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Hook length property of d-complete posets via
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Abstract. The hook length formula for d-complete posets states that the P-partition
generating function for them is given by a product in terms of hook lengths. We
give a new proof of the hook length formula of d-complete posets using q-integrals.
Proctor proved that any connected d-complete poset can be uniquely decomposed into
irreducible d-complete posets and classified all irreducible d-complete posets. In this
work, we prove the hook length property of all the irreducible d-complete posets. The
proof is done by a case-by-case analysis consisting of two steps. First, we express the
P-partition generating function for each case as a q-integral and then we evaluate the
q-integrals.
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1 Introduction

The classical hook length formula due to Frame, Robinson and Thrall [2] states that for
a partition λ of n, the number f λ of standard Young tableaux of shape λ is given by

f λ =
n!

∏x∈λ h(x)
,

where h(x) is the hook length of the cell x in λ. One can naturally consider the shape λ

as a poset P on the cells in λ. Then the P-partition generating function for the poset also
has the following hook length formula:

∑
σ:P→N

q|σ| = ∏
x∈P

1
1− qh(x)

,

where the sum is over all P-partitions σ. It is also well known that the P-partition
generating functions for the posets coming from shifted shapes and forests satisfy the
hook length property.
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Proctor [10] introduced d-complete posets, which include the posets of shapes, shifted
shapes and forests, and with Peterson’s help, he [8] proved that the d-complete posets
have the hook length property:

Theorem 1.1 (Hook Length Formula for d-complete posets). For any d-complete poset P,
we have

∑
σ:P→N

q|σ| = ∏
x∈P

1
1− qh(x)

,

where the sum is over all P-partitions σ.

We note that Theorem 1.1 was also proved by Nakada [7] and generalized by Ishikawa
and Tagawa [4, 3] to “leaf posets”. However, their proofs are only sketched in confer-
ence proceedings, and so a completely detailed proof of the hook length formula (The-
orem 1.1) has not been available in the literature. In this work, we provide a new and
complete proof of Theorem 1.1 using q-integrals. This is an extended abstract of [6].

2 Preliminaries

2.1 Basic definitions and notation

We will use the following notation for q-series:

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), (a1, a2, . . . , ak; q)n = (a1; q)n · · · (ak; q)n.

Let δn denote the staircase partition (n− 1, n− 2, . . . , 1, 0). For a partition λ = (λ1, . . . , λn),
the alternant aλ(x1, . . . , xn) is defined by

aλ(x1, . . . , xn) = det(x
λj
i )n

i,j=1.

Given a partition λ, the Young diagram of λ is the left-justified array of squares in
which there are λi squares in the ith row from the top and the Young poset of λ is the
poset whose elements are the squares in the Young diagram of λ with relation x ≤ y if x
is weakly below and weakly to the right of y.

If λ has no nonzero identical parts, λ is called strict. For a strict partition λ, the shifted
Young diagram of λ is the diagram obtained from the Young diagram of λ by shifting the
ith row to the right by i − 1 units. The shifted Young poset of λ is defined similarly. If
there is no confusion, we identify a partition λ with its Young diagram and also with its
Young poset. For a strict partition λ, the shifted Young diagram of λ is denoted by λ∗.
Similarly, the shifted Young poset of λ will also be written as λ∗.

For a Young diagram or a shifted Young diagram λ, a semistandard Young tableau of
shape λ is a filling of λ with nonnegative integers such that the integers are weakly
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increasing in each row and strictly increasing in each column. A reverse plane partition
of shape λ is a filling of λ with nonnegative integers such that the integers are weakly
increasing in each row and each column. We denote by SSYT(λ) and RPP(λ) the set of
semistandard Young tableaux of shape λ and the set of reverse plane partitions of shape
λ, respectively.

Let λ be a strict partition. For T ∈ SSYT(λ∗) or T ∈ RPP(λ∗), the leftmost entry in
each row is called a diagonal entry. We define the reverse diagonal sequence rdiag(T) to be
the sequence of diagonal entries in the non-increasing order.

