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Abstract. Let S[i,j] be the subgroup of the symmetric group Sn generated by adjacent
transpositions (i, i + 1), . . . , (j− 1, j). We give a combinatorial rule for evaluating in-
duced sign characters of the type A Hecke algebra Hn(q) at all elements of the form
∑w∈S[i,j]

Tw and at all products of such elements. By a result of Stembridge, our result
connects Hn(q) trace evaluation to immanants of totally nonnegative matrices.

Keywords: Hecke algebra trace, total nonnegativity

1 Introduction

Related to the study of totally nonnegative matrices, those matrices having only nonneg-
ative minors, is the study of polynomials p(x1,1, . . . , xn,n) satisfying p(a1,1, . . . , an,n) ≥ 0
for every totally nonnegative n × n matrix A = (ai,j). We call these totally nonnega-
tive (TNN) polynomials. In particular, work of Lusztig [10] implies that if we view
Z[x] := Z[x1,1, . . . , xn,n] as a free Z-module, then certain elements which are related to
the dual canonical basis of the quantum group Oq(SLn(C)) are TNN polynomials.

In practice, it is sometimes possible to use cluster algebras and a computer to demon-
strate that a polynomial is TNN by expressing it as a subtraction-free rational expression
in matrix minors [5]. On the other hand, no simple characterization of TNN polynomi-
als is known. To improve our understanding of TNN polynomials, one might begin by
investigating the immanant subspace spanZ{x1,w1 · · · xn,wn |w ∈ Sn} of Z[x], where Sn is
the symmetric group, especially the generating functions

Immθ(x) := ∑
w∈Sn

θ(w)x1,w1 · · · xn,wn (1.1)

for class functions θ : Sn → Z. Or, since some published results concern Hecke algebra
traces, linear functions θq : Hn(q) → Z[q

1
2 , q̄

1
2 ] satisfying θq(gh) = θq(hg), one might

investigate these.
In particular, let {C̃w(q) |w ∈ Sn} be the (modified, signless) Kazhdan-Lusztig basis of

Hn(q), defined by

C̃w(q) := q
`(w)

2 C′w(q) = ∑
v≤w

Pv,w(q)Tv,
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where {Tw |w ∈ Sn} is the natural basis of Hn(q), {Pv,w(q) | v, w ∈ Sn} are the Kazhdan-
Lusztig polynomials [8], and ≤ denotes the Bruhat order. Specializing at q

1
2 = 1 we have

Tv 7→ v and Hn(1) ∼= Z[Sn]. For 1 ≤ a < b ≤ n, let s[a,b] ∈ Sn be the reversal whose
one-line notation is 1 · · · (a− 1)b(b− 1) · · · (a + 1)a(a + 2) · · · n. Stembridge [14] showed
that for any linear function θ : Z[Sn] → Z, the immanant Immθ(x) is TNN if for all
sequences J1, . . . , Jr of subintervals of [1, n], we have

θ(C̃sJ1
(1) · · · C̃sJr

(1)) ≥ 0. (1.2)

Furthermore, by Lindström’s Lemma and its converse [2], a combinatorial interpretation
of the above expression would immediately yield a combinatorial interpretation of the
number Immθ(A) for A a TNN matrix. Now if θq : Hn(q) → Z[q

1
2 , q̄

1
2 ] specializes at

q
1
2 = 1 to θ, then (1.2) is clearly a consequence of the condition

θq(C̃sJ1
(q) · · · C̃sJr

(q)) ∈N[q], (1.3)

and a combinatorial interpretation of the coefficients of the resulting polynomial would
yield combinatorial interpretations of the earlier expressions. Haiman [6, Appendix]
observed that (1.3) in turn follows from the condition that for all w ∈ Sn we have

θq(C̃w(q)) ∈N[q], (1.4)

since products of Kazhdan-Lusztig basis elements belong to spanN[q]{C̃w(q) |w ∈ Sn}.
Stembridge [13] and Haiman [6] proved that for θ equal to any irreducible character

χλ of Sn (χλ
q of Hn(q)) the evaluations (1.2) and (1.4) belong to N and N[q], respectively.

They conjectured the same [14], [6] for functions φλ (φλ
q , respectively), called monomial

traces, related to irreducible characters by the inverse Kostka numbers. None of these
results or conjectures included a combinatorial interpretation. To better understand TNN
polynomials of the form (1.1), it would be desirable to solve the following problem.

