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Abstract. In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hy-
pergraphs as well as a general construction of polynomial invariants on Hopf monoids.
Using these results, we define in this paper a new polynomial invariant on hyper-
graphs. We give a combinatorial interpretation of this invariant on negative integers
which leads to a reciprocity theorem on hypergraphs. Finally, we use this invariant
to recover well-known invariants on other combinatorial objects (graphs, simplicial
complexes, building sets etc) as well as the associated reciprocity theorems.

Résumé. Dans arXiv:1709.07504 Ardila et Aguiar ont donne une structure de monoïde
de Hopf sur les hypergraphes ainsi qu’un moyen de construire des invariants poly-
nomiaux sur les monoïdes de Hopf. En s’appuyant sur ces résultats, on définit dans
ce papier un nouvel invariant polynomial d’hypergraphes. Nous montrons ensuite
que cet invariant est sujet à un théorème de réciprocité en en donnant une interpré-
tation combinatoire sur les entiers négatifs. Finalement on montre qu’il est possible
de retrouver des invariants connus d’autre objets combinatoires (graphes, complexes
simpliciaux etc) à l’aide de cet invariant.
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1 Introduction

In combinatorics, Hopf structures give an algebraic framework to deal with operations of
merging (product) and splitting (coproduct) combinatorial objects. The notion of Hopf
algebra is well known and used in combinatorics for over 30 years, and has proved
its great strength in answering various questions (see for example [8]). More recently,
Aguiar and Mahajan defined a notion of Hopf monoid [2],[3] akin to the notion of Hopf
algebra and built on Joyal’s theory of species [9]. Such as in the case of Hopf algebras, a
useful application of Hopf monoids is to define and compute polynomial invariants (see
[7] or [10] for various examples), as was put to light by the recent and extensive paper of



2 Jean-Christophe Aval, Théo Karaboghossian, and Adrian Tanasa

Aguiar and Ardila [1]. In particular they give a theorem to generate various polynomial
invariants and use it to recover the chromatic polynomial of graphs, the Billera-Jia-Reiner
polynomial of matroids and the strict order polynomial of posets. Furthermore they
also give a way to compute these polynomial invariants on negative integers hence also
recovering the different reciprocity theorems associated to these combinatorial objects.

In this paper, we apply Aguiar and Ardila’s theorem to the Hopf monoid of hyper-
graphs defined in [1]. This Hopf structure is different than the one defined and studied
in [5] (the respective coproducts are different). We obtain a combinatorial description
for the (basic) invariant χI(H)(n) in terms of colorings of hypergraphs (Theorem 11).
We then use another approach (rather technical) than the method of [1] to get a reci-
procity theorem for hypergraphs (Theorem 16). Finally, we use these results to obtain
polynomial invariants on sub-monoids of the Hopf monoid of hypergraphs.

This paper is an extended abstract, all the detailed proofs can be found in the paper
[4] as well as more results on sub-monoids of the Hopf monoid of hypergraphs.

2 Definitions and reminders

2.1 Hopf monoids

We present here basic definitions on Hopf monoids. The interested reader may refer to
[3] and to [1] for more information on this subject. In this paper k is a field and all vector
spaces are over k.

Definition 1. A vector species P consists of the following data.

• For each finite set I, a vector space P[I].

• For each bijection of finite sets σ : I → J, a linear map P[σ] : P[I] → P[J]. These maps
should be such that P[σ ◦ τ] = P[σ] ◦ P[τ] and P[id] = id.

A sub-species of a vector species P is a vector species Q such that for each finite set I, Q[I]
is a sub-space of P[I] and for each bijection of finite sets σ : I → J, Q[σ] = P[σ]|Q[I].

A morphism f : P → Q between vector species is a collection of linear maps f I : P[I] →
Q[I] satisfying the naturality axiom: for each bijection σ : I → J, f J ◦ P[σ] = Q[σ] ◦ f I .

Definition 2. A connected Hopf monoid in vector species is a vector species M with
M[∅] = k that is equipped with product and co-product linear maps

µS,T : M[S]⊗M[T]→ M[S t T] ∆S,T : M[S t T]→ M[S]⊗M[T],

with S and T disjoint sets, and subject to the following axioms:
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• Naturality. For each pair of disjoint sets S, T, each bijection σ with domain St T, we have
M[σ] ◦ µS,T = µσ(S),σ(T) ◦M[σ|S]⊗M[σ|T] and M[σ|S]⊗M[σ|T] ◦ ∆S,T = ∆σ(S),σ(T) ◦
M[σ].

