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A formula for birational rowmotion on rectangles
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Abstract. We give a formula in terms of families of non-intersecting lattice paths for
iterated actions of the birational rowmotion map on a product of two chains, equivalently
a rectangle. This allows us to give a much simpler direct proof of the key fact that the
period of this map on a product of chains of lengths r and s is r + s + 2 (first proved by
D. Grinberg and the second author) as well as other consequences, as explained in [8].
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1 Introduction

Birational rowmotion is an action on the space of assignments of rational functions to
the elements of a finite partially-ordered set (poset). It is lifted from the well-studied
rowmotion map on order ideals (equivariantly on antichains) of a poset P [1, 2, 9, 10, 12,
15], which when iterated on special posets has unexpected nice properties in terms of
periodicity, cyclic sieving, and homomesy. Rowmotion is first lifted to a piecewise-linear
action of the order polytope [13] of P, i.e., { f : P → [0, 1] : f is order preserving}. This
is then detropicalized (a.k.a. “geometricized”) to a birational map, as detailed in [3, 4].
Theorems proven at the birational level generally imply their corresponding theorems at
the piecewise-linear, and then the combinatorial level, but not vice-versa. For example,
the only proof available as of this writing that piecewise-linear rowmotion is periodic
uses the corresponding result for birational rowmotion.

Rowmotion appears to behave particularly nicely for posets associated with repre-
sentations of finite-dimensional Lie algebras, e.g., root posets and minuscule posets.
Armstrong, Stump, and Thomas proved a conjecture of Panyushev [9, Conjecture 2.1(iii)]
that antichain-cardinality is a homomesic with respect to rowmotion action on antichains
of root posets, i.e., for every orbit O, the value 1

#O ∑A∈O #A is a constant, independent of
O. This was one of the first explicit statements of a type later isolated by Propp and the
second author as the homomesy phenomenon [10].

Iterating birational rowmotion also displays interesting and unexpected dynamics for
certain “nice” posets, particularly rectangular ones (i.e., P = [0, r]× [0, s], the product
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of two finite chains). The order of birational rowmotion is (unexpectedly) the same is
that for ordinary rowmotion, namely r + s + 2, a fact whose first proof [7, Theorem 30]
was nontrivial. Here ordinary rowmotion appears to be related to Auslander–Reiten
translation on certain quivers [16], and birational rowmotion to Y-systems of type Am× An
described in Zamolodchikov periodicity [11, Section 4.4] and to the recent notion of R-
systems [6]. The orbits of these actions have natural homomesic statistics [10, 3, 4]. In [8],
we show an instance of birational file homomesy, generalizing a combinatorial result of
[10].

Proofs of periodicity and homomesy tend to be rather indirect, and often involve
finding an equivariant bijection between rowmotion and an action that is easier to
understand, or at least already better understood. For birational rowmotion, Grinberg
and the second author parameterize poset labelings by ratios of determinants, then show
periodicity via certain Plücker relations (overcoming a number of technical hurdles) [7].
The formula via non-intersecting lattice paths in this paper gives a more direct proof.

The paper is organized as follows. In Section 2 we give basic definitions, state our
main result (Theorem 2.5), and give an extended illustrative example; we also prove as
corollaries the main results of [7], namely the periodicity and reciprocity of birational
rowmotion. In Section 3, we outline the proof of our main theorem, leaving details for
the arXiv preprint [8]. Further results, i.e., birational file homomesy, also appear therein.

The initial impetus for this paper came when the authors were both at a workshop on
“Dynamical Algebraic Combinatorics” hosted by the American Institute of Mathematics
(AIM) in March 2015. We are grateful for AIM’s hospitality that week, as well as for
helpful conversations with Max Glick, Darij Grinberg, Christian Krattenthaler, James
Propp, Pasha Pylyavskyy, and Richard Stanley. Computations of birational rowmotion
programmed by Grinberg in SageMath [14] were of enormous assistance in helping us
discover the main formula.