Problem 1. Give combinatorial interpretations of all of the expressions in (1.2) or (1.3) when θq
varies over all elements of any basis of the Hn(q) trace space.

So far, only some special cases have such interpretations. In the case that w avoids
the patterns 3412 and 4231, the Kazhdan-Lusztig basis element C̃w(q) is closely related
to a product of the form appearing in (1.3). Combinatorial interpretations of the corre-
sponding expressions (1.3) and (1.4) were given in [3] for θq ∈ {χλ

q | λ ` n}, and for θq

belonging to several other bases of the Hn(q) trace space, including the basis {ελ
q | λ ` n}

of induced sign characters. Also in this case, combinatorial interpretations for θq = φλ
q

were given only when when λ has at most two parts, or when λ has rectangular shape
and q = 1 [14, Thm. 2.8]. In the case that all permutations sJ1 , . . . , sJr in (1.3) are adjacent
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transpositions (s1, . . . , sn−1), combinatorial interpretations of the corresponding expres-
sions in (1.3) were given in [7] for θq = ελ

q .
We solve Problem 1 for the trace space basis {ελ

q | λ ` n} and state our solution in
Section 3. In Section 2 we introduce our computational tools: the quantum matrix bial-
gebra, combinatorial structures called star networks, and our general evaluation theorem
which links the two.

2 The quantum matrix bialgebra and star networks

Define the quantum matrix bialgebra (See, e.g., [11]) A = A(n, q) to be the associative
algebra with unit 1 generated over Z[q

1
2 , q̄

1
2 ] by n2 variables x = (x1,1, . . . , xn,n), subject

to the relations

xi,`xi,k = q
1
2 xi,kxi,`, xj,kxi,` = xi,`xj,k,

xj,kxi,k = q
1
2 xi,kxj,k, xj,`xi,k = xi,kxj,` + (q

1
2 − q̄

1
2 )xi,`xj,k,

(2.1)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. The counit map ε(xi,j) = δi,j, and
coproduct map ∆(xi,j) = ∑n

k=1 xi,k ⊗ xk,j give A a bialgebra structure. While not a Hopf
algebra, A is closely related to the quantum group Oq(SLn(C)) ∼= C⊗A/(detq(x)− 1),
where

detq(x) =
def

∑
v∈Sn

(−q̄
1
2 )`(v)x1,v1 · · · xn,vn = ∑

v∈Sn

(−q̄
1
2 )`(v)xv1,1 · · · xvn,n (2.2)

is the (n× n) quantum determinant of the matrix x = (xi,j). (The second equality holds

in A but not in the noncommutative ring Z[q
1
2 , q̄

1
2 ]〈x1,1, . . . , xn,n〉.) The antipode map of

this Hopf algebra is S(xi,j) = (−q
1
2 )j−idetq(x[n]r{j},[n]r{i}), where

[n] =
def
{1, . . . , n}, xL,M =

def
(x`,m)`∈L,m∈M, (2.3)

and detq(xL,M) is defined analogously to (2.2), assuming |L| = |M|. Specializing A at
q

1
2 = 1, we obtain the commutative ring Z[x1,1, . . . , xn,n].
A has a natural Z[q

1
2 , q̄

1
2 ]-basis {xa1,1

1,1 · · · x
an,n
n,n | a1,1, . . . , an,n ∈ N} of monomials in

which variables appear in lexicographic order, and the relations (2.1) provide an algo-
rithm for expressing any other monomial in terms of this basis. The submodule A[n],[n]
spanned by the monomials {xu,v =

def
xu1,v1 · · · xun,vn | u, v ∈ Sn} has rank n! and natural

basis {xe,w |w ∈ Sn}.
To evaluate induced sign characters at elements C̃sJ1

(q) · · · C̃sJm
(q) of Hn(q), we will

associate to each such element a graph called a star network, a related matrix B, and a map
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σB : A[n],[n] → Z[q
1
2 , q̄

1
2 ]. A generating function Immελ

q
(x) ∈ A[n],[n] for {ελ

q (Tw) |w ∈ Sn}
will then allow us to compute

ελ
q (C̃sJ1

(q) · · · C̃sJm
(q)) = σB(Immελ

q
(x)) (2.4)

and to combinatorially interpret the resulting polynomial.
For 1 ≤ a < b ≤ n, let G[a,b] be the directed planar graph on 2n + 1 vertices defined

as follows.

