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Abstract. For a given composition λ of the positive integer n, a λ-unimodal permuta-
tion is a permutation comprised of contiguous unimodal segments whose lengths are
determined by λ. In this extended abstract, the authors present a generating function
for the number of λ-unimodal involutions and address its relationship to the Gelfand
character of the symmetric group.

Keywords: involutions, enumeration, λ-unimodal permutations, descents

1 Introduction

A permutation is unimodal provided its one-line notation is increasing, then decreas-
ing. Given any composition λ of the positive integer n, we say that a permutation is
λ-unimodal if it is comprised of contiguous unimodal segments whose lengths are deter-
mined by the composition λ. These λ-unimodal permutations are the topic of research by
numerous authors, although they are not often studied as purely combinatorial objects,
and first appeared in the study of characters of the symmetric group; see for example [1,
2, 4, 6, 9, 11]. In [3], the first author of this extended abstract investigated λ-unimodal
cycles and their application to a specific character of the symmetric group. Here, we
investigate λ-unimodal involutions, i.e., those λ-unimodal permutations that are their
own (algebraic) inverse.

In [1, 2], it is shown that these involutions have a direct relationship to the so-called
Gelfand character, χG. This character is associated to the representation of Sn obtained
by taking the multiplicity-free direct sum of the irreducible representations of Sn. For ex-
ample, see [1]. Specifically, if Iλ denotes the set of λ-unimodal involutions and desλ(π)
denotes the number of λ-descents of a permutation π (defined in Section 2), then

χG
λ = ∑

π∈Iλ

(−1)desλ(π). (1.1)

In this extended abstract, we enumerate λ-unimodal involutions via a recursive gen-
erating function. This can be further refined to a generating function for λ-unimodal in-
volutions with a given number of λ-descents, which in turn gives a generating function
∗karcher@uttyler.edu
†llauderdale@uttyler.edu

mailto:karcher@uttyler.edu
mailto:llauderdale@uttyler.edu


2 Archer, Gay, Germany, King, Lauderdale, Lupo, Rossi

for the Gelfand character (see Theorem 4.1). This gives us a new way of computing the
Gelfand character (other than the Murnaghan–Nakayama rule; see [7, 8, 5, 11] for more).
Because of space restrictions, most of the details of the proof regarding the computation
of these involutions by λ-descents are omitted. However, this gives us an approach to
address an open question in [10], in which Roichman comments on the desirability of
combinatorial proofs to the given character formulas, such as Equation (1.1).

2 Background and Notation

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}, and write π ∈ Sn in its one-line
notation as π = π1π2 . . . πn = π(1)π(2) . . . π(n). A permutation π ∈ Sn is unimodal if
there exists i ∈ [n] such that

π1 < π2 < · · · < πi−1 < πi > πi+1 > · · · > πn−1 > πn;

that is, π is increasing then decreasing. A composition of the integer n, denoted λ � n,
is a sequence of positive integers λ = (λ1, λ2, . . . , λk) such that ∑ λi = n. Given a
composition λ = (λ1, λ2, . . . , λk) of n, we say that π ∈ Sn is λ-unimodal provided π is
composed of k contiguous segments, where the i-th segment is unimodal of length λi.
For example, the permutation π = 129654873 ∈ S9 is (5, 4)-unimodal because the first
five entries 12965 and the last four entries 4873 both form unimodal segments of π; the
pictorial representation of this permutation can be seen in Figure 1(a). The permutation
π ∈ Sn has a descent at position i if πi > πi+1. The descent set of π, denoted Des(π), is the
set of descents and the descent number of π, denoted des(π), is the number of descents
of π. If λ = (λ1, λ2, . . . , λk) � n, we say that i is a λ-descent of π if i is a descent that
occurs within a segment of length λi for some i ∈ [n]. In other words, we define the set
of λ-descents of π, denoted Desλ(π), to be the set

Desλ(π) = Des(π) \ {λ1, λ1 + λ2, . . . , λ1 + λ2 + · · ·+ λk−1}.

