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Abstract. We give a new characterization of Littlewood–Richardson–Stembridge
tableaux for Schur P-functions by using the theory of q(n)-crystals. We also give al-
ternate proofs of the Schur P-expansion of a skew Schur function due to Ardila and
Serrano, and the Schur expansion of a Schur P-function due to Stembridge using the
associated crystal structures.
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1 Introduction

Let P+ be the set of strict partitions and let Pλ be the Schur P-function corresponding
to λ ∈ P+. The set of Schur P-functions is an important class of symmetric func-
tions, which is closely related with representation theory and algebraic geometry. For
example, the Schur P-polynomial Pλ(x1, . . . , xn) in n variables is the character of a finite-
dimensional irreducible representation Vn(λ) of the queer Lie superalgebra q(n) with
highest weight λ up to a power of 2 when the length `(λ) of λ is no more than n [10].

The set of Schur P-functions forms a basis of a subring of the ring of symmetric
functions, and the structure constants with respect to this basis are nonnegative integers,
that is, given µ, ν ∈P+,

PµPν = ∑
λ∈P+

f λ
µνPλ,

for some nonnegative integers f λ
µν. The first and the most well-known result on a

combinatorial description of f λ
µν was obtained by Stembridge [12] using shifted Young

tableaux, which is a combinatorial model for Schur P- or Q-functions [9]. It is shown
that f λ

µν is equal to the number of semistandard tableaux with entries in a Z2-graded
set N = { 1′ < 1 < 2′ < 2 < · · · } of shifted skew shape λ/µ and weight ν such
that (i) for each integer k ≥ 1 the southwesternmost entry with value k is unprimed or
of even degree and (ii) the reading words satisfy the lattice property. Here we say that
the value |x| is k when x is either k or k′ in a tableau. Let us call these tableaux the
Littlewood–Richardson–Stembridge (LRS) tableaux (see Definitions 3.5 and 3.6).
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Recently, two more descriptions of f λ
µν were obtained in terms of semistandard de-

composition tableaux, which is another combinatorial model for Schur P-functions in-
troduced by Serrano [11]. It is shown by Cho that f λ

µν is given by the number of semi-
standard decomposition tableaux of shifted shape µ and weight w0(λ− ν) whose read-
ing words satisfy the λ-good property (see [2, Corollary 5.14]). Here we assume that
`(λ), `(µ), `(ν) ≤ n, and w0 denotes the longest element in the symmetric group Sn.
Another description is given by Grantcharov, Jung, Kang, Kashiwara, and Kim [7] based
on their crystal base theory for the quantized enveloping algebra of q(n) [6]. They realize
the crystal Bn(λ) associated to Vn(λ) as the set of semistandard decomposition tableaux
of shape λ with entries in { 1 < · · · < n }, and describe f λ

µν by characterizing the lowest
weight vectors of weight w0λ in the tensor product Bn(µ)⊗ Bn(ν). We also remark that
bijections between the above mentioned combinatorial models for f λ

µν are studied in [4]
using insertion schemes for semistandard decomposition tableaux.

The main result in this paper is to give another description of f λ
µν using the theory

of q(n)-crystals, and show that it is indeed equivalent to that of Stembridge. More
precisely, we show that f λ

µν is equal to the number of semistandard tableaux with entries
in N of shifted skew shape λ/µ and weight ν such that (i) for each integer k ≥ 1
the southwesternmost entry with value k is unprimed or of even degree and (ii) the
reading words satisfy the “lattice property” (see Definitions 3.1, 3.2 and Theorem 3.3). It
is obtained by semistandardizing the standard tableaux which parametrize the lowest
weight vectors counting f λ

µν in [7], where the “lattice property” naturally arises from
the configuration of entries in semistandard decomposition tableaux. We show that
these tableaux for f λ

µν are equal to LRS tableaux (Theorem 3.7), and hence obtain a new
characterization of LRS tableaux. For more details, see Section 3.

We next consider the Schur P-positive expansion of a skew Schur function

sλ/δr = ∑
ν∈P+

aλ/δr ν Pν

for a skew diagram λ/δr contained in a rectangle ((r + 1)r+1), where δr = (r, r− 1, . . . , 1)
(cf. [1, 5]). We give a combinatorial description of aλ/δr ν (Theorem 4.4) by considering
a q(n)-crystal structure on the set of usual semistandard tableaux of shape λ/δr and
characterizing the lowest weight vectors corresponding to each ν ∈ P+. We refer to
Section 4.

