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Combinatorial bases of polynomials
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Abstract. We establish a poset structure on combinatorial bases of polynomials, de-
fined by positive expansions. These bases include the well-studied Schubert polyno-
mials, Demazure characters and Demazure atoms, as well as the recently-introduced
slide and quasi-key bases. The product of a Schur polynomial and an element of
a basis in the poset expands positively in that basis; in particular we give the first
Littlewood-Richardson rule for the product of a Schur polynomial and a quasi-key
polynomial, extending the rule of Haglund, Luoto, Mason and van Willigenburg for
quasi-Schur polynomials. We also establish a bijection connecting the combinatorial
models of semi-skyline fillings and quasi-key tableaux for these polynomials.

Keywords: Schur polynomials, Demazure atoms, quasi-key polynomials, slide poly-
nomials

1 Introduction

The ring of polynomials in n variables possesses several bases that have important appli-
cations to geometry and representation theory. Principal examples include the Schubert
polynomials Sw [9] and Demazure characters κa [3]. Other bases such as the Demazure
atoms Aa [8], the fundamental and monomial slide polynomials Fa, Ma [2], and the
quasi-key polynomials Qa [1] have been introduced and used to study these bases from
a combinatorial perspective. Here we seek to unify the various approaches and models;
we begin by establishing a poset structure on these bases, defined by positive expansions.

Sw κa Qa Fa Ma

Aa La xa

Figure 1: The positivity poset P on combinatorial bases of polynomials.

Theorem 1.1 ([13]). Given the poset P on polynomial bases whose Hasse diagram is shown in
Figure 1, for B a basis in P , all f ∈ B expand positively in B′ ∈ P if and only if B > B′ in P .
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Positivity of the expansion of Schubert polynomials into Demazure characters was
proved by Lascoux and Schützenberger [8] and Reiner and Shimozono [12]. Positivity
of the expansion of Demazure characters into Demazure atoms was proved in [8] and
also by Mason in [10]. Positivity of the other expansions in the top row of Figure 1
were proved by Assaf and the author [2], [1]. We give positive combinatorial formulas
establishing the remaining positivity relationships in P .

For several of the bases in P , a positivity condition on multiplication by elements of
the important Schur basis sλ of symmetric polynomials had been observed or proven. We
complete this picture by proving that every basis in P satisfies this positivity statement.
In particular it holds for the quasi-key polynomials, and for a new basis of polynomials
we call fundamental particles La which provides a simultaneous refinement of Demazure
atoms and fundamental slide polynomials.

Theorem 1.2 ([13]). For any polynomial basis B in the poset P , any weak composition a of
length n and fa ∈ B the polynomial indexed by a, the product

fa · sλ(x1, . . . xn)

expands positively in the basis B.

For Schubert polynomials, this statement is clear from the associated geometry: the
structure constants are counting points in the intersection of three Schubert subvari-
eties in general position, one for a Grassmannian variety and two for the complete
flag variety. For fundamental and monomial slide polynomials (also ordinary mono-
mials, trivially) this statement is clear from the fact these bases have positive struc-
ture constants and the fact that Schur polynomials expand positively in these bases,
proved in [2]. The other four bases do not have positive structure constants. For De-
mazure characters and Demazure atoms, Haglund, Luoto, Mason and van Willigenburg
gave Littlewood–Richardson rules for products with Schur polynomials in [6]. We give
Littlewood–Richardson rules for products with Schur polynomials for the two remaining
bases: the quasi-key polynomials and the fundamental particles.

In [1], quasi-key polynomials are defined combinatorially in terms of quasi-Kohnert
(or quasi-key) tableaux, based on an algorithm of Kohnert [7] whereas in [10], Demazure
atoms are defined combinatorially in terms of semi-skyline fillings [10]. These two tableau
models are both defined on the skyline diagram of a weak composition, but have quite
different rules for the fillings allowed. We give a bijection between semi-skyline fillings
and quasi-key tableaux with fixed first column, passing through reverse semistandard
Young tableaux. As a consequence, we show that quasi-key tableaux and semi-skyline
fillings are constructed by decomposing reverse semistandard Young tableaux into sets
of runs in an essentially dual manner: the former selecting increasing runs right-to-left,
and the latter selecting decreasing runs left-to-right.
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2 Definitions

We review bases in P and some of their combinatorial models. A weak composition a is
a sequence of nonnegative integers. The skyline diagram D(a) of a weak composition a
is the diagram with ai boxes in row i, left-justified. A triple of a skyline diagram is a
collection of three boxes with two adjacent in a row and either (Type A) the third box
above the right box and the lower row weakly longer, or (Type B) the third box below
the left box and the higher row strictly longer.