2 Definitions and main result

Definition 2.1. Let P be any finite poset, and let P̂ be P with an additional global maximum
(denoted 1̂) and an additional global minimum (denoted 0̂) adjoined. Let K be any field, and
f ∈ KP̂ be any K-labeling of P̂. We define the birational toggle Tv : KP̂ 99K KP̂ at v ∈ P by

(Tv f )(y) = f (y) if y 6= v; (Tv f )(y) =
1

f (v)
·

∑
w∈P̂;
wlv

f (w)

∑
z∈P̂;
zmv

1
f (z)

if y = v;
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for all y ∈ P̂. Note that this rational map Tv is well-defined, because the right-hand side is
well-defined on a Zariski-dense open subset of KP̂.

The toggle map Tv changes only the label of the poset at v, and does this by (a)
inverting the label at v, (b) multiplying by the sum of the labels at vertices covered by
v, and (c) multiplying by the parallel sum of the labels at vertices covering v. Because
toggles in the tropical category involve both the operations of min and max, one of these
is lifted to + and the other to the (associative) parallel sum operation z, defined by
az b := 1

1
a+

1
b

(when a, b 6= 0 and a 6= −b). Birational Rowmotion ρB is then defined as

ρB := Tv1 Tv2 . . . Tvn : KP̂ 99K KP̂ where v1, v2, . . . , vn is any linear extension of P, i.e., by
togging at each element of P from top to bottom, as for ordinary rowmotion.

The main result of our paper is a formula in terms of families of non-intersecting
lattice paths for the kth iteration, ρk

B of birational rowmotion on the product of two chains.
For our purposes, it is more convenient to initially coordinatize our poset P as [0, r]× [0, s]
(where [0, n] = {0, 1, 2, . . . , n}), with minimal element (0, 0), maximal element (r, s) and
covering relations: (i, j)l (k, `) if and only if (1) i = k and ` = j + 1 or (2) j = ` and
k = i + 1. We then initially assign the generic label xij (a.k.a. xi,j) to the element (i, j), and
the label 1 to the elements 0̂ and 1̂. No essential generality is lost by assigning 1 to the
elements of P̂− P (a “reduced labeling”) [7, Section 4] or [3, Section 4], but it simplifies
our formulae and figures, which will generally just display the labelings of P itself, not of
P̂.

Example 2.2. The Hasse diagram of P = [0, 2]× [0, 3] is shown on the left, and the generic
initial labeling f of P̂ is shown on the right.

(2, 3)

(2, 2) (1, 3)

P = (2, 1) (1, 2) (0, 3)

(2, 0) (1, 1) (0, 2) f =

(1, 0) (0, 1)

(0, 0)

1

x23

x22 x13

x21 x12 x03

x20 x11 x02

x10 x01

x00

1
Example 2.3. Consider the 4-element poset P := {0, 1} × {0, 1}, i.e., the product of two
chains of length one, with the subscript-avoiding labeling shown below. Then f and the
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output of toggling f at the top element (1, 1) of P are as follows:

1

z

f = x y

w

1

 

1

(x+y)
z

T(1,1) f = x y

w

1

Since the labels at 0̂ and 1̂ never vary, we suppress displaying them in all future examples
of birational rowmotion. (They are still involved in the computations.) Computing
successively T(0,1)T(1,1) f , then T(1,0)T(0,1)T(1,1) f , and ρB f = T(0,0)T(1,0)T(0,1)T(1,1) f gives:

(x+y)
z

x (x+y)w
yz

w ,

(x+y)
z

(x+y)w
xz

(x+y)w
yz and

w ,

(x+y)
z

(x+y)w
xz

(x+y)w
yz .

1
z

By repeating this procedure (or just substituting the labels of ρB f obtained as variables),
we can compute the iterated maps ρB, ρ2

B f , ρ3
B f , . . . obtaining

(x+y)
z

(x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

1
y

1
x

z
x+y ,

1
w

yz
(x+y)w

xz
(x+y)w

xy
(x+y)w ,

z
x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for P = [0, r]× [0, s] (Corollary 2.8).
More subtly, as one iterates ρB, the labels at certain poset elements are reciprocals of
others occuring earlier at the antipodal position in the poset P. (See Corollary 2.9.)