1. In a column on the left, n vertices are labeled source 1 , . . . , source n, from bottom to
top; in a column on the right, n more vertices are labeled sink 1 , . . . , sink n, from
bottom to top.

2. For i = 1, . . . , a − 1 and i = b + 1, . . . , n a directed edge begins at source i and
terminates at sink i.

3. An interior vertex is placed between the sources and sinks. For i = a, . . . , b, a
directed edge begins at source i and terminates at the interior vertex, and another
directed edge begins at the interior vertex and terminates at sink i.

For a = 1, . . . , n we define G[a,a] to be the similar directed planar graph on n sources and
n sinks, with one edge from source i to sink i for i = 1, . . . , n. Call each of the above
graphs a simple star network. Define a star network to be the concatenation of finitely many
simple star networks. We write G ◦ H for the network in which sink i of G is identified
with source i of H, for i = 1, . . . , n. In figures we will not explicitly draw vertices or
show edge orientations (assumed to be from left to right). For n = 4, there are seven
simple star networks: G[1,4], G[2,4], G[1,3], G[3,4], G[2,3], G[1,2], G[1,1] = · · · = G[4,4]. Drawing
these and two more star networks G[1,2] ◦ G[2,4] ◦ G[1,2] and G[2,4] ◦ G[1,3], we have

, , , , , , ; , . (2.5)

Let π = (π1, . . . , πn) be a sequence of source-to-sink paths in a star network G. We
call π a path family if there exists a permutation w = w1 · · ·wn ∈ Sn such that πi is a
path from source i to sink wi. In this case, we say more specifically that π has type w.
We say that the path family covers G if it contains every edge exactly once.

One can enhance a star network by associating to each edge a weight belonging to
some ring R, and by defining the weight of a path to be the product of its edge weights.
If R is noncommutative, then one multiplies weights in the order that the corresponding
edges appear in the path. For a family π = (π1, . . . , πn) of n paths in a planar network,
one defines wgt(π) = wgt(π1) · · ·wgt(πn). The (weighted) path matrix B = B(G) = (bi,j)
of G is defined by letting bi,j be the sum of weights of all paths in G from source i to
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sink j. Thus the product b1,w1 · · · bn,wn is equal to the sum of weights of all path families
of type w in G (covering G or not).

Assigning weights to the edges of G = GJ1 ◦ · · · ◦ GJm can aid in the evaluation of a
linear function θq : Hn(q) → Z[q

1
2 , q̄

1
2 ] at C̃sJ1

(q) · · · C̃sJm
(q) by relating this evaluation to

the generating function

Immθq(x) := ∑
w∈Sn

q̄
`(w)

2 θq(Tw)x1,w1 · · · xn,wn ∈ A(n, q), (2.6)

which specializes at q
1
2 = 1 to the generating function (1.1) in Z[x]. In particular, write

GJp = G[ip,jp] and let {zh,p,k | 1 ≤ p ≤ m; ip ≤ h ≤ jp; 1 ≤ k ≤ 2} be indeterminate weights
satisfying

zh2,p2,k2zh1,p1,k1 =

{
zh1,p1,k1zh2,p2,k2 if p1 6= p2, or k1 6= k2,
q

1
2 zh1,p1,k1zh2,p2,k2 if p1 = p2, k1 = k2, and h1 < h2.

(2.7)

We assign weights to the edges of GJp as follows.

1. Assign weight 1 to the n− jp + ip − 1 edges not incident upon the central vertex.

2. Assign weights zip,p,1, zip+1,p,1, . . . , zjp,p,1, to the jp− ip + 1 edges entering the central
vertex, from bottom to top.

3. Assign weights zip,p,2, zip+1,p,2, . . . , zjp,p,2, to the jp − ip + 1 edges leaving the central
vertex, from bottom to top.