β
...

γ α

Type A
lower row weakly longer

γ α
...
β

Type B
higher row strictly longer

Figure 2: Triples for skyline diagrams.

Given a filling of the skyline diagram, a triple (of either type) is called an inversion
triple if either β > γ ≥ α or γ ≥ α > β, and a coinversion triple if γ ≥ β ≥ α.

A semi-skyline filling of the skyline diagram D(a) is a filling of the boxes of D(a) with
positive integers, one per box, such that the filling weakly decreases along rows, has no
repeated entries in any column, and all triples are inversion triples [10]. Let ASSF(a)
denote the semi-skyline fillings of D(a) whose first column entries are equal to their
row index. For S ∈ ASSF(a), let wt(S) be the weak composition whose ith entry is the
number of occurrences of i in S. Finally, let xb denote the monomial xb1

1 · · · x
bn
n .

Theorem 2.1 ([10]).
Aa = ∑

S∈ASSF(a)
xwt(S).

For example, A103 = x103 + x112 + x202 + x121 + x211, which is computed by the ele-
ments of ASSF(103) shown in Figure 3 below.

3 3 3

1

3 3 2

1

3 3 1

1

3 2 2

1

3 2 1

1

Figure 3: The five elements of ASSF(103).

In [3], Demazure introduced the basis of Demazure characters, also known as key poly-
nomials. There are many different combinatorial formulas for computing the monomial
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expansion of a Demazure character [12]; here we express a Demazure character as a sum
of Demazure atoms.

Definition 2.2 ([1]). Given a weak composition a, let a left swap be the exchange of two parts
ai ≤ aj where i < j. Let lswap(a) be the set of weak compositions b that can be obtained from a
by a (possibly empty) sequence of left swaps starting with a.

For example, lswap(1, 0, 3) = {(1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0)}.

Lemma 2.3 ([13]). The Demazure atom expansion of a Demazure character is given by

κa = ∑
b∈lswap(a)

Ab.

For example, κ103 = A103 +A130 +A301 +A310.
Lemma 2.3 is a rephrasing of a Bruhat order condition on permutations (see, e.g.,

[11], [6]) in terms of weak compositions.
In [2], Assaf and the author define monomial and fundamental slide polynomials, polyno-

mial ring analogues of the monomial and fundamental bases of quasisymmetric polyno-
mials [4]. Given a weak composition a, let flat(a) be the (strong) composition obtained
by removing all 0 terms from a; for example, flat(0, 2, 3, 0, 1) = (2, 3, 1). Given weak
compositions a, b of length n, we say b dominates a, denoted by b ≥ a, if b1 + · · ·+ bi ≥
a1 + · · ·+ ai for all 1 ≤ i ≤ n.

Definition 2.4 ([2]). Given a weak composition a, the monomial slide polynomial Ma and
fundamental slide polynomial Fa are defined by

Ma = ∑
b≥a

flat(b)=flat(a)

xb and Fa = ∑
b≥a

flat(b) refines flat(a)

xb.

For example, M103 = x103 + x130 and F103 = x103 + x130 + x112 + x121.

Definition 2.5 ([1, 13]). Given a weak composition a, a quasi-key tableau of shape a is a
filling of D(a) with positive integers satisfying

1. entries weakly decrease along rows, and no entry of row i exceeds i

2. entries in any column are distinct, and entries increase up the first column

3. if an entry i is above an entry k in the same column with i < k, then there is a label j
immediately right of k, with i < j

4. Given two rows with the higher row strictly longer, then if entry i is in column c of the
lower row and entry j in column c + 1 of the higher row, then i < j.
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3 3
2 2 2

3 3
2 2 1

3 3
2 1 1

3 2
2 1 1

3 1
2 2 2

3 3
1 1 1

3 2
1 1 1

2 2
1 1 1

Figure 4: The 8 elements of qKT(032).

Denote the set of quasi-key tableaux of shape a by qKT(a); for example, see Figure 4. Let
qKT(1)(a) be those elements of qKT(a) whose first column entries are equal to their row index;
for example, the first five tableaux in Figure 4.

Definition 2.6 ([1, 13]). Given a weak composition a, the quasi-key polynomial Qa and the
column quasi-key polynomial Q(1)

a are defined by

Qa = ∑
T∈qKT(a)

xwt(T) and Q
(1)
a = ∑

T∈qKT(1)(a)

xwt(T).

For example, we compute Q032 = x032 + x122 + x212 + x221 + x131 + x302 + x311 + x320

from Figure 4, and Q
(1)
032 = x032 + x122 + x212 + x221 + x131 from the first five tableaux in

Figure 4.