• Unitality. For each set I, µI,∅, µ∅,I , ∆I,∅ and ∆∅,I are given by the canonical isomorphisms
M[I]⊗ k ∼= k ∼= k⊗M[I].

• Associativity. For each triplet of pairwise disjoint sets R,S, T we have: µR,StT ◦ id⊗µS,T
= µRtS,T ◦ µR,S ⊗ id.

• Co-associativity. For each triplet of pairwise disjoint sets R,S, T we have: ∆R,S ⊗
id ◦∆RtS,T = id⊗∆S,T ◦ ∆R,StT.

• Compatibility. For each pair of disjoint sets A, B, each pair of disjoint sets C, D we have
the following commutative diagram, where τ maps x⊗ y to y⊗ x:

P[S]⊗ P[T] P[I] P[S′]⊗ P[T′]

P[A]⊗ P[B]⊗ P[C]⊗ P[D] P[A]⊗ P[C]⊗ P[B]⊗ P[D]

∆A,B⊗∆C,D

µS,T ∆S′ ,T′

id⊗τ⊗id

µA,C⊗µB,D

A sub-monoid of a Hopf monoid M is a sub-species of M stable under the product and
co-product maps.

A morphism of Hopf monoids in vector species is a morphism of vector species which
preserves the products, co-products (compatibility axiom) and the unity (unitality axiom).

We will use the term Hopf monoid for connected Hopf monoid in vector species.
A sub-monoid of a Hopf monoid M is itself a Hopf monoid when equipped with the
product and co-product maps of M. We consider this to be always the case.

A decomposition of a finite set I is a sequence of pairwise disjoint sets S = (S1, . . . , Sl)
such that I = tl

i=1Si. A composition of a finite set I is a decomposition of I without empty
parts. We will note S ` I for S a decomposition of I, S � I if S is a composition, l(S) = l
the length of a decomposition and |S| = |I| the number of elements in the decomposition.

Definition 3. Let M a be a Hopf monoid. The antipode of M is the collection of maps SI :
M[I]→ M[I] given by S∅ = id and

SI = ∑
(S1,...Sk)�I

k≥1

(−1)kµS1,...,Sk ◦ ∆S1,...,Sk ,

for any non empty finite set I.
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Definition 4. A character on a Hopf monoid M is a collection of linear maps ζ I : M[I] → k
subject to the following axioms.

• Naturality. For each bijection σ : I → J we have ζ J ◦M[σ] = ζ I .

• Multiplicativity. For each disjoint sets S, T we have ζStT ◦ µS,T = m ◦ ζS ⊗ ζT, where
m is the canonical isomorphism k⊗ k ∼= k.

• Unitality. ζ∅(1) = 1.

Let us recall from [1] the results which we will use in the sequel.

Theorem 5 (Proposition 16.1 and Proposition 16.2 in [1]). Let M be a Hopf monoid and ζ a
character on M. For x ∈ M[I] and n an integer we define:

χI(x)(n) = ∑
(S1,...Sn)`I

ζS1 ⊗ · · · ⊗ ζSn ◦ ∆S1,...,Sn(x).

Then χI is a polynomial invariant in n verifying:

• χI(x)(1) = ζ(x),

• χ∅ = 1 and χStT(µ(x⊗ y)) = χS(x)χT(y),

• χI(x)(−n) = χI(SI(x))(n).

Let M be a Hopf monoid. For I a set and x ∈ M[I] we call x discrete if I = {i1, . . . , i|I|}
and x = µ{i1},...,{i|I|}x1 ⊗ · · · ⊗ x|I| for xj ∈ M[{ij}]. Then the maps that send discrete
elements onto 1 and other elements onto 0 give us a character of Hopf monoid. Following
the terminology introduced in Section 17 of [1], we call the basic invariant of M the
polynomial invariant obtained by applying Theorem 5 with this character. We note χM

this polynomial or just χ when M is clear from the context.

3 Basic invariant of hypergraphs

In all of the following, I always denotes a finite set.
Our goal is to express the basic invariant of the Hopf monoid of hypergraphs defined

in Section 20 of [1]. More specifically we intend to obtain a combinatorial interpretation
of χI(x)(n) and χI(x)(−n).