2.1 Our Main Result: A lattice-path formula for birational rowmotion

A simple change of variables in the initial labeling greatly facilitates our ability to write
our formula. Let

Aij :=
∑zl(i,j) xz

x(i,j)
=

xi,j−1 + xi−1,j

xij
, (2.1)
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where we set Ai0 =
xi−1,0

xi,0
, A0j =

x0,j−1
x0,j

and A00 = 1
x00

(working in P̂).
We define a lattice path of length k within P = [0, r] × [0, s] to be a sequence

v1, v2, . . . , vk of elements of P such that each difference of successive elements vi − vi−1 is
either (1, 0) or (0, 1) for each i ∈ [k]. We call a collection of lattice paths non-intersecting
if no two of them share a common vertex. We will frequently abbreviate non-intersecting
lattice paths as NILP.

Definition 2.4. Given a triple (k, m, n) ∈N3 (where N denotes the nonnegative integers
{0, 1, 2, . . . }) with k ≤ min{r−m, s− n}+ 1, we define a polynomial ϕk(m, n) in terms
of the Aij’s as follows:

1) Let
∨
(m,n) := {(u, v) : (u, v) ≥ (m, n)} be the principal order filter at (m, n) in P,

which is isomorphic to [r−m]× [s− n]. Set 7k
(m,n) := {(u, v) ∈ ∨(m,n) : m + n + k− 1 ≤

u + v ≤ r + s− k + 1}, the rank-selected subposet consisting of all elements in
∨
(m,n) whose

rank (within
∨
(m,n)) is at least (k− 1) and whose corank is at least (k− 1).

2) More specifically, let s1, s2, . . . , sk be the k minimal elements and t1, t2, . . . , tk be the k
maximal elements of 7k

(m,n), i.e., s` = (m + k− `, n + `− 1) and t` = (r− `+ 1, s− k + `)

for ` ∈ [k]. (When k = 0, there are no s`’s or t`’s.) Our condition that k ≤ min{r−m, s−
n}+ 1 insures that these points all lie within 7k

(m,n).

3) Let Sk(m, n) be the set of families of NILPs in 7k
(m,n) from {s1, s2, . . . , sk} to

{t1, t2, . . . , tk}. We let L = {L1, L2, . . . , Lk} ∈ Sk(m, n) denote such a family.
4) Define

ϕk(m, n) := ∑
L∈Sk(m,n)

∏
(i,j)∈7k

(m,n)
(i,j) 6∈L1∪L2∪···∪Lk

Aij. (2.2)

5) Finally, set [α]+ := max{α, 0} and let µ(a,b) be the transformation that takes a
rational function in {Au,v} and simply shifts each index in each factor of each term:
Au,v 7→ Au−a,v−b.

We are now ready to state our main result.

Theorem 2.5. Fix k ∈ [0, r + s + 1], and let ρk+1
B (i, j) denote the rational function in K[xu,v]

associated to the poset element (i, j) after (k + 1) applications of the birational rowmotion map
to the generic initial labeling of P = [0, r]× [0, s]. Set M = [k− i]+ + [k− j]+. We obtain the
following formula for ρk+1

B (i, j):
(a) When M ≤ k:

ρk+1
B (i, j) = µ([k−j]+,[k−i]+)

(
ϕk−M(i− k + M, j− k + M)

ϕk−M+1(i− k + M, j− k + M)

)
(2.3)

where ϕt(v, w) and µ(a,b) are as defined in 4) and 5) of Definition 2.4.
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(b) When M ≥ k:
ρk+1

B (i, j) = 1/ρ
k−i−j
B (r− i, s− j)

where ρ
k−i−j
B (r− i, s− j) is well-defined by part (a).

