Séminaire Lotharingien de Combinatoire **82B** (2019) Article #42, 12 pp.

Total Nonnegativity and Evaluations of Hecke Algebra Characters

Adam Clearwater¹ and Mark Skandera²

¹Department of Mathematics, University of Pennsylvania ²Department of Mathematics, Lehigh University

Abstract. Let $\mathfrak{S}_{[i,j]}$ be the subgroup of the symmetric group \mathfrak{S}_n generated by adjacent transpositions $(i, i + 1), \ldots, (j - 1, j)$. We give a combinatorial rule for evaluating induced sign characters of the type *A* Hecke algebra $H_n(q)$ at all elements of the form $\sum_{w \in \mathfrak{S}_{[i,j]}} T_w$ and at all products of such elements. By a result of Stembridge, our result connects $H_n(q)$ trace evaluation to immanants of totally nonnegative matrices.

Keywords: Hecke algebra trace, total nonnegativity

1 Introduction

Related to the study of totally nonnegative matrices, those matrices having only nonnegative minors, is the study of polynomials $p(x_{1,1}, \ldots, x_{n,n})$ satisfying $p(a_{1,1}, \ldots, a_{n,n}) \ge 0$ for every totally nonnegative $n \times n$ matrix $A = (a_{i,j})$. We call these *totally nonnegative* (*TNN*) polynomials. In particular, work of Lusztig [10] implies that if we view $\mathbb{Z}[x] := \mathbb{Z}[x_{1,1}, \ldots, x_{n,n}]$ as a free \mathbb{Z} -module, then certain elements which are related to the dual canonical basis of the quantum group $\mathcal{O}_q(SL_n(\mathbb{C}))$ are TNN polynomials.

In practice, it is sometimes possible to use cluster algebras and a computer to demonstrate that a polynomial is TNN by expressing it as a subtraction-free rational expression in matrix minors [5]. On the other hand, no simple characterization of TNN polynomials is known. To improve our understanding of TNN polynomials, one might begin by investigating the *immanant subspace* span_{$\mathbb{Z}}{<math>x_{1,w_1} \cdots x_{n,w_n} | w \in \mathfrak{S}_n$ } of $\mathbb{Z}[x]$, where \mathfrak{S}_n is the symmetric group, especially the generating functions</sub>

$$\operatorname{Imm}_{\theta}(x) := \sum_{w \in \mathfrak{S}_n} \theta(w) x_{1,w_1} \cdots x_{n,w_n}$$
(1.1)

for class functions $\theta : \mathfrak{S}_n \to \mathbb{Z}$. Or, since some published results concern Hecke algebra traces, linear functions $\theta_q : H_n(q) \to \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ satisfying $\theta_q(gh) = \theta_q(hg)$, one might investigate these.

In particular, let $\{\widetilde{C}_w(q) | w \in \mathfrak{S}_n\}$ be the (modified, signless) *Kazhdan-Lusztig basis* of $H_n(q)$, defined by

$$\widetilde{C}_w(q) := q^{\frac{\ell(w)}{2}} C'_w(q) = \sum_{v \le w} P_{v,w}(q) T_v,$$

where $\{T_w | w \in \mathfrak{S}_n\}$ is the natural basis of $H_n(q)$, $\{P_{v,w}(q) | v, w \in \mathfrak{S}_n\}$ are the Kazhdan-Lusztig polynomials [8], and \leq denotes the Bruhat order. Specializing at $q^{\frac{1}{2}} = 1$ we have $T_v \mapsto v$ and $H_n(1) \cong \mathbb{Z}[\mathfrak{S}_n]$. For $1 \leq a < b \leq n$, let $s_{[a,b]} \in \mathfrak{S}_n$ be the *reversal* whose one-line notation is $1 \cdots (a-1)b(b-1) \cdots (a+1)a(a+2) \cdots n$. Stembridge [14] showed that for any linear function $\theta : \mathbb{Z}[\mathfrak{S}_n] \to \mathbb{Z}$, the immanant $\operatorname{Imm}_{\theta}(x)$ is TNN if for all sequences J_1, \ldots, J_r of subintervals of [1, n], we have

$$\theta(\widetilde{C}_{s_{J_1}}(1)\cdots\widetilde{C}_{s_{J_r}}(1)) \ge 0.$$
(1.2)

Furthermore, by Lindström's Lemma and its converse [2], a combinatorial interpretation of the above expression would immediately yield a combinatorial interpretation of the number $\text{Imm}_{\theta}(A)$ for A a TNN matrix. Now if $\theta_q : H_n(q) \to \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ specializes at $q^{\frac{1}{2}} = 1$ to θ , then (1.2) is clearly a consequence of the condition

$$\theta_q(\widetilde{C}_{s_{J_1}}(q)\cdots\widetilde{C}_{s_{J_r}}(q))\in\mathbb{N}[q],\tag{1.3}$$

and a combinatorial interpretation of the coefficients of the resulting polynomial would yield combinatorial interpretations of the earlier expressions. Haiman [6, Appendix] observed that (1.3) in turn follows from the condition that for all $w \in \mathfrak{S}_n$ we have

$$\theta_q(\widetilde{C}_w(q)) \in \mathbb{N}[q],\tag{1.4}$$

since products of Kazhdan-Lusztig basis elements belong to span_{$\mathbb{N}[q]$} { $\widetilde{C}_w(q) | w \in \mathfrak{S}_n$ }.

