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Abstract. The hook length formula for d-complete posets states that the P-partition
generating function for them is given by a product in terms of hook lengths. We
give a new proof of the hook length formula of d-complete posets using g-integrals.
Proctor proved that any connected d-complete poset can be uniquely decomposed into
irreducible d-complete posets and classified all irreducible d-complete posets. In this
work, we prove the hook length property of all the irreducible d-complete posets. The
proof is done by a case-by-case analysis consisting of two steps. First, we express the
P-partition generating function for each case as a g-integral and then we evaluate the
g-integrals.
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1 Introduction

The classical hook length formula due to Frame, Robinson and Thrall [2] states that for
a partition A of 1, the number f* of standard Young tableaux of shape A is given by
n!

o
S = o)

where hi(x) is the hook length of the cell x in A. One can naturally consider the shape A
as a poset P on the cells in A. Then the P-partition generating function for the poset also
has the following hook length formula:
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where the sum is over all P-partitions ¢. It is also well known that the P-partition
generating functions for the posets coming from shifted shapes and forests satisfy the
hook length property.
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Proctor [10] introduced d-complete posets, which include the posets of shapes, shifted
shapes and forests, and with Peterson’s help, he [8] proved that the d-complete posets
have the hook length property:

Theorem 1.1 (Hook Length Formula for d-complete posets). For any d-complete poset P,
we have

where the sum is over all P-partitions o.

We note that Theorem 1.1 was also proved by Nakada [7] and generalized by Ishikawa
and Tagawa [4, 3] to “leaf posets”. However, their proofs are only sketched in confer-
ence proceedings, and so a completely detailed proof of the hook length formula (The-
orem 1.1) has not been available in the literature. In this work, we provide a new and
complete proof of Theorem 1.1 using g-integrals. This is an extended abstract of [6].

2 Preliminaries

2.1 Basic definitions and notation

We will use the following notation for g-series:

@q)n=0-a)1—aq)---1—aqg""),  (ar,a2,...,059)n = (a5;9)n - (@ 7)n-

Let 6, denote the staircase partition (n —1,n—2,...,1,0). For a partition A = (Aq,...,Ay),
the alternant ay(x1, ..., xy) is defined by
A
a(x1, ..., xn) = det(x;")}; 4.

Given a partition A, the Young diagram of A is the left-justified array of squares in
which there are A; squares in the ith row from the top and the Young poset of A is the
poset whose elements are the squares in the Young diagram of A with relation x < y if x
is weakly below and weakly to the right of .

If A has no nonzero identical parts, A is called strict. For a strict partition A, the shifted
Young diagram of A is the diagram obtained from the Young diagram of A by shifting the
ith row to the right by i — 1 units. The shifted Young poset of A is defined similarly. If
there is no confusion, we identify a partition A with its Young diagram and also with its
Young poset. For a strict partition A, the shifted Young diagram of A is denoted by A*.
Similarly, the shifted Young poset of A will also be written as A*.

For a Young diagram or a shifted Young diagram A, a semistandard Young tableau of
shape A is a filling of A with nonnegative integers such that the integers are weakly
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increasing in each row and strictly increasing in each column. A reverse plane partition
of shape A is a filling of A with nonnegative integers such that the integers are weakly
increasing in each row and each column. We denote by SSYT(A) and RPP(A) the set of
semistandard Young tableaux of shape A and the set of reverse plane partitions of shape
A, respectively.

Let A be a strict partition. For T € SSYT(A*) or T € RPP(A*), the leftmost entry in
each row is called a diagonal entry. We define the reverse diagonal sequence rdiag(T) to be
the sequence of diagonal entries in the non-increasing order.

Now we recall basic properties of P-partitions. Let P be a poset with n elements. A
P-partition is a map ¢ : P — IN such that x <p y implies ¢(x) > o(y). In other words, a
P-partition is just an order-reversing map from P to IN.

For an integer m > 0, we denote by P>, (P) the set of all P-partitions o with min(c) >
m. We also define P(P) = P>o(P). For a P-partition o, the size |o| of ¢ is defined by

ol =) o).

xeP

For a poset P, we define GF;(P) to be the P-partition generating function:

GFy(P) = X g
ceP(P)

The following definitions allow us to build d-complete posets starting from a chain.

