that for any two facets X, X′ of ∆ with X r {x} = X′ r {x′},
we have γ h(x) + γ′ h(x′) + ∑y δy h(y) > 0, where γ r(x) + γ′ r(x′) + ∑y δy r(y) = 0 is the
unique (up to scaling) linear dependence with γ, γ′ > 0 between the rays of r(X∪ X′). Then, F
is the normal fan of the polytope given by

{
v ∈ V∨

∣∣ 〈 r(x) | v 〉 ≤ h(x) for all x ∈ X
}

.
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4 The g-vector fan

We first recast a well known fact concerning the cones spanned by the g-vectors of a any
finite type cluster algebra with principal coefficients.

Theorem 4.1. For any finite type exchange matrix B◦, the collection of cones
Fg(B◦) :=

{
R≥0g(B◦, Σ)

∣∣ Σ seed of Apr (B◦)
}

,
together with all their faces, forms a complete simplicial fan, called the g-vector fan of B◦.

There are several ways to deduce Theorem 4.1 from the literature. One option is
to use Proposition 3.1, whose second condition is implied by the following description
of the linear dependence between the g-vectors of two adjacent clusters, which is cru-
cial later.

Lemma 4.2. For any finite type exchange matrix B◦ and any adjacent seeds (B, P, X), (B′, P′, X′)
in Apr (B◦) with X r {x} = X′ r {x′}, the g-vectors of X ∪ X′ satisfy precisely one of the
following two linear dependences

g
(
B◦, x

)
+ g

(
B◦, x′

)
= ∑

y∈X∩X′, bxy<0
−bxy g

(
B◦, y

)
or g

(
B◦, x

)
+ g

(
B◦, x′

)
= ∑

y∈X∩X′, bxy>0
bxy g

(
B◦, y

)
.

Note that which of the two possible linear dependences is satisfied by the g-vectors of X ∪ X′

depends on the initial exchange matrix B◦.

Remark 4.3. When the exchange matrix B◦ is acyclic, the g-vector fan is the Cambrian fan
constructed by N. Reading and D. Speyer [10]. Cyclic examples are shown in Figure 2.

5 Polytopality

In this section, we show that the g-vector fan Fg(B◦) is polytopal for any finite type
exchange matrix B◦. As mentioned in the introduction, this result was previously known
for acyclic finite type exchange matrices [6]. We first consider some convenient functions
which will be used later in Theorem 5.2 to lift the g-vector fan. The existence of such
functions will be discussed in Proposition 5.3.

Definition 5.1. A positive function h on the cluster variables of A(B◦, P◦) is exchange
submodular if, for any adjacent seeds (B, P, X) and (B′, P′, X′) with Xr {x} = X′r {x′}, it
satisfies

h(x) + h(x′) > max
(

∑
y∈X∩X′, bxy<0

−bxy h(y) , ∑
y∈X∩X′, bxy>0

bxy h(y)
)

.

The following statement is our central result.
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 0 −1 1
1 0 −1
−1 1 0

  0 −1 2
1 0 −2
−1 1 0



Figure 2: The g-vector fan F g(B◦) for the type A3 (left) and type C3 (right) cyclic initial
exchange matrices. To plot the figure, the 3-dimensional fans are intersected with the
unit sphere and stereographically projected to the plane from the pole (−1,−1,−1).

Theorem 5.2. For any finite type exchange matrix B◦ and exchange submodular function h, the
g-vector fan Fg(B◦) is the normal fan of the B◦-associahedron Assoh(B◦) defined equivalently as

(i) the convex hull of the points ph(B◦, Σ
)

:= ∑x∈Σ h(x) c
(
B∨◦ , x∨ ∈ Σ∨

)
for all seeds Σ

of Apr (B◦), or
(ii) the intersection of the halfspaces Hh

≤(B◦, x) :=
{

v ∈ V∨
∣∣ 〈 g

(
B◦, x

) ∣∣ v
〉
≤ h(x)

}
for all

cluster variables x of Apr (B◦).