Stembridge [13] and Haiman [6] proved that for θ equal to any irreducible character χ^{λ} of \mathfrak{S}_n (χ^{λ}_q of $H_n(q)$) the evaluations (1.2) and (1.4) belong to \mathbb{N} and $\mathbb{N}[q]$, respectively. They conjectured the same [14], [6] for functions ϕ^{λ} (ϕ^{λ}_q , respectively), called *monomial traces*, related to irreducible characters by the inverse Kostka numbers. None of these results or conjectures included a combinatorial interpretation. To better understand TNN polynomials of the form (1.1), it would be desirable to solve the following problem.

Problem 1. Give combinatorial interpretations of all of the expressions in (1.2) or (1.3) when θ_q varies over all elements of any basis of the $H_n(q)$ trace space.

So far, only some special cases have such interpretations. In the case that w avoids the patterns 3412 and 4231, the Kazhdan-Lusztig basis element $\tilde{C}_w(q)$ is closely related to a product of the form appearing in (1.3). Combinatorial interpretations of the corresponding expressions (1.3) and (1.4) were given in [3] for $\theta_q \in {\chi_q^{\lambda} | \lambda \vdash n}$, and for θ_q belonging to several other bases of the $H_n(q)$ trace space, including the basis ${\epsilon_q^{\lambda} | \lambda \vdash n}$ of induced sign characters. Also in this case, combinatorial interpretations for $\theta_q = \phi_q^{\lambda}$ were given only when when λ has at most two parts, or when λ has rectangular shape and q = 1 [14, Thm. 2.8]. In the case that all permutations s_{I_1}, \ldots, s_{I_r} in (1.3) are adjacent transpositions (s_1, \ldots, s_{n-1}) , combinatorial interpretations of the corresponding expressions in (1.3) were given in [7] for $\theta_q = \epsilon_q^{\lambda}$.

We solve Problem 1 for the trace space basis $\{\epsilon_q^{\lambda} \mid \lambda \vdash n\}$ and state our solution in Section 3. In Section 2 we introduce our computational tools: the quantum matrix bial-gebra, combinatorial structures called star networks, and our general evaluation theorem which links the two.

2 The quantum matrix bialgebra and star networks

Define the *quantum matrix bialgebra* (See, e.g., [11]) $\mathcal{A} = \mathcal{A}(n,q)$ to be the associative algebra with unit 1 generated over $\mathbb{Z}[q^{\frac{1}{2}}, \bar{q^{\frac{1}{2}}}]$ by n^2 variables $x = (x_{1,1}, \ldots, x_{n,n})$, subject to the relations

$$\begin{aligned} x_{i,\ell} x_{i,k} &= q^{\frac{1}{2}} x_{i,k} x_{i,\ell}, & x_{j,k} x_{i,\ell} = x_{i,\ell} x_{j,k}, \\ x_{j,k} x_{i,k} &= q^{\frac{1}{2}} x_{i,k} x_{j,k}, & x_{j,\ell} x_{i,k} = x_{i,k} x_{j,\ell} + (q^{\frac{1}{2}} - q^{\frac{1}{2}}) x_{i,\ell} x_{j,k}, \end{aligned}$$
(2.1)

for all indices $1 \le i < j \le n$ and $1 \le k < \ell \le n$. The counit map $\varepsilon(x_{i,j}) = \delta_{i,j}$, and coproduct map $\Delta(x_{i,j}) = \sum_{k=1}^{n} x_{i,k} \otimes x_{k,j}$ give \mathcal{A} a bialgebra structure. While not a Hopf algebra, \mathcal{A} is closely related to the quantum group $\mathcal{O}_q(SL_n(\mathbb{C})) \cong \mathbb{C} \otimes \mathcal{A}/(\det_q(x) - 1)$, where

$$\det_{q}(x) = \sum_{v \in \mathfrak{S}_{n}} (-\bar{q^{\frac{1}{2}}})^{\ell(v)} x_{1,v_{1}} \cdots x_{n,v_{n}} = \sum_{v \in \mathfrak{S}_{n}} (-\bar{q^{\frac{1}{2}}})^{\ell(v)} x_{v_{1},1} \cdots x_{v_{n},n}$$
(2.2)

is the $(n \times n)$ quantum determinant of the matrix $x = (x_{i,j})$. (The second equality holds in \mathcal{A} but not in the noncommutative ring $\mathbb{Z}[q^{\frac{1}{2}}, \bar{q^{\frac{1}{2}}}]\langle x_{1,1}, \ldots, x_{n,n} \rangle$.) The antipode map of this Hopf algebra is $\mathcal{S}(x_{i,j}) = (-q^{\frac{1}{2}})^{j-i} \det_q(x_{[n] \setminus \{j\}, [n] \setminus \{i\}})$, where

$$[n] = \{1, \dots, n\}, \qquad x_{L,M} = (x_{\ell,m})_{\ell \in L, m \in M},$$
(2.3)

and $\det_q(x_{L,M})$ is defined analogously to (2.2), assuming |L| = |M|. Specializing \mathcal{A} at $q^{\frac{1}{2}} = 1$, we obtain the commutative ring $\mathbb{Z}[x_{1,1}, \ldots, x_{n,n}]$.