Let ZG be the quotient of the noncommutative ring

Z[q
1
2 , q̄

1
2 ]〈zhp,p,k | p = 1, . . . , m; hp = ip, . . . , jp; k = 1, 2〉

modulo the ideal generated by the relations (2.7), and assume that q
1
2 , q̄

1
2 commute

with all other indeterminates. Let zG be the product of all indeterminates zhp,p,k, in
lexicographic order, and for f ∈ ZG, let [zG] f denote the coefficient of zG in f . For
example, the star network G[2,4] ◦ G[1,3] has weighting

4

3

2

1

4

3

2

1

z4,1,1 z4,1,2

z3,1,1 z3,1,2

z3,2,1 z3,2,2z2,1,1 z2,1,2

z2,2,1 z2,2,2

z1,2,1 z1,2,2

(2.8)
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and monomial zG = z1,2,1z1,2,2z2,1,1z2,1,2z2,2,1z2,2,2z3,1,1z3,1,2z3,2,1z3,2,2z4,1,1z4,1,2.
To complete the description of (2.4), we define a map which allows us to evalu-

ate a linear functional θq on certain Hn(q) elements via the corresponding immanant
Immθq(x) ∈ A(n, q). Given matrix B ∈ Matn×n(ZG), let σB be the Z[q

1
2 , q̄

1
2 ]-linear map

σB : A[n],[n] → Z[q
1
2 , q̄

1
2 ]

x1,v1 · · · xn,vn 7→ [zG]b1,v1 · · · bn,vn ,
(2.9)

where [zG]b1,v1 · · · bn,vn denotes the coefficient of zG in b1,v1 · · · bn,vn , taken after b1,v1 · · · bn,vn

is expanded in the lexicographic basis of ZG. Note that the “substitution” xi,j 7→ bi,j is
performed only for monomials of the form xe,v in A[n],[n]: we define σB(xu,w) by first
expanding xu,w in the basis {xe,v | v ∈ Sn}, and then performing the substitution. Now
we have the following immanant evaluation identity for star networks (cf. [7, Thm. 3.7]).

Theorem 1. Assign weights to the edges of G = GJ1 ◦ · · · ◦ GJm as above and let B be the
resulting path matrix. Then for any linear function θq : Hn(q)→ Z[q

1
2 , q̄

1
2 ] we have

θq(C̃sJ1
(q) · · · C̃sJm

(q)) = [zG]σB(Immθq(x)). (2.10)

Proof. Omitted.

To illustrate, we let n = 4 and consider the element

C̃s[2,4](q)C̃s[1,3](q) = (1 + q) ∑
w≤3421

Tw (2.11)

of H4(q). Its star network (2.8) has weighted path matrix

B =


z1,1,1z1,2,2 z1,2,1z2,2,2 z1,2,1z3,2,2 0

z2,1,1(zD + zU)z1,2,2 z2,1,1(zD + zU)z2,2,2 z2,1,1(zD + zU)z3,2,2 z2,1,1z4,1,2
z3,1,1(zD + zU)z1,2,2 z3,1,1(zD + zU)z2,2,2 z3,1,1(zD + zU)z3,2,2 z3,1,1z4,1,2
z4,1,1(zD + zU)z1,2,2 z4,1,1(zD + zU)z2,2,2 z4,1,1(zD + zU)z3,2,2 z4,1,1z4,1,2

 , (2.12)

where zD = z2,1,2z2,2,1, zU = z3,1,2z3,2,1. Now consider the linear function θq : H4(q) →
Z[q

1
2 , q̄

1
2 ] defined by θq(T3412) = 1, θq(T4312) = −1, and θq(Tw) = 0 otherwise. Comput-

ing the left-hand side of (2.10) we have

θq(C̃s[2,4](q)C̃s[1,3](q)) = (1 + q)(1) + (0)(−1) = 1 + q, (2.13)

since T3412 appears in (2.11) with coefficient 1 + q and T4312 appears with coefficient 0.
To compute the right-hand side of (2.10), we begin by writing

Immθq(x) = q−2x1,3x2,4x3,1x4,2 − q̄
5
2 x1,4x2,3x3,1x4,2.
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Substituting bi,j for xi,j, we have q̄
5
2 b1,4b2,3b3,1b4,2 = 0 and

q−2b1,3b2,4b3,1b4,2 = q−2z1,2,1z3,2,2z2,1,1z4,1,2z3,1,1(zD + zU)z1,2,2z4,1,1(zD + zU)z2,2,2. (2.14)