Note that these formulas agree when M = k. Since on P = [0, r] × [0, s] we have
ρr+s+2+d

B = ρd
B by periodicity (Corollary 2.8), this gives a formula for all iterations of the

birational rowmotion map on P. In the “generic” case where shifting (i, j) 7→ (i− k, j− k)
(straight down by 2k ranks) still gives a point in P, we get the following simpler formula.

Corollary 2.6.

For k ≤ min{i, j}, ρk+1
B (i, j) =

ϕk(i− k, j− k)
ϕk+1(i− k, j− k)

(2.4)

Figure 1: The six lattice paths (shown in red) involved in computing ϕ1(1, 0) in [0, 3]×
[0, 2]. Corresponding A-variable subscripts are underlined in green.

32
31 22

30 21 12
20 11 02

10 01
00

32
31 22

30 21 12
20 11 02

10 01
00

32
31 22

30 21 12
20 11 02

10 01
00

32
31 22

30 21 12
20 11 02

10 01
00

32
31 22

30 21 12
20 11 02

10 01
00

32
31 22

30 21 12
20 11 02

10 01
00

Example 2.7. We use Theorem 2.5 to compute ρk+1
B (2, 1) for P = [0, 3]× [0, 2] for k =

0, 1, 2, . . . , 6. Periodicity kicks in for k ≥ 6. Here r = 3, s = 2, i = 2, and j = 1 throughout.

• When k = 0, M = 0 and we get ρ1
B(2, 1) =

ϕ0(2, 1)
ϕ1(2, 1)

=
A21A22A31A32

A22 + A31
. In general

ϕ0(i, j) = ∏(m,n)≥(i,j) Am,n, the product of all the A-variables in the order filter
∨
(i,j).

• When k = 1, we still have M = 0, and ρ2
B(2, 1) =

ϕ1(1, 0)
ϕ2(1, 0)

=

A11 A12 A21 A22+A11 A12 A22 A30+A11 A12 A30 A31+A12 A20 A22 A30+A12 A20 A30 A31+A20 A21 A30 A31
A12+A21+A30

.
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Figure 2: The three pairs of lattice paths (shown in red and blue) used for computing
ϕ2(1, 0) in [0, 3]× [0, 2]. A-variable subscripts are circled in green.

32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00

For the numerator, s1 = (1, 0), t1 = (3, 2), and there are six lattice paths from s1 to t1,
each of which covers 5 elements and leaves 4 uncovered (Figure 1). For the denominator,
s1 = (2, 0), s2 = (1, 1), t1 = (3, 1), and t2 = (2, 2), and each pair of lattice paths leaves
exactly one element uncovered (Figure 2).
• When k = 2, we get M = [2− 2]+ + [2− 1]+ = 1 ≤ 2 = k. So by part (a) of the

main theorem we have

ρ3
B(2, 1) = µ(1,0)

[
ϕ1(1, 0)
ϕ2(1, 0)

]
= (just shifting indices in the k = 1 formula)

A01 A02 A11 A12+A01 A02 A12 A20+A01 A02 A20 A21+A02 A10 A12 A20+A02 A10 A20 A21+A10 A11 A20 A21
A02+A11+A20

.

• When k = 3, we get M = [3− 2]+ + [3− 1]+ = 3 = k. Therefore,

ρ4
B(2, 1) = µ(2,1)

[
ϕ0(2, 1)
ϕ1(2, 1)

]
= µ(2,1)

[
A21A22A31A32

A22 + A31

]
=

A00A01A10A11

A01 + A10
.

We can also use part (b) of the main theorem to get ρ4
B(2, 1) = 1/ρ3−2−1

B (3− 2, 2− 1) =

1/ρ0
B(1, 1) =

1
x11

. The equality between these two expressions is easily checked.