Definition 2.1. Let P be a poset containing a chain C = {x1 < xp < --- < x,}. For A € Pary,
we denote by D(P,C, A) the poset obtained by taking the disjoint union of P and (A + 6,41)*
and identifying xn, X,_1,. .., x1 with the diagonal elements of (A + 6,41)*.

Definition 2.2. Let n and k be positive integers. Let
X = {(A(i)/nilsi) 01 < i < k}/

where n; and s; are positive integers with s; +n; — 1 < n, A) € Par,,. We define P,(X) to be
the poset constructed as follows. Let Py be a chain x1 < xo < --- < x,, with n elements, called
diagonal entries. For 1 < i < k, we define P; = D(P;_1,C;, A)) where C; = {xs, < x541 <
« o+ < Xgyn;—1}- Finally we define P,(X) = Pr. We also define P}'(X) to be the poset obtained
from Py (X) by attaching a chain with m elements above x,. We say that an element y € P, (X)
is of level i if y < x;jand y £ xj_1.

Here, we do not provide the detailed definition of d-complete posets. In this paper,
we basically follow the set up of [9].
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2.2 Some properties of P-partitions

For a poset P, let P be the poset obtained from P by adding a new element which is
greater than all elements in P. If P has a unique maximal element, we define P~ to be
the poset obtained from P by removing the maximal element. Note that (P*)~ = P for
any poset P. If P has a unique maximal element, (P~)" = P. There is a simple relation
between GF,(P*) and GF,(P).

Lemma 2.3. For a poset P with p elements, we have

1
GF,(P") = Tt GF, (D).

Let P be a poset in which there is a unique maximal element y; and a specified
element y, covered by y;. For integers m,k > 1, we define D, x(P) to be the poset
obtained from P by adding a disjoint chain z,;, > --- >z > 29 >z_1>--- >z randa
new element vy with additional covering relations z; > yo,zp > y1,z-1 > y2 and yo > y;.
See Figure 1. We also define Dy (P) to be the poset obtained from D,, ;(P) by removing
the elements z,, ...,z and yo.

Zm Z9 21 20 R—12-2 el 2k Z0 2—1%2-2 cee 2k

Ps ° ° ° ° ° ° Py ° ° °
[ 4 L 4 \ 4 L 4 L 4 \ 4 L 4 @ & L 4 \ 4 @

Yo Y1 Y2 Y1 Y2
P P

Figure 1: The posets D,, x(P) on the left and Dy (P) on the right.

Then the following lemma enables us to decompose the P-partition generating func-
tion of d-complete posets.

Lemma 2.4. Let P = {y1,Y2,...,Yp} be a poset in which yy is the unique maximal element and
Yy is covered by yq. Then

1 gh+l + 2p+2k+2
GFy(Dy(P) = (oo ( ok — OFy(PY) + (1= P2 GR(Dy(P)) ).

2.3 Semi-irreducible d-complete posets

Definition 2.5. A d-complete poset P is semi-irreducible if it is obtained from an irreducible
d-complete poset by attaching a chain with arbitrary number of elements (possibly 0) below each
acyclic element.

The semi-irreducibility is a slight generalization of the irreducibility defined by Proc-
tor [9].
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Lemma 2.6. Let Py be an irreducible d-complete poset with k acyclic elements y1, . . ., yx. Suppose
that Py, ..., Py are (possibly empty) connected d-complete posets having the hook length property.
Let P be the poset obtained from Py by attaching P; below y; for each 1 <i <k, i.e.,

P=(-- (poyl\vlpl)yz\vzpz) .. .]/k\vkpk),
where v; is the unique maximal element of P;. Then P also has the hook length property.

This lemma tells us that it suffices to prove the hook length property of the semi-
irreducible posets to prove that every d-complete poset has the hook length property.
Hence we prove:

Theorem 2.7. Every semi-irreducible d-complete poset has the hook length property.