We let desλ(π) denote the number of λ-descents of π. For example, for the permuta-
tion π = 129654873 ∈ S9, we have des(π) = 5 and desλ(π) = 4, where λ = (5, 4).
Finally, π ∈ Sn is an involution if it is comprised of only transpositions and fixed
points. Equivalently, every involution is it own inverse and in its pictorial represen-
tation, every involution is symmetric about the diagonal. The (4, 3, 2)-unimodal invo-
lution π = 476183259 ∈ S9 is depicted in Figure 1(b). Finally, let Sλ denote the set
of λ-unimodal permutations and let Iλ denote the set of λ-unimodal involutions. For
example, 129654873 ∈ S(5,4) and 129654873 ∈ I (5,4); also 476183259 ∈ I (4,3,2).
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(a) (5, 4)-unimodal permu-
tation π = 129654873 ∈ S9

(b) (4, 3, 2)-unimodal invo-
lution π = 476183259 ∈ S9

Figure 1: Pictorial representations of λ-unimodal permutations.

We conclude this section with two enumerations of the set of λ-unimodal permuta-
tions that do not appear anywhere in the literature, in part because these permutations
are not yet well-studied. If λ = (λ1, λ2, . . . , λk) � n, then the number of λ-unimodal
permutations in Sn is(

n
λ1, λ2, . . . , λk

) k

∏
i=1

2λi−1 =

(
n

λ1, λ2, . . . , λk

)
2n−k,

where ( n
λ1,λ2,...,λk

) denotes the multinomial coefficient. The number of λ-unimodal per-
mutations in Sn with m λ-descents is(

n
λ1, λ2, . . . , λk

)
∑

d∈Ωm
λ

k

∏
i=1

(
λi − 1

di

)
=

(
n

λ1, λ2, . . . , λk

)(
n− k

m

)
,

where Ωm
λ = {(d1, d2, . . . , dk) : ∑ di = m and 0 ≤ di ≤ λi − 1}. The proofs of these

equations follow quickly from the fact that there are exactly 2n−1 unimodal permutations
in Sn and exactly (n−1

m ) unimodal permutations in Sn with m descents.

3 Main Theorem

In this section, let Λk be the set of integer compositions into k positive integer parts and
let λ = (λ1, λ2, . . . , λk) ∈ Λk. Let x denote the set of indeterminates {x1, x2, . . . , xk}. For
a generating function F on variables x \ {xi1 , xi2 , . . . , xij}, we write F(x; x̂i1 , x̂i2 , . . . , x̂ij).
For example, if k = 3, then x = {x1, x2, x3} and F(x; x̂2) is a function on variables x1 and
x3 only. Let xλ denote the monomial xλ = xλ1

1 xλ2
2 · · · x

λk
k .

We first define three generating functions as follows. Recall that Iλ is the set of λ-
unimodal involutions. Let Iλ

j be the set of λ-unimodal involutions, where either π1 ≤
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λ1 + · · ·+ λj and the first segment is decreasing or where π1 > λ1 + · · ·+ λj. Finally, let
Dλ

i be the set of λ-unimodal involutions, where π1 ≤ λ1 + · · ·+ λi and the first segment
is decreasing. We define the generating functions Lk(x), Lk

j (x), and Dk
i (x) as follows:

Lk(x) = ∑
λ∈Λk

|Iλ|xλ, Lk
j (x) = ∑

λ∈Λk

|Iλ
j |xλ, and Dk

i (x) = ∑
λ∈Λk

|Dλ
i |xλ.

We find recursive formulas for these generating functions below.