Finally, we consider the Schur expansion of a Schur P-function

Pλ = ∑
µ

gλµsµ,

for λ ∈ P+. We give a simple and alternate proof of Stembridge’s description for gλµ

[12] (Theorem 5.2) by characterizing the type A lowest weight vectors of weight w0µ in
the q(n)-crystal Bn(λ) when `(λ), `(µ) ≤ n (see Section 5).

A full version of this paper including detailed proofs has appeared in [3].
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2 Crystals for queer Lie superalgebras

2.1 Notation and terminology

Let Z+ be the set of nonnegative integers. We fix a positive integer n ≥ 2 throughout
this paper. Let

P = { λ = (λi)i≥1 | λi ∈ Z+, λi ≥ λi+1 (i ≥ 1), |λ| := ∑ λi < ∞ },
P+ = { λ = (λi)i≥1 | λ ∈P , λi = λi+1 ⇒ λi = 0 (i ≥ 1) }.

Let Pn = { λ | `(λ) ≤ n } ⊆P , where `(λ) is the length of λ, and P+
n = P+ ∩Pn.

The (unshifted) diagram of λ ∈ P and the shifted diagram of λ ∈ P+ are defined
to be

Dλ = { (i, j) ∈N2 : 1 ≤ j ≤ λi, 1 ≤ i ≤ `(λ) },
D+

λ = { (i, j) ∈N2 : i ≤ j ≤ λi + i− 1, 1 ≤ i ≤ `(λ) },

respectively. We identify Dλ and D+
λ with diagrams where a box is placed at the i-th row

from the top and the j-th column from the left for each (i, j) ∈ Dλ and D+
λ , respectively.

Let A be a linearly ordered set, and WA be the set of words of finite length with
letters in A. For w ∈ WA and a ∈ A, let ca(w) be the number of occurrences of a in w.

For λ, µ ∈ P with Dµ ⊆ Dλ, a tableau of shape λ/µ means a filling on the skew
diagram Dλ \ Dµ with entries in A. For λ, µ ∈ P+ with D+

µ ⊆ D+
λ , a tableau of shifted

shape λ/µ is defined in a similar way. For a tableau T of (shifted) shape λ/µ, let w(T)
be the word given by reading the entries of T row by row from top to bottom, and from
right to left in each row. We denote by Ti,j the j-th entry (from the left) of the i-th row
of T from the top. For 1 ≤ i ≤ `(λ), let T(i) = Ti,λi · · · Ti,1 be the subword of w(T)
corresponding to the i-th row of T. Then we have w(T) = T(1) · · · T(`(λ)). We denote by
wrev(T) the reverse word of w(T). For a ∈ A, let ca(T) = ca(w(T)) be the number of
occurrences of a in T.

Suppose that A is a linearly ordered set with a Z2-grading A = A0 tA1. For λ, µ ∈
P with Dµ ⊆ Dλ, let SSTA(λ/µ) be the set of tableaux of shape λ/µ with entries in
A which is semistandard, that is, (a) the entries in each row (resp. column) are weakly
increasing from left to right (resp. from top to bottom), (b) the entries in A0 (resp.
A1) are strictly increasing in each column (resp. row). Similarly, for λ, µ ∈ P+ with
D+

µ ⊆ D+
λ , we define SST+

A (λ/µ) to be the set of semistandard tableaux of shifted shape
λ/µ with entries in A.

Let N = { 1′ < 1 < 2′ < 2 < · · · } be a linearly ordered set with a Z2-grading
N0 = N and N1 = N′ = {1′, 2′, · · · }. Put [n] = { 1, . . . , n } and [n]′ = { 1′, . . . , n′ },
where the Z2-grading and linear ordering are induced from N . For a ∈ N , we write
|a| = k when a is either k or k′.
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2.2 Semistandard decomposition tableaux and Schur P-functions

Let us recall the notion of semistandard decomposition tableaux [7, 11], which is our
main combinatorial object. A word u = u1 · · · us inWN is called a hook word if it satisfies
u1 ≥ u2 ≥ · · · ≥ uk < uk+1 < · · · < us for some 1 ≤ k ≤ s. In this case, let u↓= u1 · · · uk
be the weakly decreasing subword of maximal length and u↑= uk+1 · · · us the remaining
strictly increasing subword in u.

Definition 2.1. For λ ∈ P+, let T be a tableau of shifted shape λ with entries in N. Then T
is called a semistandard decomposition tableau of shape λ if (a) T(i) is a hook word of length λi
for 1 ≤ i ≤ `(λ), (b) T(i) is a hook subword of maximal length in T(i+1)T(i), the concatenation
of T(i+1) and T(i), for 1 ≤ i < `(λ).