In this context, an hypergraph over I is a collection of (possibly repeated) subsets of
I, which we call edges1, containing ∅ exactly once. The elements of I are then called
vertices of H and HG[I] denotes the free vector space of hypergraphs over I. Note that
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Figure 1: Two hypergraphs with the same edges but over different sets.

two hypergraphs over different sets can never be equal, e.g {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]]
is not the same as {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4] ∪ {a, b}]. This is illustrated in Figure 1

The product and co-product are given by, for I = S t T:

µS,T : HG[S]⊗ HG[T]→ HG[I] ∆S,T : HG[I]→ HG[S]⊗ HG[T]
H1 ⊗ H2 7→ H1 t H2 H 7→ H|S ⊗ H/S

where H|S = {e ∈ H | e ⊆ S} is the restriction of H to S and H/S = {e ∩ T | e * S} ∪ {∅}
is the contraction of S from H. The discrete hypergraphs are then the hypergraphs with
edges of cardinality at most 1.

Example 6. For I = [5], S = {1, 2, 5} and T = {3, 4}, we have:

1 2 3

45

1

2

5

⊗ 3 4
∆S,T

In [1], Ardila and Aguiar propose a method to obtain a combinatorial interpretation
of any polynomial invariant given by Theorem 5 on negative integers, assuming that
we have an interpretation of it on positive integers. Their method consists in using a
cancellation-free grouping-free formula for the antipode and the third point of Theo-
rem 5. We use here a different approach: we express the polynomial dependency of
χI(x)(n) in n with a well chosen family of polynomials which we then use to calculate
χI(x)(−n) and interpret the resulting formula.

Let us begin by giving a proposition giving us the aforementioned family of polyno-
mials. For t ∈ N∗ and a sequence of positive integers p1, p2, . . . , pt, we define Fp1,...,pt as
a function over the integers given by, for n ∈N

Fp1,...,pt(n) = ∑
0≤k1<···<kt≤n−1

kp1
1 · · · k

pt
t .

Proposition 7. Let p1, p2, . . . , pt be integers. Then Fp1,...,pt is a polynomial of degree ∑t
i=1 pi + t

whose coefficients can be expressed in term of sums and products of Bernoulli numbers (the
explicit expression can be found in [4]).

1in some references, the terms hyperedge or multiedge is used.
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Before stating our results on χI(H)(n) we need to introduce some definitions. There
exists a canonical bijection between decompositions and functions with co-domain of the
form [n]. In the sequel, we will want to seamlessly pass from one notion to the other.
We hence give a few explanations on this bijection. Given an integer n, the canonical
bijection between decompositions of I of size n and functions from I to [n] is given by:

bI,n : { f : I → [n]} → {P ` I | l(P) = n}
f 7→ ( f−1(1), . . . , f−1(n)).

If it is clear from the context what are I and n we will write b instead of bI,n. If P is a
partition we will also refer to b−1(P) by P so that instead of writing "i such that v ∈ Pi"
we can just write P(v). Similarly, if P is a function we will refer to b(P) by P so that
Pi = P−1(i). Also remark that bI,n induces a bijection between compositions of I of size
n and surjections from I to [n].

Definition 8. Let H be a hypergraph over I and n be an integer. A coloring of H with [n] is
a function from I to [n] (or a decomposition of I of length n from what precedes this) and in this
context the elements of [n] are called colors.

Let S ` I be a coloring of H. For v ∈ e ∈ H, we say that v is a maximal vertex of e (for S)
if v is of maximal color in e and we call maximal color of e (for S) the color of a maximal vertex
of e. We say that a vertex v is a maximal vertex (for S) if it is a maximal vertex of an edge.

If J ⊆ I is a subset of vertices, the order of appearance of J (for S) is the composition
cano(S|J) where S|J = (S1 ∩ J, . . . , Sl(S) ∩ J) and where the map cano sends any decomposition
on the composition obtained by dropping the empty parts.

Example 9. We represent the coloring of a hypergraph on I = {a, b, c, d, e, f } with {1,2,3,4}:

e3

e4

e2

a b

e1

c

d

e
f

The maximal vertex of e1 is a and the maximal vertices of e3 are c and d. The maximal color of
e2 is 3. The order of appearance of {a, c, d, e} is ({e}, {c, d}, {a}). The order of appearance of all
edges is ({e2, e3}, {e1, e4}).