Now we recall basic properties of P-partitions. Let P be a poset with n elements. A
P-partition is a map σ : P → N such that x ≤P y implies σ(x) ≥ σ(y). In other words, a
P-partition is just an order-reversing map from P to N.

For an integer m ≥ 0, we denote by P≥m(P) the set of all P-partitions σ with min(σ) ≥
m. We also define P(P) = P≥0(P). For a P-partition σ, the size |σ| of σ is defined by

|σ| = ∑
x∈P

σ(x).

For a poset P, we define GFq(P) to be the P-partition generating function:

GFq(P) = ∑
σ∈P(P)

q|σ|.

The following definitions allow us to build d-complete posets starting from a chain.

Definition 2.1. Let P be a poset containing a chain C = {x1 < x2 < · · · < xn}. For λ ∈ Parn,
we denote by D(P, C, λ) the poset obtained by taking the disjoint union of P and (λ + δn+1)

∗

and identifying xn, xn−1, . . . , x1 with the diagonal elements of (λ + δn+1)
∗.

Definition 2.2. Let n and k be positive integers. Let

X = {(λ(i), ni, si) : 1 ≤ i ≤ k},

where ni and si are positive integers with si + ni − 1 ≤ n, λ(i) ∈ Parni . We define Pn(X) to be
the poset constructed as follows. Let P0 be a chain x1 < x2 < · · · < xn with n elements, called
diagonal entries. For 1 ≤ i ≤ k, we define Pi = D(Pi−1, Ci, λ(i)) where Ci = {xsi < xsi+1 <
· · · < xsi+ni−1}. Finally we define Pn(X) = Pk. We also define Pm

n (X) to be the poset obtained
from Pn(X) by attaching a chain with m elements above xn. We say that an element y ∈ Pn(X)
is of level i if y ≤ xi and y 6≤ xi−1.

Here, we do not provide the detailed definition of d-complete posets. In this paper,
we basically follow the set up of [9].
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2.2 Some properties of P-partitions

For a poset P, let P+ be the poset obtained from P by adding a new element which is
greater than all elements in P. If P has a unique maximal element, we define P− to be
the poset obtained from P by removing the maximal element. Note that (P+)− = P for
any poset P. If P has a unique maximal element, (P−)+ = P. There is a simple relation
between GFq(P+) and GFq(P).

Lemma 2.3. For a poset P with p elements, we have

GFq(P+) =
1

1− qp+1 GFq(P).

Let P be a poset in which there is a unique maximal element y1 and a specified
element y2 covered by y1. For integers m, k ≥ 1, we define Dm,k(P) to be the poset
obtained from P by adding a disjoint chain zm > · · · > z1 > z0 > z−1 > · · · > z−k and a
new element y0 with additional covering relations z1 > y0, z0 > y1, z−1 > y2 and y0 > y1.
See Figure 1. We also define Dk(P) to be the poset obtained from Dm,k(P) by removing
the elements zm, . . . , z1 and y0.

z0z1zm z−1z−2 z−kz2

P
y1 y2y0

· · · · · · z0 z−1z−2 z−k

P
y1 y2

· · ·

Figure 1: The posets Dm,k(P) on the left and Dk(P) on the right.

Then the following lemma enables us to decompose the P-partition generating func-
tion of d-complete posets.

Lemma 2.4. Let P = {y1, y2, . . . , yp} be a poset in which y1 is the unique maximal element and
y2 is covered by y1. Then

GFq(Dm,k(P)) =
1

(qp+k+1; q)m+2

(
qp+1

(q; q)k−1
GFq(P+) + (1− q2p+2k+2)GFq(Dk(P))

)
.

2.3 Semi-irreducible d-complete posets

Definition 2.5. A d-complete poset P is semi-irreducible if it is obtained from an irreducible
d-complete poset by attaching a chain with arbitrary number of elements (possibly 0) below each
acyclic element.