• When k = 4, we get M = [4− 2]+ + [4− 1]+ = 5 > k. Therefore, by part (b) of the
main theorem, then part (a),

ρ5
B(2, 1) = 1/ρ4−2−1

B (3− 2, 2− 1) = 1/ρ1
B(1, 1) =

ϕ1(1, 1)
ϕ0(1, 1)

=
A12A22 + A12A31 + A21A31

A11A12A21A22A31A32
.
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• When k = 5, we get M = [5− 2]+ + [5− 1]+ = 7 > k. Therefore,

ρ6
B(2, 1) = 1/ρ5−2−1

B (1, 1) = 1/ρ2
B(1, 1) = ϕ2(0,0)

ϕ1(0,0)=
A02 A12+A02 A21+A11 A21+A30 A02+A30 A11+A30 A20

A sum of 10 degree-6 monomials in Aij
.

• When k = 6, we get M = [6− 2]+ + [6− 1]+ = 9 > k. Therefore,

ρ7
B(2, 1) = 1/ρ6−2−1

B (3− 2, 2− 1) = 1/ρ3
B(1, 1) = µ(1,1)

[
ϕ1(1, 1)
ϕ0(1, 1)

]

= µ(1,1)
[

A12A22 + A12A31 + A21A31

A11A11A21A22A31A32

]
=

A01A11 + A01A20 + A10A20

A00A01A10A11A20A21
= x21

Notice that periodicity also kicks in for this case and ρ7
B(2, 1) = ρ0

B(2, 1) = x21.

As corollaries of Theorem 2.5, we get the main two theorems on birational rowmotion
on a product of two chains (by applying part (b) once or twice).

Corollary 2.8 ([7, Theorem 30]). The birational rowmotion map ρB on the product of two chains
P = [0, r]× [0, s] is periodic, with period r + s + 2.

Corollary 2.9 ([7, Theorem 32]). The birational rowmotion map ρB on the product of two chains
P = [0, r]× [0, s] satisfies the following reciprocity: ρ

i+j+1
B = 1/ρ0

B(r− i, s− j) = 1
xr−i,s−j

.

3 Proof of Main Theorem

There is only space here to outline the main ideas of the proof of Theorem 2.5, which is a
complicated triple induction on i, j, and k. We start with k = 0 and work our way down
the poset from the upper boundary, then repeat with k = 1, etc. The key ingredients are
a Plücker-like recurrence relation for the ϕk’s, Lemma 3.1, and a generalization thereof
(omitted herein) that includes the shifting µ(i,j)’s, but whose proof can be reduced to
it. We prove Lemma 3.1 using a colorful combinatorial bijection on pairs of k-tuples of
NILPs, which we later learned is similar to those in [5] for Schur functions identities.

Lemma 3.1. For 1 ≤ k ≤ min{i, j} we have the Plücker-like relation

ϕk(i− k, j− k)ϕk−1(i− k + 1, j− k + 1) = ϕk(i− k + 1, j− k)ϕk−1(i− k, j− k + 1)
+ ϕk(i− k, j− k + 1)ϕk−1(i− k + 1, j− k).

(3.1)

Proof. The definition of ϕk (Equation (2.2)) involves summing monomials in the Aij’s,
with each term corresponding to the elements left uncovered by a k-tuple of NILPs. So a
term on the left-hand side of the Lemma is represented by a pair of NILPs (B,R) offset
from one another by one rank. Example 3.2 gives an example to illustrate both this and
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the bijection below. Specifically, the lower NILPs B, whose endpoints are marked with ◦,
represents a monomial from ϕk(i− k, j− k), and the upper NILPs R, whose endpoints
are marked by ×, represents one from ϕk−1(i− k + 1, j− k + 1). Our goal is to transform
this pair into a pair of NILPs counted by one of the terms on the right-hand-side of
Lemma 3.1.

Starting at each bottom ◦ (lowest points in B), we create two bounce paths and
(k − 2) twigs as follows. From the leftmost ◦ on the bottom, move up blue edges
until encountering a vertex with a downward red edge. Then move down red edges
until encountering a vertex with an upward blue edge. Continue in this way, reversing
directions whenever possible and only traversing unused edges, until a terminal vertex
is reached. (No such path can terminate at an internal vertex, since any edge by which
one enters must be paired with a possible exit.) Do the same procedure starting from the
rightmost ◦ on the bottom. We refer to both of these paths as bounce paths.