Now since z2
D and z2

U are not square-free, we ignore terms in the expansion containing
these. Since we have

z3,2,2z4,1,2zD = q
1
2 zDz3,2,2z4,1,2,

z3,2,2z4,1,2zU = q
1
2 zUz3,2,2z4,1,2,

z3,2,2z1,2,2 = q
1
2 z1,2,2z3,2,2,

z3,2,2z2,2,2 = q
1
2 z2,2,2z3,2,2,

zUzD = qzDzU,

we express the nonzero square-free monomials of (2.14) in lexicographic order to obtain

q−2(q2 + q3)z1,2,1z1,2,2z2,1,1zDz2,2,2z3,1,1zUz3,2,2z4,1,1z4,1,2 = (1 + q)zG,

which matches (2.13).
An important property of the map σB is that its evaluation at natural basis elements

of A[n],[n] is closely related to coefficients in the natural expansion of C̃sJ1
(q) · · · C̃sJm

(q).

Proposition 1. Let B be the weighted path matrix of star network G = GJ1 ◦ · · · ◦ GJm ,
and fix w ∈ Sn. Then σB(xe,w) is equal to q

`(w)
2 times the coefficient of Tw in the product

C̃sJ1
(q) · · · C̃sJm

(q).

Proof. Omitted.

3 G-tableaux and evaluation of induced sign characters

Theorem 1 provides half of the solution to the problem of evaluating the left-hand side
of (2.4). The other half is a combinatorial interpretation of the right-hand-side of (2.10),
which is a linear combination of expressions of the form σB(xu,w) ∈ Z[q

1
2 , q̄

1
2 ]. To combi-

natorially interpret such evaluations, we arrange the paths of a path family π covering
a star network G into a (French) Young diagram, using each path exactly once. We call
the resulting structure a G-tableau, or more specifically a π-tableau. If type(π) = w, we
say that the tableau has type w. For example, the following path family π covering the
star network of C̃s[1,2](q)C̃s[2,3](q)C̃s[1,2](q) yields six π-tableaux of shape 21 and type 213:

π3

π2

π1

,
π3
π1 π2

,
π2
π1 π3

,
π3
π2 π1

,
π1
π2 π3

,
π2
π3 π1

,
π1
π3 π2

. (3.1)

Given a π-tableau U, we define (integer) Young tableaux L(U), R(U) by replacing each
path by its source index and sink index, respectively. For example, if U is the first
π-tableau in (3.1), then we have

L(U) = 3
1 2

, R(U) = 3
2 1

.
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It is easy to see that given two Young tableaux P, Q of the same shape, there is at most
one π-tableau U satisfying L(U) = P, R(U) = Q.

We also define several statistics on G-tableaux. Suppose that two paths πa, πb in a
star network G = GJ1 ◦ · · · ◦ GJm pass through the central vertex of some simple star
network GJp . We call the triple (p, πa, πb) a crossing of π if the two paths cross there, and
a noncrossing otherwise. Let U be any π-tableau. Define c(U) = c(π) to be the number
of crossings of π. Define invnc(U), the number of inverted noncrossings of U, to be the
number of noncrossings (p, πa, πb) of π such that πa, πb intersect at the central vertex of
GJp with πb above πa,

πb

πa

, (3.2)

and πb appearing in an earlier column of U than πa (whether or not b > a). For example,
each tableau U in (3.1) satisfies c(U) = 1 because c(π) = 1. The inverted noncrossings
in these tableaux are triples (1, π1, π2) with π2 in an earlier column than π1, or (2, π2, π3)
with π3 in an earlier column than π2. The numbers of inverted noncrossings for the six
tableaux are 1, 0, 0, 0, 1, 1, respectively.

Combining the above tableau statistics, we may combinatorially interpret σB(xu,w) in
terms of tableaux of shape (n) (i.e., consisting of a single row). A fixed path family π

of type v and a permutation u ∈ Sn determine a path tableau U(π, u, uv) = πu1 · · ·πun

which satisfies L(U(π, u, uv)) = u1 · · · un and R(U(π, u, uv)) = (uv)1 · · · (uv)n. The
inclusion of uv in our notation U(π, u, uv) is superfluous but makes clear the ordering
of sinks as they appear in the tableau.

Proposition 2. Let star network G have weighted path matrix B. For u, w ∈ Sn we have

σB(xu,w) = ∑
π

q
c(π)

2 qinvnc(U), (3.3)

where the sum is over path families π of type u−1w covering G, and U = U(π, u, w) is the
unique π-tableau of shape (n) satisfying L(U) = u1 · · · un, R(U) = w1 · · ·wn.