Theorem 3.1. We have L0(x) = 1, L1(x) =
x1

(1− x1)2 and for k ≥ 2,

Lk(x) =
1

1− x1

[
x2

1Lk
1(x) + (x1 + x2

1)Lk−1(x; x̂1)

+
k

∑
i=2

x1xi[2Lk−1(x; x̂1) + Lk−1
i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i) + Lk

i (x) + Lk
i−1(x)]

]
;

if k ≥ 1, then Lk
k(x) = Dk

k(x) and for 1 ≤ j < k,

Lk
j (x) =

1
1− x1xj+1

[
Dk

j (x) +
k

∑
i=j+2

x1xiLk
i−1(x)

+
k

∑
i=j+1

x1xi[2Lk−1(x; x̂1) + Lk−1
i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i) + Lk

i (x)]
]

;

and if k ≥ 1, then Dk
1(x) =

x1

1− x1
Lk−1(x; x̂1) and for 1 ≤ i < k, we have

Dk
i (x)=

1
1− x1xi

[
Dk

i−1(x) + x1xi[Dk
i−1(x) + Dk−1

i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i) + 2Lk−1(x; x̂1)]

]
.

In the extended abstract, we provide proof sketches due to the space limitations. To
prove Theorem 3.1, we start with a few lemmas to establish the base cases and recur-
rences. For π ∈ Sn with π = π1π2 . . . πn and σm ∈ Sm with σ = σ1σ2 . . . σm, we let
π ⊕ σ ∈ Sn+m denote the permutation

π ⊕ σ = π1π2 . . . πn(σ1 + n)(σ2 + n) . . . (σm + n).

For example, if π = 312 ∈ S3 and σ = 635421 ∈ S6, then π ⊕ σ = 312968754 ∈ S9.

Lemma 3.2. If n ≥ 1, then there are n unimodal involutions in Sn. Consequently, the generating
function L1(x) = ∑

π∈I (n)
xn is given by

L1(x) =
x

(1− x)2 .
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Proof Sketch. Clearly there is only one unimodal permutation of length 1 and it is an
involution. We proceed by induction. For any π ∈ I (n) with n ≥ 2, either π1 = 1 or
πn = 1. Notice that if π1 = 1, then π ∈ I (n) if and only if π = 1⊕ σ with σ ∈ I (n−1).
If πn = 1 then necessarily π1 = n, and thus π is the decreasing permutation which
is indeed an involution. Therefore, |I (n)| = |I (n−1)| + 1, which in turn implies that
|I (n)| = n, and thus the result follows.

Clearly, the number of unimodal involutions in Sn that are strictly decreasing is 1 for
each n and thus D1

1(x) =
x1

1− x1
. By the definition of Lk

k(x), it is clear that we must have

Lk
k(x) = Dk

k(x) for all k ≥ 1.

Lemma 3.3. For any λ = (λ1, λ2, . . . , λk) � n, the number of λ-unimodal involutions for
which the first λ1 elements are decreasing and π1 ≤ λ1 is equal to the number of λ′-unimodal
involutions, where λ′ = (λ2, . . . , λk) � n− λ1. Consequently, the generating function for these
permutations is given by

Dk
1(x) =

x1

1− x1
Lk−1(x; x̂1).

Proof Sketch. If the first λ1 elements of a λ-unimodal involution π form a decreasing
sequence and π1 ≤ λ1, then πi = λ1 − i + 1 for all i ∈ [λ1]. For any σ ∈ Iλ′ , we
can obtain a λ-unimodal involution with the necessary property by taking π = δλ1 ⊕ σ,
where δλ1 is the decreasing permutation of length λ1. The result now follows.

With the base cases of Theorem 3.1 established, we can now prove the recurrences
given in Theorem 3.1. For convenience, we establish the following notation. If λ =
(λ1, λ2, . . . , λk) � n, then let λ̄ = (λ1 − 1, λ2, . . . , λk); when λ1 = 1, we implicitly assume
that λ̄ = (λ2, λ3, . . . , λk). Also, let λ̄1 = (λ1 − 2, λ2, . . . , λk), and for i ∈ {2, 3, . . . , k}, we
let λ̄i = (λ1 − 1, λ2, . . . , λi−1, λi − 1, λi+1, . . . , λk), where again if λ1 = 1 or if λi = 1, we
omit these terms from λ̄i altogether. For example, if λ = (4, 3, 1, 2), then λ̄ = (3, 3, 1, 2),
λ̄1 = (2, 3, 1, 2), λ̄2 = (3, 2, 1, 2), and λ̄3 = (3, 3, 2). Finally, let

si
λ = λ1 + λ2 + · · ·+ λi.