For λ ∈ P+, let SSDT(λ) be the set of semistandard decomposition tableaux of
shape λ. Let x = {x1, x2, . . .} be a set of formal commuting variables, and let Pλ = Pλ(x)
be the Schur P-function in x corresponding to λ ∈ P+. It is shown in [11] that Pλ is
given by the weight generating function of SSDT(λ): Pλ = ∑ xT, where the sum runs
over all T ∈ SSDT(λ), and xT = ∏i≥1 xci(T)

i .

Remark 2.2. Recall that the Schur P-function Pλ can be realized as the character of tableaux T ∈
SST+

N (λ) with no primed entry or entry of odd degree on the main diagonal (cf. [9]). The notion
of semistandard decomposition tableaux was introduced in [11] to give a plactic monoid model
for Schur P-functions. In this paper, we follow its modified version (Definition 2.1) introduced in
[7], by which it is easier to describe q(n)-crystals [7, Remark 2.6]. We also refer the reader to [4]
for more details on relation between the combinatorics of these two models.

For λ ∈ P+, let SSDTn(λ) be the set of tableaux T ∈ SSDT(λ) with entries in
[n]. By [7, Proposition 2.3], we see that SSDTn(λ) 6= ∅ if and only if λ ∈ P+

n . We
denote by Pλ(x1, . . . , xn) the Schur P-polynomial in x1, . . . , xn given by specializing Pλ at
xn+1 = xn+2 = · · · = 0. Then we have Pλ(x1, . . . , xn) = ∑T∈SSDTn(λ) xT.

For λ ∈ P+
n , let Hλ

n be the element in SSDTn(λ) where the subtableau with entry
`(λ)− i+ 1 is a connected border strip of size λ`(λ)−i+1 starting at (i, i) ∈ D+

λ for each i =
1, . . . , `(λ), and let Lλ

n be the one where the subtableau with entry n− i+ 1 is a connected
horizontal strip of size λi starting at (i, i) ∈ D+

λ for each i = 1, . . . , `(λ). Indeed, Hλ
n

and Lλ
n are the unique tableaux in SSDTn(λ) such that (c1(Hλ

n ), . . . , cn(Hλ
n )) = λ and

(c1(Lλ
n), . . . , cn(Lλ

n)) = w0λ. Here we assume that P+
n ⊂ Zn

+ and the symmetric group
Sn acts on Zn

+ by permutation, where w0 is the longest element in Sn.

2.3 Crystals

Let us briefly review the crystals for the general linear Lie algebra gl(n) in [8]. Let
P∨ =

⊕n
i=1 Zei be the dual weight lattice and P = HomZ(P∨, Z) =

⊕n
i=1 Zεi the weight
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lattice with 〈εi, ej〉 = δij for 1 ≤ i, j ≤ n. Define a symmetric bilinear form ( · | · ) on P
by (εi|εj) = δij for 1 ≤ i, j ≤ n. Let { αi = εi − εi+1 (i = 1, . . . , n − 1) } be the set of
simple roots, and { hi = ei − ei+1 (i = 1, . . . , n− 1) } the set of simple coroots of gl(n).
Let P+ = { λ | λ ∈ P, 〈λ, hi〉 ≥ 0 (i = 1, . . . , n − 1) } be the set of dominant integral
weights.

A gl(n)-crystal is a set B together with the maps wt : B → P, εi, ϕi : B → Z ∪ {−∞}
and ẽi, f̃i : B→ B∪ {0} for i = 1, . . . , n− 1 satisfying the following conditions: for b ∈ B,

(a) ϕi(b) = 〈wt(b), hi〉+ εi(b),
(b) εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1, wt(ẽib) = wt(b) + αi if ẽib ∈ B,
(c) εi( f̃ib) = εi(b) + 1, ϕi( f̃ib) = ϕi(b)− 1, wt( f̃ib) = wt(b)− αi if f̃ib ∈ B,
(d) f̃ib = b′ if and only if b = ẽib′ for b′ ∈ B,
(e) ẽib = f̃ib = 0 when ϕi(b) = −∞.

Here 0 is a formal symbol and −∞ is the smallest element in Z ∪ {−∞} such that
−∞ + n = −∞ for all n ∈ Z. For µ ∈ P, let Bµ = { b ∈ B |wt(b) = µ }. When Bµ is finite
for all µ, we define the character of B by chB = ∑µ∈P |Bµ|eµ, where eµ is a basis element
of the group algebra Q[P].