Since we reverse directions along bounce paths in a systematic way, we always follow
blue edges upward and red edges downward. In addition to these two bounce paths, the
(k− 2) ◦’s in the interior of the bottom immediately connect to a × in the rank second
from the bottom. We refer to these blue edges as twigs. Since the twigs cover all but
1 of the (k− 2) ×’s, only one of the two bounce paths may return to the bottom of the
poset ending with a segment of downward red edges. Furthermore the (k− 1) red paths,
starting from the ×’s at the top, intersect (k− 1) of the k topmost ◦’s, leaving only 1 ◦
untouched. Notice It follows that one of these two bounce paths ends at the top of the
interval, at the ◦ on top untouched by the red paths, and the other bounce path ends
at the bottom of the interval, at the × on the bottom not covered by a twig. We call the
former a vertical bounce path and the latter a horizontal bounce path.

We proceed by interchanging the colors of the edges along the horizontal bounce path,
along all the twigs, and swap the × and ◦ endpoints at the bottom, while leaving the
remaining edges of B ∪R unchanged (also leaving the colors of the vertical bounce path
unchanged). We then truncate the vertical bounce path by deleting the bottommost edge.
These transformations result in a new pair of lattice path families which we denote as
(B′,R′). The bottom endpoints for B′ will be one step either to the northeast or northwest
of the original ones, indicating respectively whether it is contributing to the first or second
summand on the right-hand-side of Lemma 3.1. The bottom endpoints of R′ are skewed
in the other direction, i.e., the southwest or the southeast, respectively.

Furthermore, if lattice paths LB ∈ B and LR ∈ R did not originally intersect, then
their edges would not lie along any bounce path. Consequently, LB would be a lattice
path again in B′ unchanged, and the same is true for LR in R′. They would again not
intersect. On the other hand, if LB and LR did originally intersect, then they could meet
along a bounce path. Being part of larger NILPs, LB would not intersect any path in B
and LR would not intersect any path in R. Swapping colors of individual edges along LB
and LR might break this intersection-free property, but since all colors of edges along a
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horizontal bounce path are swapped simultaneously, we ensure that each collection of
paths, B′ and R′, is still intersection-free.

Hence, the result is a new pair of NILPs (B′,R′) with the lower endpoints of B′ on
the second rank from the bottom of the interval skewed left (resp. right) while the lower
endpoints of R′ are on the bottom rank of the interval and skewed right (resp. left). By
construction, this map is well-defined, and B′ is a collection of k lattice paths from ◦’s
to ◦’s, and R′ is a collection of (k− 1) lattice paths from ×’s to ×’s. Thus the new pair
represents a pair of monomials “counted” by ϕk(i− k, j− k + 1)ϕk−1(i− k + 1, j− k) in
the former case, and “counted” by ϕk(i− k + 1, j− k)ϕk−1(i− k, j− k + 1) in the latter.
Finally this procedure is clearly reversible, giving the desired bijection.

Example 3.2. Let k = 5, and consider the following pair of tuples of lattice paths, (B,R)
(shown below left in (blue, red) in 75

(i−5,j−5) ∪74
(i−4,j−4), with r− i = s− j = 2. (Due to

limitations of our drawing package, red edges are drawn as squiggles and violet double
edges represent one edge of each color.)