 \mathcal{A} has a natural $\mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ -basis $\{x_{1,1}^{a_{1,1}} \cdots x_{n,n}^{a_{n,n}} | a_{1,1}, \dots, a_{n,n} \in \mathbb{N}\}$ of monomials in which variables appear in lexicographic order, and the relations (2.1) provide an algorithm for expressing any other monomial in terms of this basis. The submodule $\mathcal{A}_{[n],[n]}$ spanned by the monomials $\{x^{u,v} = x_{u_1,v_1} \cdots x_{u_n,v_n} | u, v \in \mathfrak{S}_n\}$ has rank n! and natural basis $\{x^{e,w} | w \in \mathfrak{S}_n\}$.

To evaluate induced sign characters at elements $\widetilde{C}_{s_{J_1}}(q) \cdots \widetilde{C}_{s_{J_m}}(q)$ of $H_n(q)$, we will associate to each such element a graph called a *star network*, a related matrix *B*, and a map

 $\sigma_B : \mathcal{A}_{[n],[n]} \to \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}].$ A generating function $\operatorname{Imm}_{\epsilon_q^{\lambda}}(x) \in \mathcal{A}_{[n],[n]}$ for $\{\epsilon_q^{\lambda}(T_w) \mid w \in \mathfrak{S}_n\}$ will then allow us to compute

$$\epsilon_q^{\lambda}(\widetilde{C}_{s_{J_1}}(q)\cdots\widetilde{C}_{s_{J_m}}(q)) = \sigma_B(\operatorname{Imm}_{\epsilon_q^{\lambda}}(x))$$
(2.4)

and to combinatorially interpret the resulting polynomial.

For $1 \le a < b \le n$, let $G_{[a,b]}$ be the directed planar graph on 2n + 1 vertices defined as follows.

- 1. In a column on the left, *n* vertices are labeled *source* 1, ..., *source n*, from bottom to top; in a column on the right, *n* more vertices are labeled *sink* 1, ..., *sink n*, from bottom to top.
- 2. For i = 1, ..., a 1 and i = b + 1, ..., n a directed edge begins at source *i* and terminates at sink *i*.
- 3. An interior vertex is placed between the sources and sinks. For i = a, ..., b, a directed edge begins at source i and terminates at the interior vertex, and another directed edge begins at the interior vertex and terminates at sink i.

For a = 1, ..., n we define $G_{[a,a]}$ to be the similar directed planar graph on n sources and n sinks, with one edge from source i to sink i for i = 1, ..., n. Call each of the above graphs a *simple star network*. Define a *star network* to be the concatenation of finitely many simple star networks. We write $G \circ H$ for the network in which sink i of G is identified with source i of H, for i = 1, ..., n. In figures we will not explicitly draw vertices or show edge orientations (assumed to be from left to right). For n = 4, there are seven simple star networks: $G_{[1,4]}, G_{[2,4]}, G_{[1,3]}, G_{[3,4]}, G_{[2,3]}, G_{[1,2]}, G_{[1,1]} = \cdots = G_{[4,4]}$. Drawing these and two more star networks $G_{[1,2]} \circ G_{[2,4]} \circ G_{[1,2]}$ and $G_{[2,4]} \circ G_{[1,3]}$, we have

Let $\pi = (\pi_1, ..., \pi_n)$ be a sequence of source-to-sink paths in a star network *G*. We call π a *path family* if there exists a permutation $w = w_1 \cdots w_n \in \mathfrak{S}_n$ such that π_i is a path from source *i* to sink w_i . In this case, we say more specifically that π has *type w*. We say that the path family *covers G* if it contains every edge exactly once.

One can enhance a star network by associating to each edge a *weight* belonging to some ring *R*, and by defining the *weight of a path* to be the product of its edge weights. If *R* is noncommutative, then one multiplies weights in the order that the corresponding edges appear in the path. For a *family* $\pi = (\pi_1, ..., \pi_n)$ of *n* paths in a planar network, one defines wgt(π) = wgt(π_1) ··· wgt(π_n). The (*weighted*) path matrix $B = B(G) = (b_{i,j})$ of *G* is defined by letting $b_{i,j}$ be the sum of weights of all paths in *G* from source *i* to

sink *j*. Thus the product $b_{1,w_1} \cdots b_{n,w_n}$ is equal to the sum of weights of all path families of type *w* in *G* (covering *G* or not).

Assigning weights to the edges of $G = G_{J_1} \circ \cdots \circ G_{J_m}$ can aid in the evaluation of a linear function $\theta_q : H_n(q) \to \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ at $\widetilde{C}_{s_{J_1}}(q) \cdots \widetilde{C}_{s_{J_m}}(q)$ by relating this evaluation to the generating function

$$\operatorname{Imm}_{\theta_q}(x) := \sum_{w \in \mathfrak{S}_n} q^{\frac{-\ell(w)}{2}} \theta_q(T_w) x_{1,w_1} \cdots x_{n,w_n} \in \mathcal{A}(n,q),$$
(2.6)

which specializes at $q^{\frac{1}{2}} = 1$ to the generating function (1.1) in $\mathbb{Z}[x]$. In particular, write $G_{J_p} = G_{[i_p,j_p]}$ and let $\{z_{h,p,k} | 1 \le p \le m; i_p \le h \le j_p; 1 \le k \le 2\}$ be indeterminate weights satisfying

$$z_{h_2,p_2,k_2} z_{h_1,p_1,k_1} = \begin{cases} z_{h_1,p_1,k_1} z_{h_2,p_2,k_2} & \text{if } p_1 \neq p_2, \text{ or } k_1 \neq k_2, \\ q^{\frac{1}{2}} z_{h_1,p_1,k_1} z_{h_2,p_2,k_2} & \text{if } p_1 = p_2, k_1 = k_2, \text{ and } h_1 < h_2. \end{cases}$$
(2.7)

We assign weights to the edges of G_{I_n} as follows.

