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Abstract. Characteristic elements of the Tits algebra of a real hyperplane arrangement
carry information about the characteristic polynomial. We present this notion and its
basic properties, and apply it to derive various results about the characteristic poly-
nomial of an arrangement, from Zaslavsky’s formulas to more recent results of Kung
and of Klivans and Swartz. We construct several examples of characteristic elements,
including one in terms of intrinsic volumes of faces of the arrangement.
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Introduction

We further develop the theory of characteristic elements for real hyperplane arrangements
started in [2, Chapter 12]. These elements of the Tits algebra determine the characteristic
polynomial of the arrangement and also determine the characteristic polynomial of the
arrangements under each flat. They are defined by requiring that the simple characters
of the Tits algebra evaluate on a characteristic element to powers of a specified parameter.

Faces, flats, and the Tits algebra are briefly reviewed in Section 1. The fact that the
characteristic polynomial of an arrangement, which is defined in terms of flats, car-
ries information about the decomposition of space into faces, originates in work of Za-
slavsky [15], and is at the root of the combinatorial theory of hyperplane arrangements
[6, 14]. The Tits algebra provides a natural setting in which this connection can be further
gleaned and developed. Each arrangement possesses many characteristic elements, and
the interest is in constructing particular elements from which specific information about
the characteristic polynomial can be extracted. This paper illustrates this fact repeatedly.

We review the notion of characteristic elements in Section 2, extending the defini-
tions and main results of [2, Section 12.4] from linear to affine arrangements. The first
applications are given in Section 3: we derive the fundamental recursion for the charac-
teristic polynomial from a basic functoriality property of characteristic elements, and we
employ multiplicativity of characteristic elements to derive an interesting identity due
to Kung [8]. Certain characteristic elements of parameters 1 and −1 are discussed in
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Section 4, and employed to derive Zaslavsky’s formulas. Section 5 builds characteris-
tic elements for the simplest Coxeter arrangements in terms of lattice point counting. A
main contribution of this paper is the construction of a characteristic element canonically
associated to each arrangement in terms of intrinsic volumes. This is done in Section 6.
As an application, we derive a beautiful result of Klivans and Swartz [7] which relates
the coefficients of the characteristic polynomial to the intrinsic volumes of the cham-
bers. Characteristic elements can be combined with techniques from the theory of Hopf
monoids in species [1] to study exponential sequences of arrangements, in the sense of
Stanley [13]. This last point will be developed in a longer version of this work.

1 The Tits algebra

Let A be a (real, affine, finite) hyperplane arrangement: a finite collection of affine hy-
perplanes in a finite-dimensional real vector space V . The hyperplanes in A split V into
a collection Σ[A] of convex polyhedra called faces. Given two faces F and G, there is a
unique face FG containing both F and a small ray from a point in the relative interior of
F to a point in the relative interior of G.

F
GFG

F

G

H = HF

FG

Endowed with this operation, the set Σ[A] is a semigroup. Its linearization over a field
k is the Tits algebra kΣ[A]. See [2, Chapters 1 and 9] for more details. For linear arrange-
ments, such as the one on the left above, Σ[A] is a monoid and the central face is the
unit. For affine arrangements, such as the one on the right, this semigroup is nonunital.
An interesting fact that we review below (Theorem 4) is that the Tits algebra is always
unital. We let HF denote the basis element of kΣ[A] associated to the face F of A.

An arbitrary intersection of hyperplanes is a flat of the arrangement. The set Π[A] of
flats is a join-semilattice. The support of a face F is the smallest flat s(F) containing it.
We view Π[A] as a commutative semigroup with the join operation for the product and
then the support map

s : Σ[A] → Π[A]

is a morphism of semigroups.
The algebra kΠ[A] is also unital and is the maximal semisimple quotient of kΣ[A] via

the support map. We let HX denote the basis element of kΠ[A] associated to the flat X of
A. It follows that the simple modules over the Tits algebra are one-dimensional and are
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indexed by flats. The character χX associated to the flat X evaluated on an element

w =
∑
F

wFHF (1.1)

of kΣ[A] yields
χX(w) =

∑
F: s(F)≤X

wF. (1.2)

This rests on the fact that the unique complete system of orthogonal idempotents for
kΠ[A] consists of elements QX uniquely determined by

HY =
∑

X:Y≤X

QX.

This is a result of Solomon [12, Theorem 1].
The sets Σ[A] and Π[A] are partially ordered by inclusion. Both posets are graded

and of the same rank rk(A), the rank of the arrangement. The maximal elements of Σ[A]
are the chambers. The ambient space is the top element of Π[A], we denote it by >.