Definition 2.7 ([1]). A quasi-key tableau is quasi-Yamanouchi if the leftmost occurrence of each
entry i is either in row i, or weakly left of some entry i + 1. Denote the set of quasi-Yamanouchi
quasi-key tableaux of shape a by QqKT(a).

The quasi-Yamanouchi quasi-key tableaux index the fundamental slide expansion of
a quasi-key polynomial.

Theorem 2.8 ([1]). For a weak composition a, we have

Qa = ∑
T∈QqKT(a)

Fwt(T).

For example, the first, fourth and fifth quasi-Kohnert tableaux in Figure 4 are quasi-
Yamanouchi. Therefore Q032 = F032 + F221 + F131.

Let Qlswap(a) be the set containing all b ∈ lswap(a) such that if c ∈ lswap(a) and
flat(b) = flat(c), then c ≥ b. For example, Qlswap(1, 0, 3) = {(1, 0, 3), (3, 0, 1)}.

Then the expansion of a Demazure character into the quasi-key basis is given by

Theorem 2.9 ([1]).
κa = ∑

b∈Qlswap(a)
Qb.
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3 A Littlewood–Richardson rule for quasi-keys

3.1 Demazure atom expansion

We first establish an explicit positive formula for the Demazure atom expansion of a
quasi-key polynomial.

Theorem 3.1 ([13]). Given a weak composition a, the Demazure atom expansion of the quasi-key
polynomial Qa is given by

Qa = ∑
b≥a

flat(b)=flat(a)

Ab.

The quasi-key basis contains the quasi-Schur basis of quasisymmetric polynomials
introduced by Haglund, Luoto, Mason and van Willigenburg in [5]. From Theorem 3.1
we recover the Demazure atom expansion of a quasi-Schur polynomial:

Corollary 3.2 ([5]). Let α be a strong composition. The Demazure atom expansion of the quasi-
Schur polynomial QSα(x1, . . . , xn) is given by

QSα(x1, . . . , xn) = ∑
flat(b)=α

Ab,

where b is a weak composition of length n.

The column quasi-key polynomials (Definition 2.6) are precisely the Demazure atoms.

Theorem 3.3 ([13]). For any weak composition a, we have Aa = Q
(1)
a .

As a result, Demazure atoms may expressed in terms of quasi-key tableaux. Similarly,
quasi-key polynomials may be expressed in terms of semi-skyline fillings. Let SSF(a) be
the set of all semi-skyline fillings of D(a) such that entries in the first column do not
exceed their row index.

Corollary 3.4.
Qa = ∑

S∈SSF(a)
xwt(S).

In Section 5 we will establish an explicit bijection between these models.

3.2 Littlewood–Richardson rule

We now give a positive combinatorial formula for the expansion of the product of a
quasi-key polynomial and a Schur polynomial in the quasi-key basis.

We recall the definition of Littlewood–Richardson skew skyline tableaux (LRS) from [6].
Let a and b be weak compositions of length n with ai ≤ bi for all i. Then an LRS of
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shape b/a is a filling of D(b) such that both the basement (an additional “0th” column)
and the boxes of D(a) ⊆ D(b) are filled with asterisks “∗” and the remaining boxes
are filled with positive integers such that the filling weakly decreases along rows, does
not repeat an entry in any column, and all triples (including those involving basement
entries) are inversion triples. (To determine the status of a triple involving ∗ symbols,
following [6] we say that ∗ = ∞, ∗ symbols in the same row are equal, and ∗ symbols in
the same column increase from top to bottom.) For an example, see Figure 5.

Given an LRS L, form the column word of L by reading entries of L from bottom to top
in each column, beginning with the rightmost column and working leftwards, ignoring
asterisks. A column word whose largest letter is k is called contre-lattice if for all i, the
subword consisting of the first i letters has at least as many k’s as k− 1’s, at least as many
k− 1’s as k− 2’s, etc. For example, 4432314213 is contre-lattice. Let λ = λ1 ≥ . . . λ` > 0
be a partition of length ` and let λ∗ be the multiset of numbers 1λ`2λ`−1 . . . `λ1 .

With this, Haglund, Luoto, Mason and van Willigenburg [6] give the following
Littlewood–Richardson rule for the Demazure atom expansion of the product of a De-
mazure atom and a Schur polynomial.

Theorem 3.5 ([6]). Let a be a weak composition of length n and λ a partition. Then

Aa · sλ(x1, . . . , xn) = ∑
b

cb
a,λAb,

where b is a weak composition of length n and cb
a,λ is the number of LRS of shape b/a, content

λ∗.