- 1. Assign weight 1 to the $n j_p + i_p 1$ edges not incident upon the central vertex.
- 2. Assign weights $z_{i_p,p,1}, z_{i_p+1,p,1}, \ldots, z_{j_p,p,1}$, to the $j_p i_p + 1$ edges entering the central vertex, from bottom to top.
- 3. Assign weights $z_{i_p,p,2}, z_{i_p+1,p,2}, \ldots, z_{j_p,p,2}$, to the $j_p i_p + 1$ edges leaving the central vertex, from bottom to top.

Let Z_G be the quotient of the noncommutative ring

$$\mathbb{Z}[q^{\frac{1}{2}}, \bar{q^{\frac{1}{2}}}]\langle z_{h_p,p,k} | p = 1, \dots, m; h_p = i_p, \dots, j_p; k = 1, 2 \rangle$$

modulo the ideal generated by the relations (2.7), and assume that $q^{\frac{1}{2}}$, $q^{\frac{1}{2}}$ commute with all other indeterminates. Let z_G be the product of all indeterminates $z_{h_p,p,k}$, in lexicographic order, and for $f \in Z_G$, let $[z_G]f$ denote the coefficient of z_G in f. For example, the star network $G_{[2,4]} \circ G_{[1,3]}$ has weighting

and monomial $z_G = z_{1,2,1} z_{1,2,2} z_{2,1,1} z_{2,2,2} z_{2,2,1} z_{2,2,2} z_{3,1,1} z_{3,1,2} z_{3,2,1} z_{3,2,2} z_{4,1,1} z_{4,1,2}$.

To complete the description of (2.4), we define a map which allows us to evaluate a linear functional θ_q on certain $H_n(q)$ elements via the corresponding immanant $\operatorname{Imm}_{\theta_q}(x) \in \mathcal{A}(n,q)$. Given matrix $B \in \operatorname{Mat}_{n \times n}(Z_G)$, let σ_B be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ -linear map

$$\sigma_B: \mathcal{A}_{[n],[n]} \to \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$$

$$x_{1,v_1} \cdots x_{n,v_n} \mapsto [z_G] b_{1,v_1} \cdots b_{n,v_n},$$
(2.9)

where $[z_G]b_{1,v_1}\cdots b_{n,v_n}$ denotes the coefficient of z_G in $b_{1,v_1}\cdots b_{n,v_n}$, taken after $b_{1,v_1}\cdots b_{n,v_n}$ is expanded in the lexicographic basis of Z_G . Note that the "substitution" $x_{i,j} \mapsto b_{i,j}$ is performed only for monomials of the form $x^{e,v}$ in $\mathcal{A}_{[n],[n]}$: we define $\sigma_B(x^{u,w})$ by first expanding $x^{u,w}$ in the basis $\{x^{e,v} | v \in \mathfrak{S}_n\}$, and *then* performing the substitution. Now we have the following immanant evaluation identity for star networks (cf. [7, Thm. 3.7]).

Theorem 1. Assign weights to the edges of $G = G_{J_1} \circ \cdots \circ G_{J_m}$ as above and let B be the resulting path matrix. Then for any linear function $\theta_q : H_n(q) \to \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ we have

$$\theta_q(\widetilde{C}_{s_{J_1}}(q)\cdots\widetilde{C}_{s_{J_m}}(q)) = [z_G]\sigma_B(\operatorname{Imm}_{\theta_q}(x)).$$
(2.10)

Proof. Omitted.

To illustrate, we let n = 4 and consider the element

$$\widetilde{C}_{s_{[2,4]}}(q)\widetilde{C}_{s_{[1,3]}}(q) = (1+q)\sum_{w\leq 3421} T_w$$
(2.11)

of $H_4(q)$. Its star network (2.8) has weighted path matrix

$$B = \begin{bmatrix} z_{1,1,1}z_{1,2,2} & z_{1,2,1}z_{2,2,2} & z_{1,2,1}z_{3,2,2} & 0\\ z_{2,1,1}(z_D + z_U)z_{1,2,2} & z_{2,1,1}(z_D + z_U)z_{2,2,2} & z_{2,1,1}(z_D + z_U)z_{3,2,2} & z_{2,1,1}z_{4,1,2}\\ z_{3,1,1}(z_D + z_U)z_{1,2,2} & z_{3,1,1}(z_D + z_U)z_{2,2,2} & z_{3,1,1}(z_D + z_U)z_{3,2,2} & z_{3,1,1}z_{4,1,2}\\ z_{4,1,1}(z_D + z_U)z_{1,2,2} & z_{4,1,1}(z_D + z_U)z_{2,2,2} & z_{4,1,1}(z_D + z_U)z_{3,2,2} & z_{4,1,1}z_{4,1,2} \end{bmatrix},$$
(2.12)

where $z_D = z_{2,1,2}z_{2,2,1}$, $z_U = z_{3,1,2}z_{3,2,1}$. Now consider the linear function $\theta_q : H_4(q) \rightarrow \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ defined by $\theta_q(T_{3412}) = 1$, $\theta_q(T_{4312}) = -1$, and $\theta_q(T_w) = 0$ otherwise. Computing the left-hand side of (2.10) we have

$$\theta_q(\widetilde{C}_{s_{[2,4]}}(q)\widetilde{C}_{s_{[1,3]}}(q)) = (1+q)(1) + (0)(-1) = 1+q,$$
(2.13)

since T_{3412} appears in (2.11) with coefficient 1 + q and T_{4312} appears with coefficient 0. To compute the right-hand side of (2.10), we begin by writing

$$\operatorname{Imm}_{\theta_q}(x) = q^{-2} x_{1,3} x_{2,4} x_{3,1} x_{4,2} - q^{-\frac{5}{2}} x_{1,4} x_{2,3} x_{3,1} x_{4,2}.$$