The characteristic polynomial of A is

χ(A, t) :=
∑

Y

µ(Y,>) trk(Y). (1.3)

The sum is over all flats. It is a monic polynomial of degree rk(A).
The arrangement under a flat X is

AX = {H∩ X | H ∈ A, X 6⊆ H, H∩ X 6= ∅}.

The flats of AX are the flats of A that are contained in X. Hence,

χ(AX, t) :=
∑

Y:Y≤X

µ(Y, X) trk(Y). (1.4)

2 Characteristic elements

The definitions and results in this section extend those of [2, Section 12.4] to the setting
of affine arrangements.

2.1 Definition and basic properties

Let t be a fixed scalar. An element w of the Tits algebra is characteristic of parameter t if
for each flat X

χX(w) = trk(X), (2.1)
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with χX(w) as in (1.2).
Two characteristic elements of the same parameter take the same value on all simple

modules, and hence differ by a nilpotent element (an element of the Jacobson radical).
The set of characteristic elements of a given parameter is an affine subspace of the Tits
algebra of dimension equal to the number of faces minus the number of flats.

One-dimensional characters are multiplicative. We deduce the following result.

Lemma 1. If u is a characteristic element of parameter s and v is a characteristic element of
parameter t, then uv is a characteristic element of parameter st.

2.2 Relation to the characteristic polynomial

The right-hand sides of (1.4) and (2.1) are related by Möbius inversion, which implies
the following result.

Lemma 2. An element w of the Tits algebra is characteristic of parameter t iff for every flat X,∑
F: s(F)=X

wF = χ(AX, t). (2.2)

In particular, since the chambers are the faces of top support:∑
C

wC = χ(A, t), (2.3)

with the sum over all chambers C of A.

2.3 Functoriality

Let A ′ be a subarrangement of A: A ′ consists of some of the hyperplanes in A. There is
a morphism of semigroups

Σ[A] → Σ[A ′] (2.4)

which sends a face F of A to the unique face of A ′ whose interior contains the interior of
F. This in turn induces a morphism from the Tits algebra of A to that of A ′: if w is as in
(1.1), then

f(w) =
∑

G∈Σ[A ′]

f(w)G HG, where f(w)G =
∑

F: f(F)=G

wF.

Lemma 3. Assume that A and A ′ have the same rank. Then f sends characteristic elements for
A to characteristic elements for A ′, of the same parameter.
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3 First applications

3.1 The fundamental recursion for the characteristic polynomial

The characteristic polynomial of A may be calculated recursively by removing one hy-
perplane at a time. As a first application, we derive a proof of this formula.

Let H be a hyperplane in A and set A ′ = A \ {H}. Assume that rk(A ′) = rk(A).
Pick any characteristic element w of parameter t. Applying (2.2) to calculate the

characteristic polynomial of AH, and (2.3) to calculate that of A, we obtain

χ(A, t) + χ(AH, t) =
∑

wC +
∑

wF.

The first sum is over all chambers C of A and the second over all faces F of A with
s(F) = H. By Lemma 3, we may further employ (2.3) to calculate χ(A ′, t) in terms of
coefficients of f(w). We obtain

χ(A ′, t) =
∑

f(w)D =
∑

wG

the first sum being over all chambers D of A ′ and the second over all faces G of A with
f(G) = D for some such D. These faces G are either chambers of A or faces with support
H. Comparing the above expressions, we conclude that

χ(A, t) = χ(A \ {H}, t) − χ(AH, t). (3.1)

We gave this derivation of the fundamental recursion in [2, Proposition 12.66] (for
linear arrangements). The proof in [14, Lemma 2.2], [11, Theorem 2.56] is quite different.

3.2 The characteristic polynomial on a product. An identity of Kung

For the second application we employ Lemma 1. Pick characteristic elements u and v
of parameters s and t, respectively. Applying (2.3) to the characteristic element uv, we
obtain

χ(A, st) =
∑
C

(uv)C =
∑

C,F,G: FG=C

uFvG.

The first sum is over chambers C and the second over faces F and G which multiply to
a chamber. This happens precisely when s(F) ∨ s(G) = s(FG) = >, since s is a morphism
of semigroups. So the previous sum equals∑

X,Y:X∨Y=>

∑
F: s(F)=X
G: s(G)=Y

uFvG.
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Combining the preceding with (1.4) we obtain

χ(A, st) =
∑

X,Y:X∨Y=>
χ(AX, s)χ(AY, t).

Finally, an application of [2, Lemma 1.86] yields

χ(A, st) =
∑

X

trk(X)χ(AX, s)χ(AX, t), (3.2)

where AX denotes the arrangement over the flat X [2, Section 1.7.2]. This identity is due
to Kung [8, Theorem 4]. Kung discusses a couple of proofs, all quite different from the
one above. Kung’s result is for matroids, which covers the case of linear arrangements.
The identity above holds for affine arrangements.