3 g-integrals

In this section we express the P-partition generating function for P,(X) as a g-integral,
where P,(X) is the poset defined in Definition 2.2.
The g-integral of a function f(x) over [a,b] is defined by

o]

b o o
| fdx = = q) ¥ (F6g)bg’ - fag)aq’),

i=0

where it is assumed that 0 < g4 < 1 and the sum absolutely converges.
For a multivariable function f(xy,...,x,) and a partition A = (A4, ..., A,), we denote

fgh) = flgh, ..., q™).

We define the multivariate g-integral over the simplex {(x1,...,x,) : 0 <x3 <--- <
x, <1} by

1 rxn Xy X2
f(xl,...,xn)dqxl---dqxn:/0/O /0 /0 f(x1,. .., xn)dgxy - - - dgxy.

Lemma 3.1. We have

/os:clsmgxngl

flx, .. -fxn)dqxl o ‘dqxn =(1-¢q)" Z q‘”'f(q"),

/0<x1<-~~<xn<1 u€ePary,

where Par,, denotes the set of partitions of length at most n.

Note that every semi-irreducible d-complete poset can be written as P}'(X), by its
construction in Definition 2.5. By Lemma 2.3, we have

Gy (P (X)) = ooy CFalPa(X))

We introduce some lemmas which allow us to write GF;(P,(X)) as a g-integral.
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Lemma 3.2. Let n and k be positive integers and
X ={(AD,n;,s)):1<i<k},

where n; and s; are positipe integers with s; +n; —1 < n and A e Par,. For y =
(1, .., pn) € Pary, let ull = (us, ps, 41, - - -, s +n;—1)- Then we have

k
Y (=)l 1yl
GEy(Py(X)) = D000 T g [Ty g
pePary  i=1TeSSYT((4,. 1 1+A1))*)
u:strict . ! .
rdiag(T)=pl]

where {; is the number of elements of level i in P, (X).

Lemma 3.3. For A, u € Par,, we have

T (D) @y, (9%)

Lo T

TESSYT((8,41+A)*) =1\ 47 Q) A\ j+n—j
rdiag(T)=p

The following result is the key ingredient to express GF;(P, (X)) as a g-integral.

Theorem 3.4. Let n and k be positive integers and
X ={(AD,n;,s;)):1<i<k},

where n; and s; are positive integers with s; +n; —1 < n, AD s g partition with n; parts.
Suppose that for every 1 < j < n—1, thereis1 < i < k—1suchthats; <j <j+1<
si+mn; — 1. Then

GF,(Py(X))
g~ a0, / k(=) Paye (% s ) d
_ g Theeit " X1 - -dgXn,

j

where {; is the number of elements of level i in P, (X).

4 Evaluation of the g-integrals

In [9, Table 1], Proctor classified all irreducible d-complete posets in 15 classes, and in [6]
slightly generalized posets have been considered, namely, semi-irreducible d-complete
posets. In a nutshell, the computation of g-integrals corresponding to the P-partition
generating functions can be summarized as follows.
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Classes | Diagnosis
1,2 shape and shifted shape; proofs are known
3,5,6,7,8,9,13,14,15 | finite type; can be verified by Sage [1]
8-(4), 10, 12 finite type; but modification is necessary to verify by Sage
4,11 infinite type; proof is done by using partial fraction identities

In [6], the class 8 is divided into 4 subclasses and 8’ in the above table includes 8-(1),
8-(2) and 8-(3). Note that finite (infinite, resp.) type means that there are finite (infinite,
resp.) number of integration variables in the g-integral.

Here, we demonstrate the computation of one class in each category.

4.1 Class 2: Shifted shapes

Bt

» .« e .
I H= (/”'17-“7/1%)

—e . - -0
Figure 2: A semi-irreducible d-complete poset of class 2. This is irreducible if and only

if H1 = Ho.