Our next step is to discuss the existence of exchange submodular functions for any
finite type cluster algebra with principal coefficients. The important observation here
is that the definition of exchange submodular function does not involve in any way the
coefficients of Apr (B◦) so that it suffices to construct one in the coefficient free cases.
Indeed, if h is exchange submodular for Afr(B◦), and η is the coefficient specialization
morphism given by

η : Apr (B◦) −→ Afr(B◦)
pi 7−→ 1

one gets the desired map by setting h(x) := h(η(x)) for any cluster variable x of Apr (B◦).
Recall that, up to an obvious automorphism of the ambient field, there exists a unique

cluster algebra without coefficients for each given finite type [4]. We can therefore,
without loss of generality, assume that B◦ is bipartite and directly deduce our result
from [11, Proposition 8.3] obtained as an easy consequence of [1, Lemma 2.4] which we
recast here in our current setting.

When B◦ is acyclic, the Weyl group of A(B◦) is finite and has a longest element w◦.
A point λ∨ := ∑x∈X◦ λ∨x ω∨x in the interior of the fundamental Weyl chamber of A(B∨◦ )
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Figure 3: The associahedra Asso(B◦) for the type A3 (left) and type C3 (right) cyclic
initial exchange matrices whose g-vector fans are depicted in Figure 2.

(that is to say λ∨x > 0 for all x ∈ X◦) is fairly balanced if w◦(λ∨) = −λ∨.

Proposition 5.3. Let Afr(B◦) be any finite type cluster algebra without coefficients and assume
that B◦ is bipartite. To each fairly balanced point λ∨ corresponds an exchange submodular func-
tion hλ∨ on Afr(B◦).

A particular example of fairly balanced point is the point ρ∨ := ∑x∈X◦ ω∨x . Note
that ρ∨ is both the sum of the fundamental coweights and the half sum of all positive
coroots of the root system of finite type A(B◦). In particular hρ∨ is the half compatibility
sum of x, i.e., the half sum of the compatibility degrees hρ∨(x) := 1

2 ∑y 6=x( y ‖ x ) over all
cluster variables distinct from x. The point ρ∨ is particularly relevant in representation
theory and its role in this context has already been observed in [1, Remark 1.6]. We call
balanced B◦-associahedron and denote by Asso(B◦) the B◦-associahedron Asso

hρ∨ (B◦) for
the exchange submodular function hρ∨ .

Remark 5.4. When B◦ is acyclic, the B◦-associahedron Asso(B◦) was already constructed
in [6]. It is then obtained by deleting inequalities from the facet description of the
permutahedron of the Coxeter group of type A(B◦). This requires the fact that the
Coxeter arrangement refines the Cambrian fan [10]. Similar properties still hold for any
type A initial seed: on the one hand, the g-vector fan is refined by the arrangement of
hyperplanes normal to the c-vectors of Apr (B◦); on the other hand, the B◦-associahedron
is obtained by deleting inequalities from the facet description of the zonotope obtained
as the Minkowski sum of all c-vectors of Apr (B◦). Although the fan refinement still
holds for all the other finite types, the B◦-associahedron in general cannot be obtained
by deleting inequalities in the facet description of a zonotope.

We sum up by restating our main result.

Corollary 5.5. For any finite type exchange matrix B◦, the g-vector fan Fg(B◦) is polytopal.
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6 Universal associahedron

For each initial exchange matrix B◦ of a given type, we constructed in Section 5 a gener-
alized associahedron Assoh(B◦) by lifting the g-vector fan using an exchange submodular
function h on the cluster variables of Apr (B◦). As already observed though, the func-
tion h is independent of the coefficients of Apr (B◦), so that all g-vector fans can be lifted
with the same function h. This motivates the definition of a universal associahedron.