Substituting $b_{i,j}$ for $x_{i,j}$, we have $q^{\frac{5}{2}}b_{1,4}b_{2,3}b_{3,1}b_{4,2} = 0$ and

$$q^{-2}b_{1,3}b_{2,4}b_{3,1}b_{4,2} = q^{-2}z_{1,2,1}z_{3,2,2}z_{2,1,1}z_{4,1,2}z_{3,1,1}(z_D + z_U)z_{1,2,2}z_{4,1,1}(z_D + z_U)z_{2,2,2}.$$
 (2.14)

Now since z_D^2 and z_U^2 are not square-free, we ignore terms in the expansion containing these. Since we have

$$z_{3,2,2}z_{4,1,2}z_D = q^{\frac{1}{2}}z_D z_{3,2,2}z_{4,1,2}, \qquad z_{3,2,2}z_{1,2,2} = q^{\frac{1}{2}}z_{1,2,2}z_{3,2,2}, \qquad z_U z_D = q z_D z_U,$$

$$z_{3,2,2}z_{4,1,2}z_U = q^{\frac{1}{2}}z_U z_{3,2,2}z_{4,1,2}, \qquad z_{3,2,2}z_{2,2,2} = q^{\frac{1}{2}}z_{2,2,2}z_{3,2,2},$$

we express the nonzero square-free monomials of (2.14) in lexicographic order to obtain

$$q^{-2}(q^2+q^3)z_{1,2,1}z_{1,2,2}z_{2,1,1}z_Dz_{2,2,2}z_{3,1,1}z_Uz_{3,2,2}z_{4,1,1}z_{4,1,2} = (1+q)z_G,$$

which matches (2.13).

An important property of the map σ_B is that its evaluation at natural basis elements of $\mathcal{A}_{[n],[n]}$ is closely related to coefficients in the natural expansion of $\widetilde{C}_{s_{I_1}}(q) \cdots \widetilde{C}_{s_{I_m}}(q)$.

Proposition 1. Let B be the weighted path matrix of star network $G = G_{J_1} \circ \cdots \circ G_{J_m}$, and fix $w \in \mathfrak{S}_n$. Then $\sigma_B(x^{e,w})$ is equal to $q^{\frac{\ell(w)}{2}}$ times the coefficient of T_w in the product $\widetilde{C}_{s_{J_1}}(q) \cdots \widetilde{C}_{s_{J_m}}(q)$.

Proof. Omitted.

3 *G*-tableaux and evaluation of induced sign characters

Theorem 1 provides half of the solution to the problem of evaluating the left-hand side of (2.4). The other half is a combinatorial interpretation of the right-hand-side of (2.10), which is a linear combination of expressions of the form $\sigma_B(x^{u,w}) \in \mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$. To combinatorially interpret such evaluations, we arrange the paths of a path family π covering a star network *G* into a (French) Young diagram, using each path exactly once. We call the resulting structure a *G-tableau*, or more specifically a π -tableau. If type(π) = w, we say that the tableau has type w. For example, the following path family π covering the star network of $\widetilde{C}_{s_{[1,2]}}(q)\widetilde{C}_{s_{[2,3]}}(q)\widetilde{C}_{s_{[1,2]}}(q)$ yields six π -tableaux of shape 21 and type 213:

Given a π -tableau U, we define (integer) Young tableaux L(U), R(U) by replacing each path by its source index and sink index, respectively. For example, if U is the first π -tableau in (3.1), then we have

$$L(U) = \begin{bmatrix} 3 \\ 1 & 2 \end{bmatrix}, \quad R(U) = \begin{bmatrix} 3 \\ 2 & 1 \end{bmatrix}.$$

It is easy to see that given two Young tableaux *P*, *Q* of the same shape, there is at most one π -tableau *U* satisfying L(U) = P, R(U) = Q.

We also define several statistics on *G*-tableaux. Suppose that two paths π_a , π_b in a star network $G = G_{J_1} \circ \cdots \circ G_{J_m}$ pass through the central vertex of some simple star network G_{J_p} . We call the triple (p, π_a, π_b) a *crossing* of π if the two paths cross there, and a *noncrossing* otherwise. Let *U* be any π -tableau. Define $c(U) = c(\pi)$ to be the number of crossings of π . Define INVNC(*U*), the number of *inverted noncrossings* of *U*, to be the number of noncrossings (p, π_a, π_b) of π such that π_a, π_b intersect at the central vertex of G_{J_p} with π_b above π_a ,

$$\pi_b$$
, (3.2)

and π_b appearing in an earlier column of U than π_a (whether or not b > a). For example, each tableau U in (3.1) satisfies c(U) = 1 because $c(\pi) = 1$. The inverted noncrossings in these tableaux are triples $(1, \pi_1, \pi_2)$ with π_2 in an earlier column than π_1 , or $(2, \pi_2, \pi_3)$ with π_3 in an earlier column than π_2 . The numbers of inverted noncrossings for the six tableaux are 1,0,0,0,1,1, respectively.