4 Characteristic elements of parameters ±1

4.1 The unit element

An affine arrangement A is essential if the minimal flats are points. In general, the min-
imal flats are pairwise parallel subspaces of a common dimension. Intersecting with an
orthogonal subspace makes A essential. Faces of A are in correspondence with faces of
the essentialization. The same applies to flats. A face of A is essentially bounded if the cor-
responding face of the essentialization is bounded. The following is [2, Theorem 14.23].

Theorem 4. The Tits algebra of an affine arrangement A possesses a unit element. The unit is

υ =
∑
F

(−1)rk(F)HF, (4.1)

with F running over the set of essentially bounded faces of A.

When A is linear, the only essentially bounded face is the central face O, and υ = HO.
The unit element acts as the identity on any module, and hence the one-dimensional

characters evaluate to 1 on it. This implies the following result.

Proposition 5. The unit element υ is characteristic of parameter 1.

Here is an alternative proof of the proposition. According to (1.2), the character value
χX(υ) =

∑
(−1)rk(F) is the Euler characteristic of the complex consisting of the essentially

bounded part of X, as illustrated below. The latter is contractible [5, Theorem 4.5.7], and
hence the character value is 1.

X
1

1

1

−1

−1

X

The proof of Theorem 4 is also topological, but more involved.
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4.2 The Takeuchi element

The Takeuchi element is
τ =

∑
F

(−1)rk(F) HF, (4.2)

with the sum over all faces F of A.
The following extends [2, Corollary 12.57] to the setting of affine arrangements.

Proposition 6. The Takeuchi element τ is characteristic of parameter −1.

This time the proof can be brought down to the calculation of the Euler characteristic
of a relative pair of cell complexes (B,∂B), where B is the complex obtained by dissecting
a large ball (containing the bounded faces) with the hyperplanes in A.

4.3 Application: Zaslavsky’s formulas

All chambers of A are of rank rk(A). Applying (2.3) to the unit element υ we obtain that

(−1)rk(A)χ(A, 1) = (−1)rk(A)
∑

Y

µ(Y,>)

equals the number of essentially bounded chambers in A. Employing the Takeuchi
element τ instead, we obtain that

(−1)rk(A)χ(A,−1) =
∑

Y

(−1)rk(A)−rk(Y)µ(Y,>)

equals the total number of chambers in A. These are Zaslavsky’s formulas [15, Theorem
A, Theorem C, Corollary 2.2], [9, Proposition 8.1].

Remark 7. The above proof does not differ substantially from Zaslavsky’s. The core
topological argument has been shifted to prove the facts that υ and τ are characteristic.

5 The Adams elements

5.1 Braid arrangement

The braid arrangement An in Rn consists of the diagonal hyperplanes xi = xj for 1 ≤ i <
j ≤ n. It is a linear arrangement of rank n− 1. The central face is the line x1 = · · · = xn.
Intersecting with a sphere around the origin in the hyperplane x1 + · · · + xn = 0 we
obtain the Coxeter complex of type An−1. The pictures below show the cases n = 3 and 4.
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Given a face F of An, let deg(F) denote its dimension as a subset of Rn (so two more
than the dimension as a subset of the above sphere). The rank of F in the face poset is
then deg(F) − 1. Analogous considerations apply to flats.

The Adams element of type An−1 (and parameter t) is defined by

αt =
∑
F

Ç
t

deg(F)

å
HF, (5.1)

with the sum over the faces F of An. For each integer k, the binomial coefficient
( k

deg(F)
)

counts the number of points in the relative interior of F with coordinates from [k] =

{1, . . . ,k}. On the other hand, given a flat X, the number kdeg(X) is the number of points
in X∩ [k]n. Since X splits as the disjoint union of the relatively open faces Fwith s(F) ≤ X,
we have that ∑

F: s(F)≤X

Ç
k

deg(F)

å
= kdeg(X).

We have shown the following, for which a different proof is given in [2, Lemma 12.78].

Proposition 8. For any nonzero scalar t, the element 1tαt is characteristic of parameter t.

There are n! chambers in An. As a small application of (2.3), we obtain the well-
known expression for the characteristic polynomial of the braid arrangement.

χ(An, t) =
1

t

∑
C

Ç
t

n

å
= (t− 1)(t− 2) · · · (t− (n− 1)). (5.2)

It follows from Lemma 1 that 1
stαsαt is characteristic of parameter st. In fact, it can

be shown that αsαt = αst, see for instance [2, Lemma 12.80].