For example, if λ = (4, 2, 6, 1), then s1
λ = 4, s2

λ = 6, s3
λ = 12, and s4

λ = 13.

Lemma 3.4. For k ≥ 2, the generating function Lk(x) satisfies the recurrence

Lk(x) =
1

1− x1

[
x2

1Lk
1(x) + (x1 + x2

1)Lk−1(x; x̂1)

+
k

∑
i=2

x1xi[2Lk−1(x; x̂1) + Lk−1
i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i) + Lk

i (x) + Lk
i−1(x)]

]
.
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Proof Sketch. We will establish the following equivalent formula:

Lk(x) = x1Lk(x) + x2
1Lk

1(x) + (x1 + x2
1)Lk−1(x; x̂1)

+
k

∑
i=2

x1xi[2Lk−1(x; x̂1) + Lk−1
i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i) + Lk

i (x) + Lk
i−1(x)].

Suppose that π ∈ Iλ, and consider where 1 is in the permutation π. Notice that since π

is λ-unimodal, 1 must occur at the beginning or end of a unimodal segment. That is, if
πj = 1, then j ∈ {λi : i ∈ [n]} ∪ {λi + 1 : i ∈ [n− 1]} ∪ {1}. Two cases follow.

λ1 λ1 λ1 λ1

Figure 2: This figure illustrates the case in proof of Lemma 3.4 when 1 lies in the first
segment (i.e. when π1 = 1 or πλ1 = 1). In the left-most picture, the × in the bottom
left corner together with the shaded portion contribute x1Lk−1(x; x̂1). In the second
picture, we get x1Lk(x); in the third picture, we get x2

1Lk−1(x; x̂1); in the fourth picture
we get x2

1Lk
1(x).

First, assume that 1 lies in the first segment (of length λ1) and consider the following
four possible subcases, pictured in Figure 2. If λ1 = 1, then we have π1 = 1 and
π = 1⊕ σ, where σ is a λ̄-unimodal involution. This contributes x1Lk−1(x; x̂1) to the
sum. If λ1 > 1 and π1 = 1, then π = 1⊕ σ, where σ is a λ̄-unimodal involution, which
contributes x1Lk(x) to the sum. If λ1 = 2 and π2 = 1, then we necessarily have that
π1 = 2 since π is an involution. Hence we must have π = 21⊕ σ, where σ is a λ̄1-
unimodal involution. This contributes x2

1Lk−1(x; x̂1) to the sum. Finally, if λ1 > 2 and
πλ1 = 1, then we must have π1 = λ1 and in turn π = λ1α1β, where the permutation
σ = αβ is order-isomorphic to a λ̄1-unimodal involution with the added condition that
σ1 > λ̄1

1 or σ1 ≤ λ̄1
1 and σ1 . . . σλ̄1

1
is decreasing. This contributes x2

1Lk
1(x) to the sum.

Now assume that 1 lies in the i-th segment with i > 1, and consider the six subcases
pictured in Figure 3. If λ1 = λi = 1 and π(si

λ) = 1, then we must have π = si
λα1β,

where the permutation σ = αβ is order-isomorphic to a λ̄i-unimodal involution. This
contributes x1xiLk−2(x; x̂1, x̂i) to the sum for each i > 1. If λ1 > 1 and λi = 1 (and
thus π(si

λ) = 1), then we must have that π = si
λα1β, where the permutation σ = αβ is
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λ1 λi λ1 λi λ1 λi