A semi-irreducible d-complete poset of class 2 is P,(X,), where n > 4 and X, =
{(p,n,1)}, with u € Par,,. For 1 <i < n, we have ¢; = pi,;1_; + i. By Theorem 3.4,

=T ipia / ay+(5n(x1, e, xn)
(T—g)" 0<x < <xn <l TTmq (4 9) i

The hook length property for class 2 is equivalent to

—(
GF,(Py(X,)) = 1 dyxy - - dgn,

Ayis (X1,...,%0)dgx1 -+ - dgx
/0§x1§~-5xn§1 e (1 )y e

[Th<icj<n(1— gt

ngigjgn(l —q

— USHAT S i (1 — gy
q (1-4) 2”+1—i—]'+ﬂi+ﬂj+1)’

which is proved in [5, Theorem 8.16] using the connection between reverse plane parti-
tions and g-integrals.
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4.2 Class 5: Tailed insets

A semi-irreducible d-complete poset of class 5 is P3A 171(X5) for A € Pary, j € Par3 and
X5 ={(A,2,1),(1,3,1),(92,2,2),((1),1,1)},

with f1 = Ay +u3+2,lo = Ay +p2+3and £3 = pg + 4.

- e n= (M17M27,u3)

I—; A= (A1, A2)

Figure 3: A semi-irreducible d-complete poset of class 5. This is irreducible if and only

if 1 = po.

By Lemma 2.3,
1

(gMHIHH10; ),

GF, (P37 (X)) = GF,(P5(X5)),

where

(1—¢q)3 0<x<xp<xs<t (;9)r+1(4:9) A,
—y 16, (X1,X2,%3)  —ag,(x2,X3)  A(1)45 (X1)

' ’ d xld Xodyx3.
H?:l(‘%’ﬂ)ij—j 1—9q 1—¢q qr1%gr2%g

GF;(P5(Xs5)) =

Then the hook length property for class 5 is equivalent to the following identity

/ x1a5, (X2, X3)a) 15, (X1, X2) @y, 46, (X1, X2, X3)dgx1dx2d X3
0<x1 <xp<x3<1

B (—1)q212:1i(/\i+ﬂi+1)+7(1 —q)*(1— q)\1*)\2+1)(1 _ q|2\\+|y|+/\1+10)(1 _ q\)\\+\y|+)\2+9)
- 1= g HTT9 :

[Ti<icj<s(1— ghihitIh

>< / 7 .
[Ty Ty (1= g7 ) Ty (1 — gt

This formula has been verified by Sage[1].
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4.3 Class 10: Tagged Swivels

A semi-irreducible d-complete poset of class 10 is P6A ! +4(X10) with
XlO - {()\/ 51 1)1 (®/ 2/ 1)/ ((1)/ 2/ 2)/ (®/ 21 3)1 (®/ 3/ 4)/ (@/ 2/ 5) }/

where A € Pars and /1 = A5+ 1, 0 = A4+ 3,03 = A3+5, 0y = Ay +5, b5 = A1+ 6,
lg =4

A1 +4

O &

A= (A1, A2, A3, A4, As5)

Figure 4: A semi-irreducible d-complete poset of class 10. This poset is always irre-
ducible.

To evaluate the g-integral, for the sake of the simplicity of the computation, we de-
compose the poset Pé‘ 17(X19) using Lemma 2.4.

Let Q = P5(X)~ for X = {(1,5,1),((1),1,2)} and p = A + (1°). The poset P} "*(X;)
can be also expressed as D), +41(Q) and, by Lemma 2.4, the P-partition generating func-
tion satisfies the relation

1
GF;(Dy,+41(Q)) =

(@17, 0) iy +6

Note that Q* = P5(X) and D1(Q) = Ps(X’) where X' = {(1,5,1),((1),1,2),(2,2,4)}.
By Theorem 3.4,

(g GF Q) + (1 — ¢?HIT3*) GF,(D1(Q))).