Let L be an LRS with an occupied row i. If row i + 1 is empty, let swapi,i+1(L) be the
diagram obtained by moving all entries of row i up to row i + 1; similarly if row i− 1 is
empty, let swapi,i−1(L) be the diagram obtained by moving all entries of row i down to
row i− 1. For example, see Figure 5.

∗
∗
∗
∗

2 1
∗

∗ ∗ ∗ 2

∗
∗
∗
∗

2 1

∗

∗ ∗ ∗ 2

∗
∗
∗
∗

2 1
∗

∗ ∗ ∗ 2

Figure 5: An LRS L of shape 1204/1003, L′ = swap2,3(L) and L′′ = swap1,2(L′).

The lemma below is clear, but important in proving our Littlewood–Richardson rule.

Lemma 3.6 ([13]). If L is an LRS, then swapi,i+1(L) and swapi,i−1(L) also satisfy the triple
conditions, and have a contre-lattice column word if and only if the column word of L is contre-
lattice.
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Given weak compositions a and b of length n, define LRS(a, b) to be the set of
LRS of shape b/c where c is any weak composition of length n satisfying c ≥ a and
flat(c) = flat(a). Say an element L ∈ LRS(a, b) is highest-weight if for every row i of L,
swapi,i+1(L) is not an element of

⋃
d LRS(a, d), where d ranges over weak compositions

of length n. Denote the set of highest-weight elements of LRS(a, b) by HLRS(a, b).

Example 3.7. Suppose n = 4 and a = (0, 1, 0, 3). Then the rightmost LRS in Figure 5 is
highest-weight: we would not be able to apply e.g. swap4,5, since the result would no longer be
inside

⋃
d LRS(a, d). The leftmost two LRS in Figure 5 are not highest-weight.

Theorem 3.8 ([13]). Let a be a weak composition of length n and λ a partition. Then

Qa · sλ(x1, . . . , xn) = ∑
b

Cb
a,λQb,

where b is a weak composition of length n, Cb
a,λ is the number of HLRS(a, b) with content λ∗.

4 The fundamental particle basis of polynomials

Completing the picture of P , we introduce the fundamental particle basis {La} of the poly-
nomial ring. This basis is a common refinement of both fundamental slide polynomials
and Demazure atoms.

Define the fixed slides of a to be those weak compositions obtainable from a by per-
forming a series of local moves of the form 0k → ij, where i, j ≥ 0, i + j = k, and if k
occupies a position that is nonzero in a, then j > 0. Let FS(a) denote the set of all fixed
slides of a.

Definition 4.1 ([13]). Given a weak composition a, the fundamental particle La is given by

La = ∑
b∈FS(a)

xb.

For example, L0302 = x0302 + x1202 + x2102 + x0311 + x1211 + x2111.

Proposition 4.2 ([13]). {La} is a basis for the polynomial ring.

Fundamental slide polynomials expand positively in fundamental particles:

Proposition 4.3 ([13]).
Fa = ∑

b≥a
flat(b)=flat(a)

Lb.

For example, F0302 = L0302 + L3002 + L0320 + L3020 + L3200.
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Remark 4.4. This formula is the same as that for the expansion of quasi-key polynomials
in Demazure atoms and monomial slide polynomials in ordinary monomials; all down-
ward arrows in Figure 1 have the same formula.

Demazure atoms also expand positively into fundamental particles. Say S ∈ ASSF(a)
is particle-highest if for every i that appears as an entry in S, either the leftmost i is in
the first column or there is an i↑ in some column weakly to its right, where i↑ is the
smallest label greater than i appearing in S. Let HSSF(a) denote the set of particle-
highest elements of ASSF(a).

Example 4.5. Only the first and third ASSFs in Figure 3 are in HSSF(1, 0, 3).

To give a formula for the fundamental particle expansion of a Demazure atom, we de-
fine a destandardization operation dst on ASSF(a). For each i appearing in S ∈ ASSF(a),
if the leftmost i is not in the first column, and has no i↑ weakly to its right, then replace
every i in S with i + 1. Repeat until no further changes can be made: the result is dst(S).

Lemma 4.6 ([13]). If S ∈ ASSF(a) then dst(S) ∈ HSSF(a), and dst(S) = S if and only if
S ∈ HSSF(a).

Example 4.7. In Figure 6, the leftmost ASSF is not particle-highest and destandardizes to
the particle-highest ASSF in the middle, while the rightmost ASSF is particle-highest (and de-
standardizes to itself).

5 1

3 2

dst
−→ 5 1

3 3

5 2

3 3

Figure 6: Three elements of ASSF(00202). The rightmost two are also elements of
HSSF(00202).