Let B1 and B2 be gl(n)-crystals. A tensor product B1 ⊗ B2 is a gl(n)-crystal, which is
defined to be B1 × B2 as a set with elements denoted by b1 ⊗ b2, where

(a) wt(b1 ⊗ b2) = wt(b1) + wt(b2),
(b) εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈wt(b1), hi〉},
(c) ϕi(b1 ⊗ b2) = max{ϕi(b1) + 〈wt(b2), hi〉, ϕi(b2)},
(d) ẽi(b1 ⊗ b2) = ẽib1 ⊗ b2, if ϕi(b1) ≥ εi(b2), and b1 ⊗ ẽib2 otherwise,
(e) f̃i(b1 ⊗ b2) = f̃ib1 ⊗ b2, if ϕi(b1) > εi(b2), and b1 ⊗ f̃ib2 otherwise,

for i = 1, . . . , n− 1. Here we assume that 0⊗ b2 = b1 ⊗ 0 = 0.
For λ ∈ Pn, let Bn(λ) be the crystal associated to an irreducible gl(n)-module with

highest weight λ, where we regard λ as ∑n
i=1 λiεi ∈ P+. We may regard [n] as Bn(ε1),

where wt(k) = εk for k ∈ [n], and hence W[n] as a gl(n)-crystal where we identify
w = w1 . . . wr with w1 ⊗ · · · ⊗ wr ∈ Bn(ε1)

⊗r. The crystal structure on W[n] is easily
described by the so-called the signature rule (cf. [8, Section 2.1]). For λ ∈ Pn, the
set SST[n](λ) becomes a gl(n)-crystal under the identification of T with w(T) ∈ W[n],
and it is isomorphic to Bn(λ) [8]. In general, one can define a gl(n)-crystal structure
on SST[n](λ/µ) for a skew diagram λ/µ. By abuse of notation, we set Bn(λ/µ) :=
SST[n](λ/µ).

Next, let us review the notion of crystals associated to polynomial representations of
the queer Lie superalgebra q(n) developed in [7, 6].

Definition 2.3. A q(n)-crystal is a set B together with the maps wt : B → P, εi, ϕi : B →
Z ∪ {−∞} and ẽi, f̃i : B → B ∪ {0} for i ∈ I := { 1, . . . , n − 1, 1 } satisfying the following
conditions:

(a) B is a gl(n)-crystal with respect to wt, εi, ϕi, ẽi, f̃i for i = 1, . . . , n− 1,
(b) wt(b) ∈ ⊕i∈[n] Z+εi for b ∈ B,
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(c) wt(ẽ1b) = wt(b) + α1, wt( f̃1b) = wt(b)− α1 for b ∈ B,
(d) f̃1b = b′ if and only if b = ẽ1b′ for all b, b′ ∈ B,
(e) for 3 ≤ i ≤ n− 1, we have

(i) the operators ẽ1 and f̃1 commute with ẽi, f̃i,
(ii) if ẽ1b ∈ B, then εi(ẽ1b) = εi(b) and ϕi(ẽ1b) = ϕi(b).

Let Bn be a q(n)-crystal which is the gl(n)-crystal Bn(ε1) together with f̃1 1 = 2 (in

dashed arrow): 1 2 3 · · · n
1

1

2 3 n− 1

. Here we write b i−→ b′ if

f̃ib = b′ for b, b′ ∈ B and i ∈ I \ {1} as usual, and b b′
1

if f̃1b = b′.

For q(n)-crystals B1 and B2, the tensor product B1 ⊗ B2 is the gl(n)-crystal B1 ⊗ B2
where the actions of ẽ1 and f̃1 are given by

ẽ1(b1 ⊗ b2) = ẽ1b1 ⊗ b2 if 〈ε1, wt(b2)〉 = 〈ε2, wt(b2)〉 = 0, and b1 ⊗ ẽ1b2 otherwise,

f̃1(b1 ⊗ b2) = f̃1b1 ⊗ b2 if 〈ε1, wt(b2)〉 = 〈ε2, wt(b2)〉 = 0, and b1 ⊗ f̃1b2 otherwise.
(2.1)