× × × ×
◦ ◦ ◦ ◦ ◦

• • • • • •
• • • • • • •

• • • • • • • •
• • • • • • •
• × × × × •
◦ ◦ ◦ ◦ ◦

× × × ×
◦AA ��

◦?? ◦ ◦ ◦
•AA • • • •

�� __ •
�� ]]

•AA • • •
�� __ •

��
•?? �� • ]]

• ]] • •
�� __ •

��
• __ •

�� __ •
��

•AA
• \\ •

��
• • • • •BB

• \\ × ×@@ ×@@ ×@@ •BB
◦ ◦ ◦ ◦ ◦

We create bounce paths and twigs as shown above on the right. Notice the leftmost
bounce path is vertical, i.e., it ends at the top, so its colors remain the same. We interchange
the colors along the twigs and the rightmost bounce path, which is horizontal. We then
fill in the original edges (with their original colors) and swap × and ◦ at the bottom.

× × × ×
◦ ◦ ◦ ◦ ◦

• • • • • •
• • • • • • •

• • • • • • • •
• • • • • • •
• ◦ ◦ ◦ ◦ •
× × × × ×

× × × ×
◦ ◦ ◦ ◦ ◦

• • • • • •
• • • • • • •

• • • • • • • •
• • • • • • •
◦ ◦ ◦ ◦ ◦ •
• × × × ×

The last step simply shortens the vertical bounce path by one edge, replacing ×7→•
with • 7→ ◦. The result is a new pair of NILPs (B′,R′). The lower endpoints of B′ are



A formula for birational rowmotion on rectangles 11

now “skewed left”, representing a monomial in ϕ5(i− 4, j− 5), while those of R′ are
“skewed right”, representing a monomial in ϕ4(i− 5, j− 4).

Just as Lemma 3.1 is used to prove Theorem 2.5 (a), covering the cases when 0 ≤ k ≤ M,
we reduce the proof of Theorem 2.5 (b), i.e., M ≤ k ≤ r + s + 1, to the following claim.

Claim 3.3. Under the hypotheses of Theorem 2.5, if M = k (i.e., i + j = k) then

ρk+1
B (i, j) = µ(i,j)

(
ϕ0(i, j)
ϕ1(i, j)

)
= µ(i,j)ρ1

B(i, j) =
1

xr−i,s−j
.

Proof. The first two equalities follow from Theorem 2.5 (a), while we prove the last
equality as follows. Since the principal order filter

∨
(i,j) is isomorphic to the product of

chains [0, r− i]× [0, r− j], we easily reduce the claim to the case i = j = k = 0, i.e.,

ρ1
B(0, 0) =

ϕ0(0, 0)
ϕ1(0, 0)

=
∏r

p=0 ∏s
q=0 Apq

∑L∈S1(0,0) ∏
(i,j)∈71

(0,0)
(i,j) 6∈L1

Aij.
=

1
xr,s

.

In this situation, our family of lattice paths reduces to a single lattice path L1, the
numerator can be thought of as ∏

(p,q)∈P
Apq, and 71

(0,0) = P as well. By clearing de-

nominators and dividing through by the double-product) we equivalently need to show
∑L∈S1(0,0) ∏(i,j)∈L1

A−1
ij = xr,s. For the base case s = 0, we get P is a chain of length r and

the only lattice path consists of every element of P. In this case Ai0 =
xi,0

xi−1,0
for i ∈ [r], with

A00 = x00, so the single summand is the telescoping product x0,0
1 ·

x1,0
x0,0
· x2,0

x1,0
· · · · xr,0

xr−1,0
= xr,0

as required. Symmetrically, the claim also holds for r = 0 and any s. Now suppose that
rs > 0 and the claim holds for every rectangular posets whose dimensions are strictly
smaller than [0, r]× [0, s]. Set L(p, q) := {lattice paths from (0, 0) to (p, q)}. Any lattice
path from (0, 0) to (r, s) must go through either (r− 1, s) or (r, s− 1). Thus,

∑
L∈S1(0,0)

∏
(i,j)∈L1

A−1
ij = A−1

r,s ∑
L∈L(r−1,s)

∏
(i,j)∈L

A−1
ij + A−1

r,s ∑
L∈L(r,s−1)

∏
(i,j)∈L

A−1
ij

= A−1
r,s (xr−1,s + xr,s−1) = xr,s,

using the induction hypothesis and the definition of Ai,j.
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