Proof. Omitted.

The special case u = e of Proposition 2 yields a proof of a generalization of Deodhar’s
defect formula [4, Prop. 3.5] for coefficients of the expression (1 + Tsi1

) · · · (1 + Tsim
). Let

π = (π1, . . . , πn) be a path family covering a star network G = GJ1 ◦ · · · ◦ GJm . If two
paths πi, πj intersect at the central vertex of GJp , call the intersection defective if the paths
have previously crossed an odd number of times (i.e., in GJ1 , . . . , GJp−1). Define d(π), the
number of defects of π, to be the number of triples (p, πi, πj) such that πi and πj intersect
defectively at the central vertex of GJp .
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Corollary 1. The coefficients in the expansion C̃sJ1
(q) · · · C̃sJm

(q) = ∑w awTw are

aw = ∑
π

qd(π),

where the sum is over all path families of type w which cover the star network GJ1 ◦ · · · ◦ GIm .

Proof. Omitted.

By Theorem 1, the map σB (2.9) can be used to evaluate ελ
q (C̃sJ1

(q) · · · C̃sJm
(q)) when

one has a simple expression for the generating function Immελ
q
(x). Such an expression

was given by Konvalinka and the second author in [9, Thm. 5.4]:

Immελ
q
(x) = ∑

I
detq(xI1,I1) · · ·detq(xIr,Ir), (3.4)

where detq and xL,M are defined as in Section 2, and the sum is over all ordered set
partitions I = (I1, . . . , Ir) of [n] satisfying |Ij| = λj. We will say that such an ordered set
partition has type λ.

To evaluate σB(Immελ
q
(x)), we expand each term on the right-hand side of (3.4) in a

monomial basis {xu,v | v ∈ Sn} of A[n],[n], where u = u(I) is the concatenation of the r
strictly increasing subwords

u1 · · · uλ1 , uλ1+1 · · · uλ1+λ2 , uλ1+λ2+1 · · · uλ1+λ2+λ3 , . . . , un−λr+1 · · · un (3.5)

formed by listing the elements of each block I1, . . . , Ir in increasing order. As I varies
over all ordered set partitions of [n] of type λ, the permutations u(I) vary over the
Bruhat-minimal representatives S−λ of cosets Sλu, where Sλ is the Young subgroup of Sn
generated by

{s1, . . . , sn−1}r {sλ1 , sλ1+λ2 , sλ1+λ2+λ3 , . . . , sn−λr}.

Expanding each term on the right-hand side of (3.4) and applying σB we have

σB(detq(xI1,I1) · · ·detq(xIr,Ir)) = ∑
y∈Sλ

(−1)`(y)q̄
`(y)

2 σB(xu(I),yu(I)). (3.6)

To combinatorially interpret the sum in (3.6) we may apply Proposition 2 and compute
certain statistics for tableaux belonging to the set

UI = UI(G) =
def
{U(π, u, yu) |π covers G, u = u(I), y ∈ Sλ}.

Note that our restriction on y forces the sink indices of paths in components

(λ1 + · · ·+ λk−1 + 1), . . . , (λ1 + · · ·+ λk) (3.7)
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of U(π, u, yu) to be a permutation of the source indices of the same paths.
On the other hand, the sum in (3.6) has both positive and negative signs. We obtain

a subtraction-free expression for the sum by applying a sign-reversing involution to the
tableaux in each set UI . Tableaux which remain after cancellation are in bijection with G-
tableaux in which paths in a single column have increasing indices and do not intersect.
We call such tableaux column-strict.

Theorem 2. Let G = GJ1 ◦ · · · ◦ GIm . Then for λ ` n we have

ελ
q (C̃sJ1

(q) · · · C̃sJm
(q)) = ∑

W
qinvnc(W)+c(W)/2, (3.8)

where the sum is over all column-strict G-tableaux of type e and shape λ>.