The semi-irreducibility is a slight generalization of the irreducibility defined by Proc-
tor [9].
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Lemma 2.6. Let P0 be an irreducible d-complete poset with k acyclic elements y1, . . . , yk. Suppose
that P1, . . . , Pk are (possibly empty) connected d-complete posets having the hook length property.
Let P be the poset obtained from P0 by attaching Pi below yi for each 1 ≤ i ≤ k, i.e.,

P = (· · · (P0
y1\v1 P1)

y2\v2 P2) · · · yk\vk Pk),

where vi is the unique maximal element of Pi. Then P also has the hook length property.

This lemma tells us that it suffices to prove the hook length property of the semi-
irreducible posets to prove that every d-complete poset has the hook length property.
Hence we prove:

Theorem 2.7. Every semi-irreducible d-complete poset has the hook length property.

3 q-integrals

In this section we express the P-partition generating function for Pn(X) as a q-integral,
where Pn(X) is the poset defined in Definition 2.2.

The q-integral of a function f (x) over [a, b] is defined by∫ b

a
f (x)dqx = (1− q)

∞

∑
i=0

(
f (bqi)bqi − f (aqi)aqi

)
,

where it is assumed that 0 < q < 1 and the sum absolutely converges.
For a multivariable function f (x1, . . . , xn) and a partition λ = (λ1, . . . , λn), we denote

f (qλ) = f (qλ1 , . . . , qλn).
We define the multivariate q-integral over the simplex {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤

xn ≤ 1} by∫
0≤x1≤···≤xn≤1

f (x1, . . . , xn)dqx1 · · · dqxn =
∫ 1

0

∫ xn

0

∫ xn−1

0
· · ·

∫ x2

0
f (x1, . . . , xn)dqx1 · · · dqxn.

Lemma 3.1. We have∫
0≤x1≤···≤xn≤1

f (x1, . . . , xn)dqx1 · · · dqxn = (1− q)n ∑
µ∈Parn

q|µ| f (qµ),

where Parn denotes the set of partitions of length at most n.

Note that every semi-irreducible d-complete poset can be written as Pm
n (X), by its

construction in Definition 2.5. By Lemma 2.3, we have

GFq(Pm
n (X)) =

1
(q|Pn(X)|+1; q)m

GFq(Pn(X)).

We introduce some lemmas which allow us to write GFq(Pn(X)) as a q-integral.
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Lemma 3.2. Let n and k be positive integers and

X = {(λ(i), ni, si) : 1 ≤ i ≤ k},

where ni and si are positive integers with si + ni − 1 ≤ n and λ(i) ∈ Parni . For µ =
(µ1, . . . , µn) ∈ Parn, let µ[i] = (µsi , µsi+1, . . . , µsi+ni−1). Then we have

GFq(Pn(X)) = q−∑n
i=1(n−i)`i ∑

µ∈Parn
µ:strict

q|µ|
k

∏
i=1

∑
T∈SSYT((δni+1+λ(i))∗)

rdiag(T)=µ[i]

q|T|−|µ
[i]|,

where `i is the number of elements of level i in Pn(X).

Lemma 3.3. For λ, µ ∈ Parn we have

∑
T∈SSYT((δn+1+λ)∗)

rdiag(T)=µ

q|T|−|µ| =
(−1)(

n
2)aλ+δn(q

µ)

∏n
j=1(q; q)λj+n−j

.

The following result is the key ingredient to express GFq(Pn(X)) as a q-integral.

Theorem 3.4. Let n and k be positive integers and

X = {(λ(i), ni, si) : 1 ≤ i ≤ k},

where ni and si are positive integers with si + ni − 1 ≤ n, λ(i) is a partition with ni parts.
Suppose that for every 1 ≤ j ≤ n − 1, there is 1 ≤ i ≤ k − 1 such that si ≤ j < j + 1 ≤
si + ni − 1. Then

GFq(Pn(X))

=
q−∑n

i=1(n−i)`i

(1− q)n

∫
0≤x1≤···≤xn≤1

k

∏
i=1

(−1)(
ni
2 )aλ(i)+δni

(xsi , xsi+1, . . . , xsi+ni−1)

∏ni
j=1(q; q)

λ
(i)
j +ni−j

dqx1 · · · dqxn,

where `i is the number of elements of level i in Pn(X).