Combining the above tableau statistics, we may combinatorially interpret $\sigma_B(x^{u,w})$ in terms of tableaux of shape (n) (i.e., consisting of a single row). A fixed path family π of type v and a permutation $u \in \mathfrak{S}_n$ determine a path tableau $U(\pi, u, uv) = \pi_{u_1} \cdots \pi_{u_n}$ which satisfies $L(U(\pi, u, uv)) = u_1 \cdots u_n$ and $R(U(\pi, u, uv)) = (uv)_1 \cdots (uv)_n$. The inclusion of uv in our notation $U(\pi, u, uv)$ is superfluous but makes clear the ordering of sinks as they appear in the tableau.

Proposition 2. Let star network G have weighted path matrix B. For $u, w \in \mathfrak{S}_n$ we have

$$\sigma_B(x^{u,w}) = \sum_{\pi} q^{\frac{c(\pi)}{2}} q^{\text{INVNC}(U)}, \qquad (3.3)$$

where the sum is over path families π of type $u^{-1}w$ covering G, and $U = U(\pi, u, w)$ is the unique π -tableau of shape (n) satisfying $L(U) = u_1 \cdots u_n$, $R(U) = w_1 \cdots w_n$.

Proof. Omitted.

The special case u = e of Proposition 2 yields a proof of a generalization of Deodhar's defect formula [4, Prop. 3.5] for coefficients of the expression $(1 + T_{s_{i_1}}) \cdots (1 + T_{s_{i_m}})$. Let $\pi = (\pi_1, \ldots, \pi_n)$ be a path family covering a star network $G = G_{J_1} \circ \cdots \circ G_{J_m}$. If two paths π_i , π_j intersect at the central vertex of G_{J_p} , call the intersection *defective* if the paths have previously crossed an odd number of times (i.e., in $G_{J_1}, \ldots, G_{J_{p-1}}$). Define $D(\pi)$, the number of *defects* of π , to be the number of triples (p, π_i, π_j) such that π_i and π_j intersect defectively at the central vertex of G_{I_p} .

Total Nonnegativity and Evaluations of Hecke Algebra Characters

Corollary 1. The coefficients in the expansion $\widetilde{C}_{s_{J_1}}(q) \cdots \widetilde{C}_{s_{J_m}}(q) = \sum_w a_w T_w$ are

$$a_w = \sum_{\pi} q^{\mathbf{D}(\pi)},$$

where the sum is over all path families of type w which cover the star network $G_{I_1} \circ \cdots \circ G_{I_m}$.

Proof. Omitted.

By Theorem 1, the map σ_B (2.9) can be used to evaluate $\epsilon_q^{\lambda}(\widetilde{C}_{s_{f_1}}(q)\cdots \widetilde{C}_{s_{f_m}}(q))$ when one has a simple expression for the generating function $\text{Imm}_{\epsilon_q^{\lambda}}(x)$. Such an expression was given by Konvalinka and the second author in [9, Thm. 5.4]:

$$\operatorname{Imm}_{\epsilon_q^{\lambda}}(x) = \sum_{I} \operatorname{det}_q(x_{I_1, I_1}) \cdots \operatorname{det}_q(x_{I_r, I_r}),$$
(3.4)

where det_{*q*} and $x_{L,M}$ are defined as in Section 2, and the sum is over all ordered set partitions $I = (I_1, ..., I_r)$ of [n] satisfying $|I_j| = \lambda_j$. We will say that such an ordered set partition has *type* λ .

To evaluate $\sigma_B(\operatorname{Imm}_{\epsilon_q^{\lambda}}(x))$, we expand each term on the right-hand side of (3.4) in a monomial basis $\{x^{u,v} | v \in \mathfrak{S}_n\}$ of $\mathcal{A}_{[n],[n]}$, where u = u(I) is the concatenation of the r strictly increasing subwords

$$u_1 \cdots u_{\lambda_1}, \quad u_{\lambda_1+1} \cdots u_{\lambda_1+\lambda_2}, \quad u_{\lambda_1+\lambda_2+1} \cdots u_{\lambda_1+\lambda_2+\lambda_3}, \quad \dots, \quad u_{n-\lambda_r+1} \cdots u_n$$
(3.5)

formed by listing the elements of each block I_1, \ldots, I_r in increasing order. As I varies over all ordered set partitions of [n] of type λ , the permutations u(I) vary over the Bruhat-minimal representatives \mathfrak{S}_{λ}^- of cosets $\mathfrak{S}_{\lambda}u$, where \mathfrak{S}_{λ} is the *Young subgroup* of \mathfrak{S}_n generated by

$$\{s_1,\ldots,s_{n-1}\}$$
 \smallsetminus $\{s_{\lambda_1},s_{\lambda_1+\lambda_2},s_{\lambda_1+\lambda_2+\lambda_3},\ldots,s_{n-\lambda_r}\}$

Expanding each term on the right-hand side of (3.4) and applying σ_B we have

$$\sigma_B(\det_q(x_{I_1,I_1})\cdots\det_q(x_{I_r,I_r})) = \sum_{y\in\mathfrak{S}_{\lambda}} (-1)^{\ell(y)} \bar{q}^{\frac{\ell(y)}{2}} \sigma_B(x^{u(I),yu(I)}).$$
(3.6)

To combinatorially interpret the sum in (3.6) we may apply Proposition 2 and compute certain statistics for tableaux belonging to the set

$$\mathcal{U}_I = \mathcal{U}_I(G) = \{ U(\pi, u, yu) \mid \pi \text{ covers } G, u = u(I), y \in \mathfrak{S}_{\lambda} \}.$$

Note that our restriction on *y* forces the sink indices of paths in components

$$(\lambda_1 + \dots + \lambda_{k-1} + 1), \dots, (\lambda_1 + \dots + \lambda_k)$$
(3.7)

of $U(\pi, u, yu)$ to be a permutation of the source indices of the same paths.