Proof. (Idea) Let B be the path matrix of G. Combining the Theorems 1 and [9, Thm. 5.4]
(i.e., (3.4)) with the identity (3.6), we see that the left-hand side of (3.8) is

σB(Immελ
q
(x)) = ∑

I
σB(detq(xI1,I1) · · ·detq(xIr,Ir))

= ∑
I

∑
y∈Sλ

(−1)`(y)q̄
`(y)

2 σB(xu(I),yu(I)),
(3.9)

where the first two sums are over ordered set partitions I = (I1, . . . , Ir) of [n] of type λ.
Fixing one such partition I and writing u = u(I), we may use Proposition 2 and other
lemmas to express the sum over elements of Sλ as

∑
y∈Sλ

∑
π

(−1)`(y)q̄
`(y)

2 q
c(π)

2 qinvnc(U(π,u,yu)) = ∑
y∈Sλ

∑
π

(−1)`(y)q̄
`(y)

2 q
c(π)

2 qinvnc(W)+cdnc(W),

(3.10)
where the inner sums are over path families π of type u−1yu which cover G, and where
W = W(π, u, yu) is a related tableau of shape λ>, and cdnc is a statistic related to defects
and noncrossings.

A sign reversing involution eliminates those tableaux W which are not column-strict,
and another lemma allows us to interpret the given powers of q in terms of crossings
and inverted noncrossings in the remaining column-strict tableaux. Thus the three ex-
pressions in (3.9) are equal to the right-hand side of (3.8).

To illustrate the theorem, we compute ε211
q (C̃s[1,2](q)C̃s[2,4](q)C̃s[1,2](q)) using the star

network G = G[1,2] ◦ G[2,4] ◦ G[1,2] pictured in (2.5). There are two path families of type e
which cover G, and four column-strict G-tableau of shape 211>= 31 for each:

π4
π3
π2
π1

, U(1)
π =

π3
π1 π2 π4

, U(2)
π =

π3
π1 π4 π2

, U(3)
π =

π4
π1 π2 π3

, U(4)
π =

π4
π1 π3 π2

;
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ρ4
ρ3
ρ2
ρ1

, U(1)
ρ =

ρ3
ρ2 ρ1 ρ4

, U(2)
ρ =

ρ3
ρ2 ρ4 ρ1

, U(3)
ρ =

ρ4
ρ2 ρ1 ρ3

, U(4)
ρ =

ρ4
ρ2 ρ3 ρ1

.

The path family π has no crossings, so tableau U(i)
π contributes qinvnc(U(i)

π )qc(U(i)
π )/2 =

qinvnc(U(i)
π ) for all i. We have one noncrossing for each of the pairs (π2, π3), (π2, π4)

and (π3, π4) and two for the pair (π1, π2). Counting only the inverted noncrossings,
such as π2 and π3 in U(1)

π , we find the contributions from U(1)
π , . . . , U(4)

π are q, q2, q2, q3,
respectively. The tableaux for the path family ρ each have two crossings, and one
noncrossing for each of the pairs (ρ1, ρ3), (ρ1, ρ4) and (ρ3, ρ4). Adding the contribu-
tions together we find the contributions for U(1)

ρ , . . . , U(4)
ρ are q1q2/2 = q2, q2q2/2 = q3,

q2q2/2 = q3 and q3q2/2 = q4 respectively. Hence we have ε211
q (C̃s[1,2](q)C̃s[2,4](q)C̃s[1,2](q)) =

q + 3q2 + 3q3 + q4.
Theorem 2 allows one to combinatorially interpret evaluations of ελ

q at (multiples of)
certain elements C̃w(q) of the Kazhdan-Lusztig basis of Hn(q). In particular, for some
elements C̃w(q) there exists a polynomial gw(q) such that we have

gw(q)C̃w(q) = C̃sJ1
(q) · · · C̃sJm

(q) (3.11)

for some sequence sJ1 , . . . , sJm of reversals. Such permutations include all 3412-avoiding,
4231-avoiding permutations, all of S4 (even 4231 and 3412), all of S5 except 45312, and
all 321-hexagon-avoiding permutations. (See [1].)

Corollary 2. Suppose that C̃w(q) satisfies a factorization of the form (3.11) and define G =
GJ1 ◦ · · · ◦ GJm . Then we have

ελ
q (C̃w(q)) =

1
gw(q)

∑
U

qinvnc(U)+c(U)/2, (3.12)

where the sum is over all column-strict G-tableaux of type e and shape λ>.

It would be interesting to characterize the factorizations (3.11) [12, Quest. 4.5].
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