GE.(O+ q_z?:l(i—l)ﬂi—% ) d
2= (1= q)°TT-1 (4 D) 5 /0<x1<~~~<x5<1 X245 (X1, -, X5)dgX1 - - dgXs
and
GFy(D1(Q))
(=1)g~ Yo (i-1)u—23
- (1 - ‘7)71—[5 1(qq)‘u +5—i /0<x1<...<x5<1 XQ(X4 o x5)al/‘+55(x1, ce ,X5)dqx1 ce qu5.
1= 7 i — <x1<---<xs5<
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The above g-integrals with 4 variables can be explicitly computed by computer and
the hook lengths of the elements in Pé‘ 1 (Xq0) = Dy, +4,1(Q) can be explicitly computed.
By combining the aforementioned observations, we obtain that the hook length property
for class 10 is equivalent to

5 1 — glml+pi—it23 1— ghimwiti—

H 16— 11044 A —i—i+13
i=1 1—‘7”1+6 D1 — glulmpt 108y | G s 1 — gttt

5 1)5-4 Yo (i—1)p—23
q 2028y o) oY (Alpl 16 N (D)
Z; — gnl+16) (1= 2)g(@",0) — (g1 ), g(11), 1)),
where
g(v,m) = /()§x1§-~~§x4§1 XoXy Ay 5, (X1, X2, X3, X4)dgX1 - - - dgXy

gL i (1 — g)4(1 — glvl+12) 1— gt mti=h

[Ti<icj<a(
(1 — q|]/l\+1l+m) H1§i<j§4(1 _ ql/‘i+]4j+11—l—]) H?:](l . qlli+5*1’)

for v € Pars and an integer m > 0. We have verified this identity by computer.

4.4 Class 4: Insets

: WI I = (B1s- s 1)

- e—e

- —0

A=A A1)

Figure 5: A semi-irreducible d-complete poset of class 4. This is irreducible if and only
if k =0and yu; = uo.

A semi-irreducible d-complete poset of class 4 is P1T+1( X4), where n > 2,k > 0 and

Xy ={(An=11),(u,n+1,1),((k), 1,n)},
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for A € Par, 1 and p € Par,y1. In this poset, {; = A, j+py ji2+2j—1for1 <j <
n—140,=u+n+kand ¥, 1 =1 +n+1
By applying Lemma 2.3 and Theorem 3.4, we obtain

A+n—2 _ 1
GFq (Pn+l (X4)) - (q'MJ"P’H"Z*k”;q)A1+n—z GFq(PnJrl(Xél)),

where

g~ (Ea ((+DAFipi1)+ Gn(n—1) (2n+5) +1+K) agy(xn)

GF,(Py11(X4)) = /
(P (X)) =g v<ns o<t Gk
. <—1><"‘1>aA+5n e xn) (D Das (e Xa)
1_[1 1 (q/ ))Li-H/l—l—i H?—’_ll (q, )y,-—&—n—&-l—i

dqxl st qun+]_.

Taking the explicit hook lengths of the elements in the poset P,?r{” ?(X4) into con-

sideration, the hook length property for class 4 can be written as the following identity

k
Xppts, (X1, Xp—1) 8y, (X1, - o) X1 )dgxy - - - dgXp g
Hron+
0<x < <y <1

(—1)gXi= ((i+1)/\-+i}4i+1)+ln(n—1)(2n+5)+1+k(1 gyt .H]"’:_f(l _ q|)\\+|y|+)\j+n2+n_]'+k+1)

H”H( g —pin(n—1)+k+i) 1 — g+l +k+2

i A Ai—i
[hi<icicnt1 (X =" ) Theicjep (1 — g4
X (1 _ ql/‘i+/\j+2”—i—j+1)

7

[Ti<i<ni1
1<j<n—-1

or

1—[;7—11(1 . q|/\|+|y|+/\j+n2+n—j+k+1)
]:

+1 42— j
le}:l (1 _ q|A\+\y| pit+n n+k+1)

n+1 q*|A‘*‘}l|+ﬂ£*n2+ﬂ*k*f ’7_1(1 — q”f+/\f+2”_£_j+1)
- ey R TEs] —w-0
Pl q\/\|+|y| po+n?—n+k+0 H7 Lk (1 — gt htIh

This identity can be proved by applying a partial fraction expansion identity [11, p. 451]

Hn+1(1_bj/t) n n+1(1_a£/b)

—aj/t) :g_zi (1—a£/t) izl —ag/aj)

for b1~~'bn+1 = qai - ayt,
]:1(

by making appropriate substitutions for a;’s, b;’s and t. We omit the details.
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