λ1 λi λ1 λi λ1 λi

Figure 3: This figure illustrates the case in the proof of Lemma 3.4 when 1 lies in
the i-th segment with i > 1. From left-to-right along each row starting at the top left
picture, these figures illustrate the following terms of the recurrence: x1xiLk−2(x; x̂1, x̂i),
x1xiLk−1

i−1 (x; x̂i), x1xiLk−1(x; x̂1), x1xiLk−1(x; x̂1), x1xiLk
i−1(x), and x1xiLk

i (x).

order-isomorphic to a λ̄i-unimodal involution with the added condition that σ1 > si−1
λ̄i or

σ1 ≤ si−1
λ̄i and σ1 . . . σλ̄i

1
is decreasing. Thus, this contributes x1xiLk−1

i−1 (x; x̂i) to the sum for

each i > 1. If λ1 = 1 and λi > 1, then either π(si
λ) = 1 or π(si−1

λ + 1) = 1. In the former
case, we have that π = si

λα1β, where the permutation σ = αβ is order-isomorphic to a λ̄i-
unimodal involution and in the latter case, we must have that π = (si−1

λ + 1)α1β, where
the permutation σ = αβ is order-isomorphic to a λ̄i-unimodal involution. Together,
these contribute 2x1xiLk−1(x; x̂1) to the sum for each i > 1. Finally, we have the subcase
when λ1 > 1 and λi > 1. In this instance, we must have either π(si−1

λ + 1) = 1 or
π(si

λ) = 1. If π(si−1
λ + 1) = 1, then π = (si−1

λ + 1)α1β, where the permutation σ = αβ

is order-isomorphic to a λ̄i-unimodal involution with the added condition that σ1 > si−1
λ̄i

or σ1 ≤ si−1
λ̄i and σ1 . . . σλ̄i

1
is decreasing. If π(si

λ) = 1, then π = si
λα1β, where the

permutation σ = αβ is order-isomorphic to a λ̄i-unimodal involution with the added
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condition that σ1 > si
λ̄i or σ1 ≤ si

λ̄i and σ1 . . . σλ̄i
1

is decreasing. Together, these contribute

x1xi[Lk
i−1(x) + Lk

i (x)] to the sum for each i > 1.

Lemma 3.5. For 1 ≤ j ≤ k, the generating function Lk
j (x) satisfies the recurrence

Lk
j (x) =

1
1− x1xj+1

[
Dk

j (x) +
k

∑
i=j+2

x1xiLk
i−1(x)

+
k

∑
i=j+1

x1xi[Lk
i (x) + 2Lk−1(x; x̂1) + Lk−1

i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i)]

]
.

Proof Sketch. We will establish the equivalent formula:

Lk
j (x) = Dk

j (x) +
k

∑
i=j+1

x1xi[Lk
i−1(x) + Lk

i (x) + 2Lk−1(x; x̂1) + Lk−1
i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i)].

The proof is similar to the one for Lemma 3.4, so we omit some of the details; the asso-
ciated figures are also very similar to those in Figure 3. Let π ∈ Iλ, where π1 ≤ sj

λ and
π1 . . . πλ1 is decreasing or π1 > sj

λ. In the first case, we get exactly those permutations
enumerated using the generating function Dk

j (x). Otherwise, we must have that π1 > sj
λ,

which implies that if πk = 1, then k > sj
λ. Thus for any i ≥ j + 1, we can add i either

to the beginning or end of the i-th unimodal segment. Again, there are six cases. The
case when λ1 = λi = 1 contributes x1xiLk−2(x; x̂1, x̂i) to the sum for each i ≥ j + 1. In
the case where λ1 = 1 and λi > 1, we can either have π(si

λ) = 1 or π(si−1
λ + 1) = 1. This

contributes 2x1xiLk−1(x; x̂1) to the sum for each i ≥ j + 1. The case when λ1 > 1 and
λi = 1 contributes x1xiLk−1

i−1 (x; x̂i) for each i ≥ j + 1. In the case when λ1 > 1 and λi > 1,
we can either have π(si

λ) = 1 or π(si−1
λ + 1) = 1. This contributes x1xi[Lk

i−1(x) + Lk
i (x)]

to the sum for each i ≥ j + 1.