Then it is easy to see that B1 ⊗ B2 is a q(n)-crystal, andW[n] is also a q(n)-crystal.
Let B be a q(n)-crystal. Suppose that B is a regular gl(n)-crystal, that is, each con-

nected component in B is isomorphic to Bn(λ) for some λ ∈ Pn. Let W = Sn be
the Weyl group of gl(n) which is generated by the simple reflection ri corresponding
to αi for i = 1, . . . , n − 1. We have a group action of W on B denoted by S such
that Sri(b) = f̃ 〈wt(b),hi〉

i b if 〈wt(b), hi〉 ≥ 0, and ẽ−〈wt(b),hi〉
i b otherwise, for b ∈ B and

i = 1, . . . , n − 1. For 2 ≤ i ≤ n − 1, let wi ∈ W be such that wi(αi) = α1, and let
ẽi = Sw−1

i
ẽ1Swi and f̃i = Sw−1

i
f̃1Swi . For b ∈ B, we say that b is a q(n)-highest weight

vector if ẽib = ẽib = 0 for 1 ≤ i ≤ n− 1, and b is a q(n)-lowest weight vector if Sw0b is a
q(n)-highest weight vector.

For λ ∈P+, let Bn(λ) = SSDTn(λ), and consider an injective map

Bn(λ)
� � // W[n], T � // wrev(T). (2.2)

Theorem 2.4 ([7, Theorem 2.5]). Let λ ∈P+
n be given.

(a) The image of Bn(λ) in (2.2) together with {0} is invariant under the action of ẽi and f̃i
for i ∈ I, and hence Bn(λ) is a q(n)-crystal.

(b) The q(n)-crystal Bn(λ) is connected where Hλ
n is a unique q(n)-highest weight vector

and Lλ
n is a unique q(n)-lowest weight vector.

Let B1 and B2 be q(n)-crystals. For b1 ∈ B1 and b2 ∈ B2, let us say that b1 and
b2 are equivalent and write b1 ≡ b2 if there exists an isomorphism of q(n)-crystals ψ :
C(b1) −→ C(b2) such that ψ(b1) = b2 where C(bi) denotes the connected component of
bi ∈ Bi (i = 1, 2) as a q(n)-crystal.
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By [6, Theorem 4.6], each connected component in B⊗N
n (N ≥ 1) is isomorphic to

Bn(λ) for some λ ∈ P+
n with |λ| = N. Indeed, for b = b1 ⊗ · · · ⊗ bN ∈ B⊗N

n , there
exists a unique λ ∈P+

n and T ∈ Bn(λ) such that b ≡ T. In particular, b is a q(n)-lowest
(resp. q(n)-highest) weight vector if and only if b ≡ Lλ

n (resp. Hλ
n ). The following lemma

plays a crucial role in characterization of q(n)-lowest weight vectors in B⊗N
n and hence

describing the decompositions of B⊗N
n and Bn(µ) ⊗ Bn(ν) (µ, ν ∈ P+

n ) into connected
components in [7].

Lemma 2.5 ([7, Lemma 1.15, Corollary 1.16]). For b = b1 ⊗ · · · ⊗ bN ∈ B⊗N
n , the following

are equivalent:
(a) b is a q(n)-lowest weight vector,
(b) b′ = b2 ⊗ · · · ⊗ bN is a q(n)-lowest weight vector and εb1 + wt(b′) ∈ w0P

+
n ,

(c) wt(bM ⊗ · · · ⊗ bN) ∈ w0P
+
n for all 1 ≤ M ≤ N.

Hence, we have the following immediately by Lemma 2.5.

Corollary 2.6. For λ(1), . . . , λ(s) ∈ P+
n and T1 ⊗ · · · ⊗ Ts ∈ Bn(λ(1))⊗ · · · ⊗ Bn(λ(s)), the

following are equivalent:
(a) T1 ⊗ · · · ⊗ Ts is a q(n)-lowest weight vector,
(b) Tr ⊗ · · · ⊗ Ts ∈ Bn(λ(s))⊗ · · · ⊗ Bn(λ(r)) is a q(n)-lowest weight vector for 1 ≤ r ≤ s.

Remark 2.7. Let m ≥ n be a positive integer, and put t = m− n. For N ≥ 1, let ψt : B⊗N
n −→

B⊗N
m be the map given by ψt(u1 ⊗ · · · ⊗ uN) = (u1 + t)⊗ · · · ⊗ (uN + t). Then for λ ∈ P+

n
and u ∈ B⊗N

n we have u ≡ Lλ
n if and only if ψt(u) ≡ Lλ

m. This implies that the multiplicity of
Bn(λ) in B⊗N

n is equal to that of Bm(λ) in B⊗N
m for λ ∈P+

n .