Theorem 4.8 ([13]). Let a be a weak composition of length n. Then

Aa = ∑
S∈HSSF(a)

Lwt(S).

For example, from Example 4.5 we have A103 = L103 + L202.
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Like the Demazure atom basis, the fundamental particle basis does not have posi-
tive structure constants. However, the product of a fundamental particle and a Schur
polynomial does expand positively in the basis of fundamental particles.

Let a be a weak composition of length n and let revSSYTn denote the set of reverse
semistandard Young tableaux of shape λ whose largest entry is at most n. By definition,
the monomials appearing in the product La · sλ(x1, . . . , xn) arise from the pairs (S, T)
where S ∈ LSSF(a), T ∈ revSSYTn(λ). Denote the set of such pairs by Pairs(a, λ),
and for (S, T) ∈ Pairs(a, λ), let wt(S, T) = wt(S) + wt(T). We extend the definition of
destandardization to Pairs(a, λ) by considering every label in T to be strictly right of
every label in S when applying dst to (S, T) ∈ Pairs(a, λ). Let HPairs(a, λ) be the set
{dst(S, T) : (S, T) ∈ Pairs(a, λ)}. For an example, see Figure 7.

4 3

2 1 1

3 3
2

dst
−→ 4 4

2 1 1

4 4
2

Figure 7: Destandardization of an element of Pairs((0, 3, 0, 2), (2, 1)), where n = 4.

Lemma 4.9 ([13]). If (S, T) ∈ Pairs(a, λ), then dst(S, T) ∈ Pairs(a, λ), and dst(S, T) =
(S, T) if and only if (S, T) ∈ HPairs(a, λ).

Theorem 4.10 ([13]). Let a be a weak composition of length n and λ a partition. Then

La · sλ(x1, . . . , xn) = ∑
(S,T)∈HPairs(a,λ)

Lwt(S,T).

5 A bijection between combinatorial models

We establish a bijection between semi-skyline fillings and quasi-key tableaux. Let ASSF
denote the set of all ASSF(a) as a ranges over weak compositions, and define qKT(1)

similarly. Let revSSYT denote the set of all reverse semistandard Young tableaux of all
shapes. Let the i’th column set Ci denote the set of entries in the i’th column. We begin
by constructing a column-set (and thus weight) preserving bijection between ASSF and
qKT(1).

We define a map φ : revSSYT→ ASSF that we call left row-filling. Given V ∈ revSSYT,
form the lowest row φ(V) by first taking the smallest entry, say i, in the first column of V
and placing it in row i. Then fill out this row by choosing the largest entry from column
2 of V that is weakly smaller than i, the largest entry from column 3 of V that is weakly
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smaller than the entry chosen from column 2, etc. Delete all chosen entries from V, then
repeat the algorithm to make the second-lowest row of φ(V), etc. See Figure 8 for an
example.

Remark 5.1. The map φ preserves column sets, and agrees with Mason’s bijection [10]
between revSSYT and ASSF, which is expressed in terms of filling columns rather than
rows.

We define a map ψ : revSSYT → qKT(1) that we call right row-filling. Given V ∈
revSSYT, we build a filling ψ(V) by rows. Starting with the rightmost column set, say
Ck, of V, choose the smallest number in Ck. Then choose the smallest number in Ck−1 that
is weakly larger than k. Continue in this manner until you end by choosing a number `
in C1. The elements chosen form a row of ψ(V) with row index `. Then delete all chosen
elements from V and repeat. See Figure 8 for an example.

Lemma 5.2 ([13]). Right row-filling is a well-defined, operation on revSSYT that preserves
column sets. Moreover, for any V ∈ revSSYT, ψ(V) ∈ qKT(1).

7 7 6 3
6 5 5 4 3 3 2

4 4 1 1 1
3
2 2 2 2 2
1

φ
←− 7 7 6 4 3 3 2

6 5 5 3 2
4 4 2 2 1
3 2 1 1
2
1

ψ
−→ 7 7 6 4

6 5 5 3 3 3 2

4 4 2 2 2
3
2 2 1 1 1
1

Figure 8: The left (φ) and right (ψ) row-filling algorithms.

Theorem 5.3 ([13]). The map ψ : revSSYT→ qKT(1) is a bijection.

Remark 5.4. The inverse maps of φ and ψ are given by top-justifying each tableau (to give
a Young diagram), then reordering the entries in each column so they decrease from top
to bottom.

Remark 5.5. Notice the duality in the construction of ASSF and qKT(1) from revSSYT.
The ASSF are constructed by taking minimally decreasing runs from left to right, the
qKT(1) by taking minimally increasing runs from right to left.
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