On the other hand, the sum in (3.6) has both positive and negative signs. We obtain a subtraction-free expression for the sum by applying a sign-reversing involution to the tableaux in each set U_I . Tableaux which remain after cancellation are in bijection with *G*tableaux in which paths in a single column have increasing indices and do not intersect. We call such tableaux *column-strict*.

Theorem 2. Let $G = G_{I_1} \circ \cdots \circ G_{I_m}$. Then for $\lambda \vdash n$ we have

$$\epsilon_q^{\lambda}(\widetilde{C}_{s_{J_1}}(q)\cdots\widetilde{C}_{s_{J_m}}(q)) = \sum_W q^{\mathrm{INVNC}(W) + \mathrm{C}(W)/2},\tag{3.8}$$

where the sum is over all column-strict G-tableaux of type e and shape λ^{\dagger} .

Proof. (Idea) Let *B* be the path matrix of *G*. Combining the Theorems 1 and [9, Thm. 5.4] (i.e., (3.4)) with the identity (3.6), we see that the left-hand side of (3.8) is

$$\sigma_B(\operatorname{Imm}_{\epsilon_q^{\lambda}}(x)) = \sum_{I} \sigma_B(\operatorname{det}_q(x_{I_1,I_1}) \cdots \operatorname{det}_q(x_{I_r,I_r}))$$

$$= \sum_{I} \sum_{y \in \mathfrak{S}_{\lambda}} (-1)^{\ell(y)} q^{\frac{-\ell(y)}{2}} \sigma_B(x^{u(I),yu(I)}),$$
(3.9)

where the first two sums are over ordered set partitions $I = (I_1, ..., I_r)$ of [n] of type λ . Fixing one such partition I and writing u = u(I), we may use Proposition 2 and other lemmas to express the sum over elements of \mathfrak{S}_{λ} as

$$\sum_{y \in \mathfrak{S}_{\lambda}} \sum_{\pi} (-1)^{\ell(y)} q^{\frac{-\ell(y)}{2}} q^{\frac{c(\pi)}{2}} q^{\mathrm{INVNC}(U(\pi, u, yu))} = \sum_{y \in \mathfrak{S}_{\lambda}} \sum_{\pi} (-1)^{\ell(y)} q^{\frac{-\ell(y)}{2}} q^{\frac{c(\pi)}{2}} q^{\mathrm{INVNC}(W) + \mathrm{CDNC}(W)},$$
(3.10)

where the inner sums are over path families π of type $u^{-1}yu$ which cover *G*, and where $W = W(\pi, u, yu)$ is a related tableau of shape λ^{T} , and CDNC is a statistic related to defects and noncrossings.

A sign reversing involution eliminates those tableaux *W* which are not column-strict, and another lemma allows us to interpret the given powers of *q* in terms of crossings and inverted noncrossings in the remaining column-strict tableaux. Thus the three expressions in (3.9) are equal to the right-hand side of (3.8).

To illustrate the theorem, we compute $\epsilon_q^{211}(\widetilde{C}_{s_{[1,2]}}(q)\widetilde{C}_{s_{[1,2]}}(q))$ using the star network $G = G_{[1,2]} \circ G_{[2,4]} \circ G_{[1,2]}$ pictured in (2.5). There are two path families of type *e* which cover *G*, and four column-strict *G*-tableau of shape $211^{\top} = 31$ for each:

$$\begin{array}{c} \pi_{4} & \cdots & \pi_{4} \\ \pi_{3} & \cdots & \pi_{n} \\ \pi_{2} & & \pi_{1} \\ \pi_{1} & & \pi_{1} \\ \pi_{1} & & \pi_{2} \\ \pi_{1} & & \pi_{1} \\ \pi_{1} & & \pi_{2} \\ \pi_{2} & & \pi_{2} \\ \pi_{1} & & \pi_{2} \\ \pi_{2} & & \pi_{2} \\ \pi_{1} & & \pi_{2} \\ \pi$$

$$\begin{array}{c} \rho_{4} & \cdots & \rho_{4} \\ \rho_{3} & \cdots & \rho_{2} \\ \rho_{1} & \rho_{2} \\ \rho_{1} & \rho_{2} \end{array}, \quad U_{\rho}^{(1)} = \frac{\rho_{3}}{\rho_{2} \rho_{1} \rho_{4}}, \quad U_{\rho}^{(2)} = \frac{\rho_{3}}{\rho_{2} \rho_{4} \rho_{1}}, \quad U_{\rho}^{(3)} = \frac{\rho_{4}}{\rho_{2} \rho_{1} \rho_{3}}, \quad U_{\rho}^{(4)} = \frac{\rho_{4}}{\rho_{2} \rho_{3} \rho_{1}}. \end{array}$$