3 Littlewood–Richardson rule for Schur P-functions

3.1 Shifted Littlewood–Richardson rule

Let w = w1 · · ·wN be a word in WN . Let mk = ck(w) + ck′(w) for k ≥ 1. We define
w∗ = w∗1 · · ·w∗N to be the word obtained from w as follows: for each k ≥ 1,

(1) consider the letters wi’s with |wi| = k. Label them with 1, 2, . . . , mk (as subscripts),
first enumerating the wp’s with wp = k from left to right, and then the wq’s with wq = k′

from right to left.
(2) After the step (1), remove all ′ in each labeled letter k′j, that is, replace any k′j by

k j for ck(w) < j ≤ mk.

Definition 3.1. Let w = w1 · · ·wN ∈ WN be given. We say that w satisfies the “lattice
property” if the word w∗ = w∗1 · · ·w∗N associated to w satisfies the following: for k ≥ 1
(L1) if w∗i = k1, then no k + 1j for j ≥ 1 occurs in w∗1 · · ·w∗i−1,
(L2) if (w∗s , w∗t ) = (k+ 1i, ki+1) for s < t and i ≥ 1, then no k+ 1j (i < j) occurs in w∗s · · ·w∗t ,
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(L3) if (w∗s , w∗t ) = (k j+1, k + 1j) for some s < t and j ≥ 1, then no ki (i ≤ j) occurs in
w∗s · · ·w∗t .

Definition 3.2. For λ, µ, ν ∈P+, let Fλ
µν be the set of tableaux Q such that

(a) Q ∈ SST+
N (λ/µ) with ck(Q) + ck′(Q) = νk for k ≥ 1,

(b) for k ≥ 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
(c) w(Q) satisfies the “lattice property” in Definition 3.1.

Then we have the following characterization of f λ
µν.

Theorem 3.3 ([3, Theorem 3.5]). For λ, µ, ν ∈P+, we have f λ
µν =

∣∣∣Fλ
µν

∣∣∣ .

Choose n such that λ, µ, ν ∈ P+
n . Put Lλ

µν = { T | T ∈ Bn(ν), T ⊗ Lµ
n ≡ Lλ

n }. By

Corollary 2.6, we have Bn(ν) ⊗ Bn(µ) ∼=
⊔

λ∈P+
n

Bn(λ)
⊕|Lλ

µν|. Hence we have |Lλ
µν| =

f λ
µν = f λ

νµ. The key in the proof of this theorem is to construct a bijection

Lλ
µν

// // Fλ
µν, T //� // QT. (3.1)

such that w(QT) satisfies the “lattice property”. We briefly explain this construction
now. Let T ∈ Lλ

µν be given. Assume that wrev(T) = u1 · · · uN where N = |ν|. By Lemma

2.5, there exists µ(m) ∈ P+
n for 1 ≤ m ≤ N such that (i) (uN−m+1 · · · uN)⊗ Lµ

n ≡ Lµ(m)

n
and µ(N) = λ, and (ii) µ(m) is obtained by adding a box in the (n − um + 1)-st row of
µ(m−1). Here we assume that µ(0) = µ. Recall that wrev(T) = T(`(ν)) · · · T(1), where
T(k) = Tk,1 · · · Tk,λk

is a hook word for 1 ≤ k ≤ `(ν). Define QT to be a tableau of shifted
shape λ/µ with entries in N , where µ(m)/µ(m−1) is filled with{

k′, if um belongs to T(k)↑,
k, if um belongs to T(k)↓,

(3.2)

for some 1 ≤ k ≤ `(ν). In other words, the boxes in QT corresponding to T(k)↑ are filled
with k′ from right to left as a vertical strip and then those corresponding to T(k)↓ are
filled with k from left to right as a horizontal strip. (cf. the proof of [3, Theorem 3.5]).

Remark 3.4. For T ∈ Lλ
µν, let Q̂T be the tableau of shifted shape λ/µ, which is defined in the

same way as QT in the proof of Theorem 3.3 except that we fill µ(m)/µ(m−1) with m in (3.2) for
1 ≤ m ≤ N. Then the set { Q̂T | T ∈ Lλ

µν } is equal to the one given in [7, Theorem 4.13] to
describe f λ

µν. For example,

3 3 4
2

T1 = 4 2 3
3

T2 = 1
2 3
4

Q̂T1 =
3

1 4
2

Q̂T2 =
1′

1 1
2

QT1 =
1

1′ 2
1

QT2 =
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3.2 Stembridge’s description of f λ
µν

Definition 3.5. Let w = w1 · · ·wN be a word inWN and wrev be the reverse word of w. Let ŵ
be the word obtained from w by replacing k by (k + 1)′ and k′ by k for each k ≥ 1. Suppose that
wŵrev = a1 · · · a2N, and let mk(i) = ck(a1 · · · ai) for k ≥ 1 and 0 ≤ i ≤ 2N. Then we say that
w satisfies the lattice property if

mk+1(i) = mk(i) implies |ai+1| 6= k + 1 for k ≥ 1 and i ≥ 0. (3.3)

Here we assume that mk(0) = 0.