Lemma 3.6. For 1 < i ≤ k, the generating function Dk
i (x) satisfies the recurrence

Dk
i (x) =

1
1− x1xi

[
Dk

i−1(x)+ x1xi[Dk
i−1(x)+ Dk−1

i−1 (x; x̂i)+ Lk−2(x; x̂1, x̂i)+ 2Lk−1(x; x̂1)]

]
.

Proof Sketch. We will establish the equivalent formula:

Dk
i (x) = Dk

i−1(x) + x1xi[Dk
i (x) + Dk

i−1(x) + Dk−1
i−1 (x; x̂i) + Lk−2(x; x̂1, x̂i) + 2Lk−1(x; x̂1)].

Again, because of similarities to the proof of Lemma 3.4, we omit most of the details.
The associated figures can be found in Figure 4.

Let π ∈ Iλ, where π1 ≤ si
λ and π1 . . . πλ1 is decreasing. In the case when π1 ≤ si−1

λ ,
we have exactly those permutations enumerated by Dk

i−1. If si−1
λ < π1 ≤ si

λ, then
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λ1 λi λ1 λi λ1 λi

λ1 λi λ1 λi λ1 λi

Figure 4: This figure illustrates Lemma 3.6 when si−1
λ < π1 ≤ si

λ. From left-to-
right along each row starting at the top left picture, these figures illustrate the fol-
lowing terms of the recurrence: x1xiLk−2(x; x̂1, x̂i), x1xiLk−1(x; x̂1), x1xiLk−1(x; x̂1),
x1xiDk−1

i−1 (x; x̂i), x1xiDk
i−1(x), and x1xiDk

i (x).

we must have that π1 = si
λ or π1 = si−1

λ + 1. The case when λ1 = λi = 1 con-
tributes x1xiLk−2(x; x̂1, x̂i) to the sum. The case when λ1 = 1 and λi > 1 contributes
2x1xiLk−1(x; x̂1) to the sum. The case when λ1 > 1 and λi = 1 contributes x1xiDk−1

i−1 (x; x̂i)

to the sum. Finally, the case when λ1 > 1 and λi > 1 contributes x1xi[Dk
i (x) + Dk

i−1(x)]
to the sum.

4 The Gelfand character

Let Gk(x) be defined to be as follows:

Gk(x) = ∑
λ

χG
λ xλ,

where χG is the Gelfand character mentioned in the introduction, λ is a partition of
length k, and χG

λ is the value the character takes on the conjugacy class given by λ. Then
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Gk(x) can be computed recursively from itself and two other series, Gk
j and Hk

i , both
defined in the next theorem.

Theorem 4.1. We have G0(x) = 1, G1(x) =
x1

1− x2
1

and for k ≥ 2,

Gk(x) =
1

1− x1

[
(x1 − x2

1)G
k−1(x; x̂1)− x2

1(G
k
1(x)− 2Hk

1(x)) +
k

∑
i=2

x1xi[Gk−2(x; x̂1, x̂i)

+ Gk−1
i−1 (x; x̂i)− 2Hk−1

i−1 (x; x̂i)− Gk
i (x) + 2Hk

i (x) + Gk
i−1(x)− 2Hk

i−1(x)]
]

;

if k ≥ 1, then Gk
k(x, t) = Hk

k(x, t) and for 1 ≤ j < k,

Gk
j (x) =

1
1− x1xj+1

[
Hk

j (x) +
k

∑
i=j+2

x1xiGk
i−1(x) +

k

∑
i=j+1

x1xi[Gk−2(x; x̂1, x̂i)

+ Gk−1
i−1 (x; x̂i)− 2Hk−1

i−1 (x; x̂i)− Gk
i (x) + 2Hk

i (x)− 2Hk
i−1(x)]

]
;

and if k ≥ 1, then Hk
1(x) =

x1

1 + x1
Gk−1(x; x̂1) and for 1 ≤ i < k, we have

Hk
i (x) =

1
1− x1xi

[
Hk

i−1(x) + x1xi[Gk−2(x; x̂1, x̂i)− Hk
i−1(x)− Hk−1

i−1 (x; x̂i)]

]
.