4 Evaluation of the q-integrals

In [9, Table 1], Proctor classified all irreducible d-complete posets in 15 classes, and in [6]
slightly generalized posets have been considered, namely, semi-irreducible d-complete
posets. In a nutshell, the computation of q-integrals corresponding to the P-partition
generating functions can be summarized as follows.
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Classes Diagnosis
1, 2 shape and shifted shape; proofs are known

3, 5, 6, 7, 8′, 9, 13, 14, 15 finite type; can be verified by Sage [1]
8-(4), 10, 12 finite type; but modification is necessary to verify by Sage

4, 11 infinite type; proof is done by using partial fraction identities

In [6], the class 8 is divided into 4 subclasses and 8′ in the above table includes 8-(1),
8-(2) and 8-(3). Note that finite (infinite, resp.) type means that there are finite (infinite,
resp.) number of integration variables in the q-integral.

Here, we demonstrate the computation of one class in each category.

4.1 Class 2: Shifted shapes

µ = (µ1, . . . , µn)

Figure 2: A semi-irreducible d-complete poset of class 2. This is irreducible if and only
if µ1 = µ2.

A semi-irreducible d-complete poset of class 2 is Pn(X2), where n ≥ 4 and X2 =
{(µ, n, 1)}, with µ ∈ Parn. For 1 ≤ i ≤ n, we have `i = µn+1−i + i. By Theorem 3.4,

GFq(Pn(X2)) =
q−(

n+1
3 )−∑n−1

i=1 iµi+1

(1− q)n

∫
0≤x1≤···≤xn≤1

aµ+δn(x1, . . . , xn)

∏n
i=1(q; q)µi+n−i

dqx1 · · · dqxn.

The hook length property for class 2 is equivalent to∫
0≤x1≤···≤xn≤1

aµ+δn(x1, . . . , xn)dqx1 · · · dqxn

= q(
n+1

3 )+∑n−1
i=1 iµi+1(1− q)n ∏1≤i<j≤n(1− qµi−µj+j−i)

∏1≤i≤j≤n(1− q2n+1−i−j+µi+µj+1)
,

which is proved in [5, Theorem 8.16] using the connection between reverse plane parti-
tions and q-integrals.
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4.2 Class 5: Tailed insets

A semi-irreducible d-complete poset of class 5 is Pλ1+1
3 (X5) for λ ∈ Par2, µ ∈ Par3 and

X5 = {(λ, 2, 1), (µ, 3, 1), (∅, 2, 2), ((1), 1, 1)},

with `1 = λ2 + µ3 + 2, `2 = λ1 + µ2 + 3 and `3 = µ1 + 4.

︸︷︷︸

λ = (λ1, λ2)

µ = (µ1, µ2, µ3)

λ1 + 1

Figure 3: A semi-irreducible d-complete poset of class 5. This is irreducible if and only
if µ1 = µ2.

By Lemma 2.3,

GFq(Pλ1+1
3 (X5)) =

1
(q|λ|+|µ|+10; q)λ1+1

GFq(P3(X5)),

where

GFq(P3(X5)) =
q−(∑

2
i=1 i(λi+µi+1)+7)

(1− q)3

∫
0≤x1≤x2≤x3≤1

−aλ+δ2(x1, x2)

(q; q)λ1+1(q; q)λ2

×
−aµ+δ3(x1, x2, x3)

∏3
j=1(q; q)µj+3−j

·
−aδ2(x2, x3)

1− q
·

a(1)+δ1
(x1)

1− q
dqx1dqx2dqx3.