Definition 3.6. For λ, µ, ν ∈P+, let LRSλ
µν be the set of tableaux Q such that

(a) Q ∈ SST+
N (λ/µ) with ck(Q) + ck′(Q) = νk for k ≥ 1,

(b) for k ≥ 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
(c) w(Q) satisfies the lattice property in Definition 3.5.

We call LRSλ
µν the set of Littlewood–Richardson–Stembridge tableaux. Due to Stembridge it

provided that for λ, µ, ν ∈ P+ the shifted LR coefficient f λ
µν is equal to the number of

tableaux in LRSλ
µν (cf. ([12, Theorem 8.3]). So we have

Theorem 3.7 ([3, Theorem 3.11]). For λ, µ, ν ∈P+, we have Fλ
µν = LRSλ

µν.

Corollary 3.8. Let w ∈ WN be such that (ck(Q) + ck′(Q))k≥1 ∈ P+, and for k ≥ 1, if x is
the rightmost letter in w with |x| = k, then x = k. Then w satisfies the “lattice property” in
Definition 3.1 if and only if w satisfies the lattice property in Definition 3.5.

Remark 3.9. A bijection from LRSλ
µν to Lλ

µν is also given in [4, Theorem 4.7], which coincides
with the inverse of the map T 7→ QT in (3.1) (see also the remarks in [4, p.82]). The proof of [4,
Theorem 4.7] use insertion schemes for two versions of semistandard decomposition tableaux and
another combinatorial model for f λ

µν by Cho [2] as an intermediate object between LRSλ
µν and Lλ

µν.
On the other hand, we prove more directly that the map T 7→ QT in (3.1) is a bijection from

Lλ
µν to LRSλ

µν by using a new characterization of the lattice property in Theorem 3.7.

4 Schur P-expansions of skew Schur functions

For r ≥ 0, let us denote by δr the partition (r, r − 1, . . . , 1) if r ≥ 1, and (0) if r = 0.
We fix a nonnegative integer r. Let λ ∈ P be such that Dδr ⊆ Dλ ⊆ D((r+1)r+1). Here
((r + 1)r+1) means the rectangular partition (r + 1, . . . , r + 1) with length r + 1. It is
shown in [1, 5] that the skew Schur function sλ/δk

has a nonnegative integral expansion
in terms of Schur P-functions

sλ/δr = ∑
ν∈P+

aλ/δr ν Pν,



10 Seung-Il Choi and Jae-Hoon Kwon

together with a combinatorial description of aλ/δr ν. Moreover it is shown that these
skew Schur functions are the only ones (up to rotation of shape by 180◦), which have
Schur P-positivity. In this section, we give a new simple description of aλ/δr ν using
q(n)-crystals.

Proposition 4.1 ([3, Proposition 4.1]). Let λ ∈Pn be such that Dδr ⊆ Dλ ⊆ D(r+1)r+1 . Then
the gl(n)-crystal Bn(λ/δr), regarded as a subset of W[n] together with 0 is invariant under ẽ1

and f̃1. Hence Bn(λ/δr) is a q(n)-crystal.

Since Bn(λ/δr) is a q(n)-crystal, the skew Schur polynomial sλ/δr(x1, . . . , xn) is a
nonnegative integral linear combination of Pν(x1, . . . , xn). By applying Remark 2.7, we
have

Corollary 4.2. Under the above hypothesis, the skew Schur function sλ/δr is Schur P-positive.

Definition 4.3. Let λ ∈ P be such that Dδr ⊆ Dλ ⊆ D((r+1)r+1) and ν ∈ P+. Let Aλ/δr ν be
the set of tableaux Q such that

(a) Q ∈ SST+
[r+1](ν) with ck(Q) = λr−k+2 − k + 1 for 1 ≤ k ≤ r + 1,

(b) mk(i) ≤ mk+1(i) + 1 for 1 ≤ k ≤ r and 1 ≤ i ≤ N, where wrev(Q) = w1 · · ·wN and
mk(i) = ck(w1 · · ·wi).

Then we have the following combinatorial description of aλ/δr ν.