Consider the finite type cluster algebra Aun(B◦) with universal coefficients, and let
X (B◦) denote its set of cluster variables. Consider a |X (B◦)|-dimensional vector space U
with basis {βx}x∈X (B◦) and its dual space U∨ with basis {β∨x∨}x∨∈X (B∨◦ ). As before, the
cluster variables of Aun(B◦) and Aun(B∨◦ ) are related by x ↔ x∨. For X ⊆ X (B◦), we
denote by HX the coordinate subspace of U spanned by {βx}x∈X.

Given a seed Σ in Aun(B◦), the u-vector of a cluster variable x ∈ Σ is the vector
u(B◦, x ∈ Σ) := ∑y∈X (B◦) uyx βy of exponents of px = ∏y∈X (B◦)(p[y])uyx . Remark 2.9 then
reformulates in terms of u- and c-vectors as follows. Choose a seed Σ? = (B?, P?, X?)
in Aun(B◦) that you want to make initial. Then, for any cluster variable x in a seed Σ,
the c-vector c(B?, x ∈ Σ) is the orthogonal projection of the u-vector u(B◦, x ∈ Σ) on the
coordinate subspace HX? . (Here and elsewhere we identify HX? with V and HX∨? with
V∨ in the obvious way.) We are now ready to define the universal associahedron.

Definition 6.1. For any finite type exchange matrix B◦ and any exchange submodular
function h, the universal B◦-associahedron Assoh

un(B◦) ⊆ U∨ is the convex hull of the points
ph

un
(
B◦, Σ

)
:= ∑x∈Σ h(x) u

(
B∨◦ , x∨ ∈ Σ∨

)
for all seeds Σ of Aun(B◦).

Note that Assoh
un(B◦) does not depend on B◦ but only on its cluster type. We keep B◦

in the notation to fix the indexing. Our interest in Assoh
un(B◦) comes from the following.

Theorem 6.2. Fix a finite type exchange matrix B◦ and an exchange submodular function h.
For any seed (B?, P?, X?) of Aun(B◦), the orthogonal projection of the universal associahe-
dron Assoh

un(B◦) on the coordinate subspace HX∨? of U∨ spanned by {β∨x∨}x∨∈X∨? is the B?-
associahedron Assoh(B?).

Remark 6.3. Consider the normal fan F of the universal B◦-associahedron Assoh
un(B◦).

Then for any seed Σ? = (B?, P?, X?) in Aun(B◦), the section of F by the coordinate sub-
space HX? of U spanned by {βx}x∈X? is the g-vector fan Fg(B?). We therefore call uni-
versal g-vector fan the normal fan Fg

un(B◦) of the universal B◦-associahedron Assoun(B◦).

As an immediate consequence of Theorem 6.2, we obtain that the vertices of the
universal associahedron Assoh

un(B◦) are precisely the points ph
un(B◦, Σ) for all seeds Σ

of Aun(B◦), and that the mutation graph of the cluster algebra Aun(B◦) is a subgraph of
the graph of Assoh

un(B◦). However, this inclusion is strict in general.
We conclude with three observations on the universal B◦-associahedron Assoh

un(B◦)
obtained by computer experiment:
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n ambient dim. dim. # vertices # facets # vertices / facet # facets / vertex
1 2 1 2 2 1 1
2 5 4 5 5 4 4
3 9 8 14 60 9 ≤ · ≤ 10 30 ≤ · ≤ 42
4 14 13 42 8960 14 ≤ · ≤ 28 3463 ≤ · ≤ 4244

Table 1: Some statistics for the universal associahedron of type An for n ∈ [4].

• Although a priori defined in U∨, Assoh
un(B◦) seems to be of codimension 1.

• In general Assoh
un(B◦) is neither simple nor simplicial. Table 1 presents some statis-

tics for the number of vertices per facet and facets per vertex in type An for n ∈ [4].
• The face lattice (and thus the f -vector) of Assoh

un(B◦) seems independent of h.
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