Then the hook length property for class 5 is equivalent to the following identity∫
0≤x1≤x2≤x3≤1

x1aδ2(x2, x3)aλ+δ2(x1, x2)aµ+δ3(x1, x2, x3)dqx1dqx2dqx3

=
(−1)q∑2

i=1 i(λi+µi+1)+7(1− q)4(1− qλ1−λ2+1)(1− q|λ|+|µ|+λ1+10)(1− q|λ|+|µ|+λ2+9)

1− q|λ|+|µ|+9
.

×
∏1≤i<j≤3(1− qµi−µj+j−i)

∏2
i=1 ∏3

j=1(1− qλi+µj+7−i−j)∏3
i=1(1− q|λ|+|µ|−µi+4+i)

.

This formula has been verified by Sage[1].
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4.3 Class 10: Tagged Swivels

A semi-irreducible d-complete poset of class 10 is Pλ1+4
6 (X10) with

X10 = {(λ, 5, 1), (∅, 2, 1), ((1), 2, 2), (∅, 2, 3), (∅, 3, 4), (∅, 2, 5)},
where λ ∈ Par5 and `1 = λ5 + 1, `2 = λ4 + 3, `3 = λ3 + 5, `4 = λ2 + 5, `5 = λ1 + 6,
`6 = 4.

λ = (λ1, λ2, λ3, λ4, λ5)

︸︷︷︸
λ1 + 4

Figure 4: A semi-irreducible d-complete poset of class 10. This poset is always irre-
ducible.

To evaluate the q-integral, for the sake of the simplicity of the computation, we de-
compose the poset Pλ1+4

6 (X10) using Lemma 2.4.
Let Q = P5(X)− for X = {(µ, 5, 1), ((1), 1, 2)} and µ = λ+(15). The poset Pλ1+4

6 (X10)
can be also expressed as Dµ1+4,1(Q) and, by Lemma 2.4, the P-partition generating func-
tion satisfies the relation

GFq(Dµ1+4,1(Q)) =
1

(q|µ|+17; q)µ1+6
(q|µ|+16 GFq(Q+) + (1− q2|µ|+34)GFq(D1(Q))).

Note that Q+ = P5(X) and D1(Q) = P5(X′) where X′ = {(µ, 5, 1), ((1), 1, 2), (∅, 2, 4)}.
By Theorem 3.4,

GFq(Q+) =
q−∑5

i=1(i−1)µi−23

(1− q)6 ∏5
i=1(q; q)µi+5−i

∫
0≤x1≤···≤x5≤1

x2aµ+δ5(x1, . . . , x5)dqx1 · · · dqx5

and

GFq(D1(Q))

=
(−1)q−∑5

i=1(i−1)µi−23

(1− q)7 ∏5
i=1(q; q)µi+5−i

∫
0≤x1≤···≤x5≤1

x2(x4 − x5)aµ+δ5(x1, . . . , x5)dqx1 · · · dqx5.
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The above q-integrals with 4 variables can be explicitly computed by computer and
the hook lengths of the elements in Pλ1+4

6 (X10) = Dµ1+4,1(Q) can be explicitly computed.
By combining the aforementioned observations, we obtain that the hook length property
for class 10 is equivalent to

5

∏
i=1

1− q|µ|+µi−i+23

(1− qµi+6−i)(1− q|µ|−µi+10+i)
∏

1≤i<j≤5

1− qµi−µj+j−i

1− qµi+µj−i−j+13

=
5

∑
`=1

(−1)5−`q−∑5
i=1(i−1)µi−23

(1− q)5(1− q|µ|+16)

(
(1− q2|µ|+23)g(µ̂(`), 0)− (q|µ|+16; q)2 · g(µ̂(`), 1)

)
,

where

g(ν, m) :=
∫

0≤x1≤···≤x4≤1
x2xm

4 aµ+δ4(x1, x2, x3, x4)dqx1 · · · dqx4

=
q12+∑4

i=1 iµi+1(1− q)4(1− q|µ|+12)∏1≤i<j≤4(1− qµi−µj+j−i)

(1− q|µ|+11+m)∏1≤i<j≤4(1− qµi+µj+11−i−j)∏4
i=1(1− qµi+5−i)

,

for ν ∈ Par5 and an integer m ≥ 0. We have verified this identity by computer.