Definition 10. Let H be a hypergraph over I. An orientation of H is a function f from H to I
such that f (e) ∈ e for every edge e. A directed cycle in an orientation f of H is a sequence of
distinct edges e1, . . . , ek such that f (e1) ∈ e2 \ f (e2), . . . , f (ek) ∈ e1 \ f (e1). An orientation is
acyclic if it does not have any cycle. We denote by AH the set of acyclic orientations of H.

An orientation f of H and a coloring S of H with [n] are said to be compatible if S( f (e)) =
max(S(e)) for every e ∈ H. They are said to be strictly compatible if f (e) is the unique
maximal vertex of e.
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We can now state our first theorem.

Theorem 11. Let I be a set and H ∈ HG[I] a hypergraph over I. Then χI(H)(n) is the number
of colorings of H with [n] such that every edge has only one maximal vertex. This is also the
number of strictly compatible pairs of acyclic orientations and colorings with [n]. Furthermore,
defining PH, f = {P � f (H) | v ∈ e \ f (e) ⇒ P(v) < P( f (e))}, for every f ∈ AH, we have
that

χI(H)(n) = n|JH | ∑
f∈AH

∑
P∈PH, f

Fp1,...,pl(P)(n),

where JH ⊆ I is the set of isolated vertices of H (i.e vertices not in an edge) and for every
P ∈ PH, f , pi = |P̃i| and P̃i =

(⋃
e∈ f−1(Pi)

e
)
∩ f (H)c ⋂

j<i P̃c
j .

Sketch of proof. For S a decomposition of I of size n, let H1⊗ · · · ⊗ Hn = ∆S1,...,Sn(H). Let
S be a decomposition of I of size n. Let e be an edge. We then have the equivalence:

e ∈ Hi ⇐⇒ e ∩ Si 6= ∅ ∧ ∀j > i, e ∩ Sj = ∅

⇐⇒ e ∩ Si is the set of maximal vertices of e

Hence, we have that

ζS1 ⊗ · · · ⊗ ζSn ◦ ∆S1,...,Sn(H) = 1 ⇐⇒ ∀e ∈ H, e ∈ Hi ⇒ |e ∩ Si| = 1
⇐⇒ each edge has only one maximal vertex.

The equivalence between the colorings such that every edge has only one maximal vertex
and the strictly compatible pairs of acyclic orientations and colorings is given by the
bijection S 7→ (e 7→ ve, S), where ve is the unique vertex in e such that S(ve) = max(S(e)).

The term n|JH | in the formula is trivially obtained, in the following we hence consider
that H has no isolated vertices.

Informally, for a hypergraph with no isolated vertex, the formula can be obtained
by the following reasoning. To choose a coloring such that every edge has only one
maximal vertex, one can proceed in the following:

1. choose the maximal vertex of each edge ( f ∈ AH),

2. choose in which order those vertices appear (P ∈ PH, f ),

3. choose the color of those vertices (k1 + 1, . . . , kl(P) + 1), (and notice that the set of
such choices is empty if l(P) > n, which allow us to not add this non polynomial
dependency in n at the previous choice),

4. choose the colors of the yet uncolored vertices which are in the same edge than a

vertex of minimal color in f (H) (k|P̃1|
1 ); then those in the same edge than a vertex

of second minimal color in f (H) (k|P̃2|
2 ), etc.
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Example 12. The coloring given in Example 9 is not counted in χI(H)(4) since e3 has two
maximal vertices. However by changing the color of d to 2 we do obtain a coloring where every
edge has only one maximal vertex.

We are now interested in the value of (−1)|I|χI(H)(−n). We first state two lemmas.

Lemma 13. Let p = (p1, . . . , pt) be a sequence of integers. Then

Fp(−n) = (−1)dt ∑
p≺q

Fq(n + 1)

where p ≺ q stands for q coarsens p as a composition of ∑i pi.

Definition 14. Let P = (P1, . . . , Pl) � I and Q = (Q1, . . . , Qk) � J be two compositions of two
disjoint sets I and J. The product of P and Q is the composition P ·Q = (P1, . . . , Pl, Q1, . . . Qk).
The shuffle product of P and Q is the set sh(P, Q) = {R � I t J | P = cano(R|I), Q =
cano(R|J)}.

Let P′ � I be another composition of I. We say that P′ refines P and denote this by P′ ≺ P if
P′ = Q1 · · · · ·Ql with Qi a composition of Pi.