Proof Sketch. The results of Section 3 can quickly be extended to include λ-descents. Let
Iλ(d) be the set of permutations π ∈ Iλ such that desλ(π) = d. Similarly, let Iλ

j (d)
be the set of permutations π ∈ Iλ

j such that desλ(π) = d, and let Dλ
i (d) be the set of

permutations π ∈ Dλ
i such that desλ(π) = d. Let

Lk(x, t) = ∑
λ∈Λk

∑
d≥0
|Iλ(d)|xλtd, Lk

j (x, t) = ∑
λ∈Λk

∑
d≥0
|Iλ

j (d)|xλtd,

and Dk
i (x, t) = ∑

λ∈Λk

∑
d≥0
|Dλ

i (d)|xλtd.

We can keep track of descents by paying attention to where we add new elements.
For example, consider Figure 2. In the first three cases, no descents would be added.
However, in the last case, we would get an extra two descents if the first segment (of
length λ1) were decreasing (one descent in position 1 and one descent in position λ1− 1).
Now consider Figure 3. Cases 1 and 3 add no descents; cases 2, 3, and 4 add one descent;
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and case 6 adds two descents. This gives us the formula:

Lk(x, t) =
1

1− x1

[
(x1 + x2

1t)Lk−1(x, t; x̂1) + x2
1t(Lk

1(x, t) + (t− 1)Dk
1(x, t))

+
k

∑
i=2

x1xi[(t + 1)Lk−1(x, t; x̂1) + Lk−1
i−1 (x, t; x̂i) + Lk

i−1(x, t) + (t− 1)Dk
i−1(x, t)

+ (t− 1)Dk−1
i−1 (x, t; x̂i) + Lk−2(x, t; x̂1, x̂i) + t(Lk

i (x, t) + (t− 1)Dk
i (x, t))]

]
;

the formulas for Lk
j (x, t) and Dk

i (x, t) are computed in a similar fashion. Notice that by
Equation (1.1),

Lk(x,−1) = ∑
λ

χG
λ xλ = Gk(x).

Thus, we can obtain the generating functions listed in the theorem.

Below are the first few terms of Gk(x) for k ∈ {1, 2, 3} as computed from the formulas
in Theorem 4.1.

G1(x) = x + x3 + x5 + x7 + x9 + x11 + x13 + x15 + x17 + x19 + x21 + x23 + x25 + · · ·
G2(x, y) = 2xy + xy3 + 2x2y2 + x3y + xy5 + 4x3y3 + x5y + xy7 + x3y5 + 4x4y4 + · · ·

G3(x, y, z) = 4xyz + 2xyz3 + 2xy2z2 + 2x2yz2 + 2x2y2z + 2x3yz + 2xy3z + 4z3yz3 + · · ·

Notice that for each k ≥ 1, Gk(x) is symmetric in its k variables. This must happen since
Equation (1.1) holds for any ordering of the composition λ. Therefore, if we would like
to compute χG

(1,1,3), we can take either the coefficient of xyz3, xy3z, or x3yz in Gk(x) as

our answer. In each case, we find that χG
(1,1,3) = 2.

5 Discussion

It remains to determine the computational complexity for computing the Gelfand char-
acter using this method and to compare it with known methods (as in [7, 8, 11]).

In addition, several other characters can be realized by studying certain properties of
λ-unimodal permutations. In particular, if a set B(n) ⊆ Sn is a so-called fine set (see for
example, [2]), then

χλ = ∑
π∈B(n)∩Lλ

(−1)desλ(π)

where χ is a character of some representation of Sn and Lλ is the set of λ-unimodal
permutations. Fine sets include conjugacy classes and their unions, Knuth classes, Cox-
eter length, and more [2]. It should be possible to employ techniques similar to the ones
found in [3] and here to find combinatorial proofs for the formulas of these characters.
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