4.4 Class 4: Insets

︸︷︷︸

µ = (µ1, . . . , µn+1)

λ = (λ1, . . . , λn−1)

{k
λ1 + n− 2

Figure 5: A semi-irreducible d-complete poset of class 4. This is irreducible if and only
if k = 0 and µ1 = µ2.

A semi-irreducible d-complete poset of class 4 is Pm
n+1(X4), where n ≥ 2, k ≥ 0 and

X4 = {(λ, n− 1, 1), (µ, n + 1, 1), ((k), 1, n)},



Hook length property of d-complete posets via q-integrals 11

for λ ∈ Parn−1 and µ ∈ Parn+1. In this poset, `j = λn−j + µn−j+2 + 2j− 1 for 1 ≤ j ≤
n− 1, `n = µ2 + n + k and `n+1 = µ1 + n + 1.

By applying Lemma 2.3 and Theorem 3.4, we obtain

GFq(Pλ1+n−2
n+1 (X4)) =

1
(q|λ|+|µ|+n2+k+3; q)λ1+n−2

GFq(Pn+1(X4)),

where

GFq(Pn+1(X4)) =
q−(∑

n
i=1((i+1)λi+iµi+1)+

1
6 n(n−1)(2n+5)+1+k)

(1− q)n+1

∫
0≤x1≤···≤xn+1≤1

a(k)(xn)

(q; q)k

×
(−1)(

n−1
2 )aλ+δn−1(x1, . . . , xn−1)

∏n−1
i=1 (q; q)λi+n−1−i

·
(−1)(

n+1
2 )aµ+δn+1(x1, . . . , xn+1)

∏n+1
i=1 (q; q)µi+n+1−i

dqx1 · · · dqxn+1.

Taking the explicit hook lengths of the elements in the poset Pλ1+n−2
n+1 (X4) into con-

sideration, the hook length property for class 4 can be written as the following identity∫
0≤x1≤···≤xn+1≤1

xk
naλ+δn−1(x1, . . . , xn−1)aµ+δn+1(x1, . . . , xn+1)dqx1 · · · dqxn+1

=
(−1)q∑n

i=1((i+1)λi+iµi+1)+
1
6 n(n−1)(2n+5)+1+k(1− q)n+1

∏n+1
i=1 (1− q|λ|+|µ|−µi+n(n−1)+k+i)

·
∏n−1

j=1 (1− q|λ|+|µ|+λj+n2+n−j+k+1)

1− q|λ|+|µ|+n2+k+2

×
∏1≤i<j≤n+1(1− qµi−µj+j−i)∏1≤i<j≤n−1(1− qλi−λj+j−i)

∏1≤i≤n+1
1≤j≤n−1

(1− qµi+λj+2n−i−j+1)
,

or

∏n−1
j=1 (1− q|λ|+|µ|+λj+n2+n−j+k+1)

∏n+1
i=1 (1− q|λ|+|µ|−µi+n2−n+k+i)

=
n+1

∑
`=1

q−|λ|−|µ|+µ`−n2+n−k−`

1− q|λ|+|µ|−µ`+n2−n+k+`
·

∏n−1
j=1 (1− qµ`+λj+2n−`−j+1)

∏n+1
j=1,j 6=`(1− qµ`−µj+j−`)

.

This identity can be proved by applying a partial fraction expansion identity [11, p. 451]

∏n+1
j=1 (1− bj/t)

∏n
j=1(1− aj/t)

=
n

∑
`=1

∏n+1
j=1 (1− a`/bj)

(1− a`/t)∏n
j=1,j 6=`(1− a`/aj)

, for b1 · · · bn+1 = a1 · · · ant,

by making appropriate substitutions for ai’s, bi’s and t. We omit the details.
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