This next lemma is the crux of the following Theorem 3. Its (combinatorial, and -we
hope- nice) proof may be found in [5].

Lemma 15. Let I be a set and P � I a composition of I. We have the identity:

∑
Q≺P

(−1)l(Q) = (−1)|P|.

Let furthermore G be a directed acyclic graph on I and consider the constrained set
C(G, P) = {Q ≺ P | ∀(v, v′) ∈ G, Q(v) < Q(v′)}. We have the more general identity:

∑
Q∈C(G,P)

(−1)l(Q) =

{
0 if there exists (v, v′) ∈ G such that P(v′) < P(v),

(−1)|P| else.

We can now state the main result of this section:

Theorem 16 (Reciprocity theorem on hypergraphs). Let I be a set and H ∈ HG[I] a hyper-
graph over I. Then (−1)|I|χI(H)(−n) is the number of compatible pairs of acyclic orientations
and colorings with [n] of H. In particular, (−1)|I|χI(H)(−1) = |AH| is the number of acyclic
orientations of H.

Sketch of proof. From Theorem 11 and Lemma 13 we have that

χI(H)(−n) = (−n)|JH | ∑
f∈AH

∑
P∈PH, f

(−1)∑
l(P)
i=1 pi+l(P) ∑

(p1,...,pl(P))≺q
Fq(n + 1).

Remark that:
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• ∑
l(P)
i=1 pi = |I \ JH| − | f (H)| (since (P̃1, . . . P̃l(P), f (H)) is a partition of I \ JH),

• φ : {Q � f (H) | P ≺ Q} → {q composition of |I \ JH| − | f (H)| | (p1, . . . , pl(P)) ≺ q}
Q 7→ (|Q̃1|, . . . , |Q̃l(Q)|) is a bijection.

This gives us:

(−1)|I|χI(H)(−n) = n|JH | ∑
f∈AH

(−1)| f (H)| ∑
P∈PH, f

(−1)l(P) ∑
P≺Q

Fφ(Q)(n + 1)

= n|JH | ∑
f∈AH

(−1)| f (H)| ∑
Q� f (H)

 ∑
P≺Q

P∈PH, f

(−1)l(P)

 Fφ(Q)(n + 1).

By definition of AH, G = {(v, f (e)) | v ∈ e \ f (e)} is a directed acyclic graph on f (H).
Hence, remarking that {P ≺ Q | P ∈ PH, f } = C(G, Q), Lemma 15 leads to:

(−1)|I|χI(H)(−n) = n|JH | ∑
f∈AH

(−1)| f (H)| ∑
P� f (H)

P(v)≤P(v′)∀(v,v′)∈G

(−1)| f (H)|Fφ(P)(n + 1)

= n|JH | ∑
f∈AH

∑
P∈P′H, f

Fφ(P)(n + 1)

= n|JH | ∑
f∈AH

∑
P∈P′H, f

Fp1,...,pl(P)(n + 1),

where P′H, f = {P � f (H) | P(v ∈ e \ f (e) ≤ P( f (e)}.
The end of the proof is analogous to the proof of Theorem 11.

Example 17. For any I and any H ∈ HG[I], we have χI(H)(n) ≤ (−1)|I|χI(H)(−n). This
comes from the fact that any strictly compatible pair is compatible.

The coloring given in Example 9 has two compatible acyclic orientations: both send e1 on a,
e2 on c and e4 on b but one sends e3 on c and the other e3 on d.

For the color set {1,2}, the following coloring has 4 compatible orientations but only two are
acyclic.

4 Application to other Hopf monoids

In this section we use Theorems 11 and 16 to obtain a combinatorial interpretation of
the basic invariants for some Hopf monoids presented in Sections 20 to 25 of [1]. The
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results presented in Sections 4.2 to 4.4 already appear, at least implicitly, in previous
works (details are provided at the beginning of each these subsections).

In all the following, we denote by χ the basic invariant of the Hopf monoid of hyper-
graphs.

4.1 Simple hypergraphs

A hypergraph is simple if it has no repeated edges. The vector species SHG of simple
hypergraphs is not stable by the contraction defined on hypergraphs but it still admits a
Hopf monoid structure. The product and co-product are given by, for I = S t T:

µS,T : SHG[S]⊗ SHG[T]→ SHG[I] ∆S,T : SHG[I]→ SHG[S]⊗ SHG[T]
H1 ⊗ H2 7→ H1 t H2 H 7→ H|S ⊗ H/S,

where H|S = {e ∈ H | e ⊆ S} and H/S = {e ∩ T | e * S} ∪ {∅} but this time without
repetition, i.e H/S can also be defined as {B ⊆ | ∃A ⊆ S, A t B ∈ H}. A discrete simple
hypergraph is then a simple hypergraph with edges of cardinality at most one.