The path family π has no crossings, so tableau $U_{\pi}^{(i)}$ contributes $q^{\text{INVNC}(U_{\pi}^{(i)})}q^{c(U_{\pi}^{(i)})/2} = q^{\text{INVNC}(U_{\pi}^{(i)})}$ for all *i*. We have one noncrossing for each of the pairs (π_2, π_3) , (π_2, π_4) and (π_3, π_4) and two for the pair (π_1, π_2) . Counting only the inverted noncrossings, such as π_2 and π_3 in $U_{\pi}^{(1)}$, we find the contributions from $U_{\pi}^{(1)}, \ldots, U_{\pi}^{(4)}$ are q, q^2, q^2, q^3 , respectively. The tableaux for the path family ρ each have two crossings, and one noncrossing for each of the pairs (ρ_1, ρ_3) , (ρ_1, ρ_4) and (ρ_3, ρ_4) . Adding the contributions together we find the contributions for $U_{\rho}^{(1)}, \ldots, U_{\rho}^{(4)}$ are $q^1q^{2/2} = q^2$, $q^2q^{2/2} = q^3$, $q^2q^{2/2} = q^3$ and $q^3q^{2/2} = q^4$ respectively. Hence we have $\epsilon_q^{211}(\tilde{C}_{s_{[1,2]}}(q)\tilde{C}_{s_{[1,2]}}(q)) = q + 3q^2 + 3q^3 + q^4$.

Theorem 2 allows one to combinatorially interpret evaluations of ϵ_q^{λ} at (multiples of) certain elements $\widetilde{C}_w(q)$ of the Kazhdan-Lusztig basis of $H_n(q)$. In particular, for some elements $\widetilde{C}_w(q)$ there exists a polynomial $g_w(q)$ such that we have

$$g_w(q)\widetilde{C}_w(q) = \widetilde{C}_{s_{J_1}}(q)\cdots\widetilde{C}_{s_{J_m}}(q)$$
(3.11)

for some sequence s_{J_1}, \ldots, s_{J_m} of reversals. Such permutations include all 3412-avoiding, 4231-avoiding permutations, all of \mathfrak{S}_4 (even 4231 and 3412), all of \mathfrak{S}_5 except 45312, and all 321-*hexagon-avoiding* permutations. (See [1].)

Corollary 2. Suppose that $\widetilde{C}_w(q)$ satisfies a factorization of the form (3.11) and define $G = G_{I_1} \circ \cdots \circ G_{I_m}$. Then we have

$$\epsilon_q^{\lambda}(\widetilde{C}_w(q)) = \frac{1}{g_w(q)} \sum_{U} q^{\text{INVNC}(U) + c(U)/2}, \qquad (3.12)$$

where the sum is over all column-strict G-tableaux of type e and shape λ^{T} .

It would be interesting to characterize the factorizations (3.11) [12, Quest. 4.5].

References

- S. Billey and G. Warrington. "Kazhdan–Lusztig polynomials for 321-hexagon-avoiding permutations". J. Algebraic Combin. 13.2 (2001), pp. 111–136. Link.
- F. Brenti. "Combinatorics and total positivity". J. Combin. Theory Ser. A 71.2 (1995), pp. 175–218. Link.

- [3] S. Clearman, M. Hyatt, B. Shelton, and M. Skandera. "Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements". *Electron. J. Combin.* 23.2 (2016), Paper P2.7, 56 pp. Link.
- [4] V. Deodhar. "A combinatorial setting for questions in Kazhdan–Lusztig theory". *Geom. Dedicata* **36**.1 (1990), pp. 95–119. Link.
- [5] S. Fomin and A. Zelevinsky. "Total positivity: tests and parametrizations". *Math. Intell.* 22.1 (2000), pp. 23–33. Link.
- [6] M. Haiman. "Hecke algebra characters and immanant conjectures". J. Amer. Math. Soc. 6.3 (1993), pp. 569–595. Link.
- [7] R. Kaliszewski, J. Lambright, and M. Skandera. "Bases of the quantum matrix bialgebra and induced sign characters of the Hecke algebra". To appear in *J. Algebr. Comb.* 2018. arXiv:1802.04856.
- [8] D. Kazhdan and G. Lusztig. "Representations of Coxeter groups and Hecke algebras". *Invent. Math.* 53 (1979), pp. 165–184. Link.
- [9] M. Konvalinka and M. Skandera. "Generating functions for Hecke algebra characters". *Canad. J. Math.* **63**.2 (2011), pp. 413–435. Link.
- [10] G. Lusztig. "Total positivity in reductive groups". *Lie Theory and Geometry: in Honor of Bertram Kostant*. Progress in Mathematics 123. Birkhäuser, Boston, 1994, pp. 531–568.
- [11] Y. Manin. *Quantum Groups and Noncommutative Ceometry*. Université de Montréal Centre de Recherches Mathématiques, Montreal, QC, 1988.
- [12] M. Skandera. "On the dual canonical and Kazhdan–Lusztig bases and 3412, 4231-avoiding permutations". *J. Pure Appl. Algebra* **212**.5 (2008), pp. 1086–1104. Link.
- [13] J. Stembridge. "Immanants of Totally Positive Matrices are Nonnegative". Bull. London Math. Soc. 23.5 (1991), pp. 422–428. Link.
- [14] J. Stembridge. "Some conjectures for immanants". Can. J. Math. 44.5 (1992), pp. 1079–1099. Link.