Theorem 4.4 ([3, Theorem 4.4]). For λ ∈ P with Dδr ⊆ Dλ ⊆ D((r+1)r+1) and ν ∈ P+, we
have aλ/δr ν = |Aλ/δr ν| .

Example 4.5. Let λ = (5, 5, 4, 3, 1) with Dλ ⊆ D(55) and n = 7. For ν = (4, 3, 1), we have
Lλ/δ4 ν = { T1, T2 } and Aλ/δ4 ν = {QT1 , QT2 } as follows.

6
5 7

6 6
7 7

7

T1 =

5
6 6

6 7
7 7

7

T2 =
1 2 2 4

3 3 5
4

QT1 =
1 2 2 3

3 4 4
5

QT2 =

Moreover, we have s(5,5,4,3,1)/δ4
= 2P(4,3,1) + P(5,2,1) + P(5,3).

Remark 4.6. Ardila–Serrano [1] already gave a result on the Schur P-expansion of the staircase
skew Schur function sδr+1/µ (see [1, Theorem 4.10]). It is well known that sλ/δr = s(λ/δr)π ,
where π means the 180◦ rotation operation on skew diagrams. It implies that the coefficient of
Pν of sλ/δr is equal to that of sδr+1/µ. Via the map in [3, Corollary 4.8] we provided a bijection
between them.
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5 Schur expansion of Schur P-function

For λ ∈ P+ and µ ∈ P , let gλµ be the coefficient of sµ in the Schur expansion of Pλ,
that is,

Pλ = ∑
µ

gλµsµ.

The purpose of this section is to give an alternate proof of the following combinatorial
description of gλµ due to Stembridge.

Definition 5.1. For λ ∈P+ and µ ∈P , let Gλµ be the set of tableaux Q such that
(a) Q ∈ SSTN (µ) with ck(Q) + ck′(Q) = λk for k ≥ 1,
(b) for k ≥ 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
(c) w(Q) satisfies the lattice property.

Theorem 5.2 ([12, Theorem 9.3]). For λ ∈P+ and µ ∈P , we have gλµ =
∣∣Gλµ

∣∣.
Choose n such that λ ∈ P+

n and µ ∈ Pn. Let Lλµ = { T | T ∈ Bn(λ), f̃iT = 0 (1 ≤
i ≤ n− 1), wt(T) = w0µ }. Then we have as a gl(n)-crystal Bn(λ) ∼=

⊔
µ Bn(µ)

⊕|Lλµ|, and
hence gλµ = |Lλµ| by linear independence of Schur polynomials. The proof is similar to
that of Theorem 3.3. That is, the key is to construct a bijection between Lλµ and Gλµ. For
T ∈ Lλµ, let wrev(T) = u1 · · · uN (N = |λ|). Since T is a gl(n)-lowest weight vector, we
have by the tensor product of crystals that uN−m+1 ⊗ · · · ⊗ uN ∈ B⊗m

n is a gl(n)-lowest
weight element for 1 ≤ m ≤ N. This implies that there exists µ(m) ∈ Pn for 1 ≤ m ≤ N
such that uN−m+1 · · · uN is equivalent as an element of gl(n)-crystal to a gl(n)-lowest
weight element in Bn(µ(m)), where µ(N) = µ and µ(m) is obtained by adding a box in the
(n− um + 1)-st row of µ(m−1) with µ(0) = ∅. Define QT to be a tableau of shape µ whose
entry at µ(m)/µ(m−1) is {

k′, if um belongs to T(k)↑,
k, if um belongs to T(k)↓,

for some 1 ≤ k ≤ `(λ). Then we obtain the desired mapping T 7→ QT.

Example 5.3. Let λ = (3, 1) and n = 3. The mapping T 7→ QT gives

3 3 3
2

T1 =
3 2 3

2
T2 =

3 2 3
1

T3 =
1 1 1
2

QT1 =
1′ 1
1 2

QT2 =
1′ 1
1
2

QT3 = .

Thus P(3,1) = s(3,1) + s(2,2) + s(2,1,1).

Remark 5.4. Let λ ∈P+ be such that D+
λ ⊆ D+

δr+1
for some r ≥ 0. Let λc+ be the complement

of λ in D+
δr+1

. It is shown in [5] that sδr+1/λ = ∑ gνλPνc+ , where the sum runs over all ν ∈P+

with |ν| = |λ|. So we have gν λ = aλc/δr (νc+)′ , where λc is the complement of λ in D((r+1)r+1).
One may expect that there is a natural bijection between Gν λ and Aλc/δr (νc+)′ that we have not
yet make explicit.
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