Proposition 18. χSHG is the restriction of χ to the vector species of simple hypergraphs.

4.2 Graphs

The result of this subsection has already been given in Section 18 of [1], but we give it
here as a consequence of our result in the previous section.

A graph can be seen as a hypergraph whose edges are all of cardinality 2. The vector
species G of graphs is not stable by the contraction defined on hypergraphs, but it still
admits a Hopf monoid structure. The product and co-product are given by, for I = St T:

µS,T : G[S]⊗ G[T]→ G[I] ∆S,T : G[I]→ G[S]⊗ G[T]
g1 ⊗ g2 7→ g1 t g2 g 7→ g|S ⊗ g/S,

where g|S is the sub-graph of g induced by S and g/S = g|T. A discrete graph is then a
graph with no edges.

A proper coloring of a graph is a coloring such that no edge has its two vertices of the
same color. The chromatic polynomial of a graph is the polynomial T such that T(n) is
the number of proper colorings with n colors.

Corollary 19 (Proposition 18.1 in [1]). The basic invariant of G is the chromatic polynomial.

In particular, by evaluating χ on negative integers for a graph, we recover the classical
reciprocity theorem of Stanley [11].
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4.3 Simplicial complexes

In [6] Benedetti, Hallam, and Machacek constructed a combinatorial Hopf algebra of
simplicial complexes and in particular they obtained results which generalise those given
in this subsection.

An abstract simplicial complex, or simplicial complex, on I is a collection C of subsets of
I, called faces, such that any subset of a face is a face i.e J ∈ C and K ⊂ J implies K ∈ C.
The 1-skeleton of a simplicial complex is the graph formed by its faces of cardinality 2.

By Proposition 21.1 of [1], the vector species SC of simplicial complexes is a sub-
monoid of the Hopf monoid of simple hypergraphs.

Corollary 20. Let I be a set, C ∈ SC[I] and g its 1-skeleton. Then χSC
I (C) is the chromatic

polynomial of g.

4.4 Paths

Proposition 25.7 of [1] states that the Hopf monoid of set of paths is isomorphic to the
Hopf monoid of associahedra which is a sub-monoid of a quotient of the Hopf monoid
of generalized permutahedra. Hence, it should be possible to deduce the result of this
subsection from [1].

A word on I is a total ordering of I. The paths on I are the words on I quotiented
by the relation w1 . . . w|I| ∼ w|I| . . . w1. A set of paths α = s1| . . . |sl of I is a partition
(I1, . . . , Il) of I with a path si on each part Ii. The vector species F of sets of paths admits
a Hopf monoid structure, the product and co-product are given by, for I = S t T:

µS,T : F[S]⊗ F[T]→ F[I] ∆S,T : F[I]→ F[S]⊗ F[T]
α1 ⊗ α2 7→ α1 t α2 α 7→ α|S ⊗ α/S

where if α = s1| . . . |sl, α|S = s1 ∩ S| . . . |sl ∩ S forgetting the empty parts and α/S is the set
of paths obtained by replacing each occurrence of an element of S in α by the separation
symbol |. A discrete set of paths is then a set of paths where all paths have only one
element.

Example 21. For I = {a, b, c, d, e, f , g} and S = {b, c, e} and T = {a, d, f , g} we have:

∆S,T(b f cg|aed) = bc|e⊗ f |g|a|d

Example 22. For I = {a, b, c, d, e, f , g} and α = b f cg|aed, l(α) is the following graph:

b f c g

a e d
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We consider that a binary tree is (strictly) compatible with a coloring if each vertex is
of color (strictly) greater than its children.

Corollary 23. Let I be a set and α be a path on I. Then χF
I (α)(n) is the number of strictly

compatible pairs of binary trees with |I| vertices and colorings with [n] and χF
I (α)(−n) is the

number of compatible pairs of binary trees with |I| vertices and colorings with [n]. In particular
χF

I (α)(−1) = C|I| where Cn = 1
n+1(

2n
n ) is the n-th Catalan number.
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