5.2 Signed braid arrangement

The signed braid arrangement A±n in Rn consists of the hyperplanes xi = xj, xi = −xj for
1 ≤ i < j ≤ n and xk = 0 for 1 ≤ k ≤ n. It has rank n. The Coxeter complex of type Bn,
obtained by intersecting with the sphere in Rn, is shown below for n = 2 and 3.
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The Adams element of type Bn (and odd parameter 2t+ 1) is defined by

α±2t+1 =
∑
F

Ç
t

rk(F)

å
HF. (5.3)

Proceeding as in Section 5.1, but now counting integer points in [−k,k]n ∩X for each flat
X according to the face in which they lie, one arrives at the following fact, for which a
different proof is given in [2, Proposition 12.89].

Proposition 9. For any scalar t, the element α±2t+1 is characteristic of parameter 2t+ 1.

There are (2n)!! chambers in A±n . Employing (2.3), one obtains that

χ(A±n , 2t+ 1) = (2n)!!

Ç
t

n

å
,

which is equivalent to the familiar expression for the characteristic polynomial of the
signed braid arrangement:

χ(A±n , t) = (t− 1)(t− 3) · · · (t− (2n− 1)). (5.4)

Related elements α±2t are discussed in [2, Section 12.6.3]. These are not characteristic.

5.3 Coordinate arrangement

The coordinate arrangement Cn in Rn consists of the hyperplanes xi = 0 for 1 ≤ i ≤ n.
The associated subdivision of the sphere is the Coxeter complex of type An1 . The first orthant
is
⋂
i{xi ≥ 0}. For each face F of Cn, let

γFt =

{
(t− 1)rk(F) if F lies in the first orthant,
0 if not.

An argument similar to those in Sections 5.1 and 5.2, but now counting integer points in
[0,k− 1]n ∩ X, shows that the element

γt =
∑
F

γFtHF

is characteristic of parameter t. In this case, only one chamber appears with nonzero
coefficient in γt (the first orthant). We obtain

χ(Cn, t) = (t− 1)n.

Remark 10. The strategy employed in this section to build characteristic elements draws
on ideas of Beck and Zaslavsky in [4], and in fact may be further developed to study the
polynomials introduced in that work.
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6 Intrinsic elements

We employ the notion of intrinsic volumes of a convex cone C in Rn [3, Section 2.2]. For
each k = 0, . . . ,n, let vk(C) be the proportion of volume of space occupied by points that
map to a k-dimensional face of C under the nearest point projection.

α
C

v2(C) = α/2π
v1(C) = 1/2

v0(C) = 1/2−α/2π

We record the following properties. Let C be a cone. If k > dim(C), or if k is smaller
than the dimension of the minimal face of C, then vk(C) = 0. Also,

n∑
k=0

vk(C) = 1. (6.1)

Most importantly, each intrinsic volume vk is a valuation on convex cones. The Gauss-
Bonnet formula states that if C is not a subspace, then

n∑
k=0

(−1)kvk(C) = 0. (6.2)

If C is a subspace, then

vk(C) =

{
1 if dim(C) = k,
0 if not.

(6.3)

We extend this notion to convex polyhedra P, with the same definition. It then turns
out that vk(P) depends only on the recession cone of P. Each vk is a valuation on convex
polyhedra.

Let A be an arrangement in Rn and d the dimension of the minimal faces of A. Each
face of A is a polyhedron. We define the intrinsic element of parameter t for A by

νt =
∑
F

(−1)dim(F)
(dim(F)∑
k=d

(−1)kvk(F)tk−d
)
HF. (6.4)

For any face F, rk(F) = dim(F) − d.

Theorem 11. The element νt is characteristic of parameter t.

The proof relies on the valuation property of intrinsic volumes, plus (6.3).
As an immediate consequence of the theorem, we deduce the following result of

Klivans and Swartz [7, Theorem 5].
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Corollary 12. The coefficient of tj in the characteristic polynomial of A is

(−1)rk(A)−j
∑
C

vj+d(C), (6.5)

with the sum over all chambers of A.

We turn to general properties of the intrinsic elements.

Proposition 13. For any parameters s and t, νsνt = νst.

The proof relies on results of McMullen [10, Theorems 2 and 3].
The recession cone of a face F is a subspace if and only if F is essentially bounded.

Together with the Gauss-Bonnet formula (6.2), this implies that the intrinsic element of
parameter 1 is precisely the unit element of the Tits algebra: ν1 = υ. Formula (6.1)
implies that the intrinsic element of parameter −1 and the Takeuchi element coincide:
ν−1 = τ.

The following table shows the intrinsic volumes for the braid arrangement of rank 3
in its canonical realization. The ambient space is the hyperplane x1 + · · ·+ x4 = 0 in R4.
All faces of the same type are congruent and hence have the same volumes. The edges
of types (2, 1, 1) and (1, 1, 2) have size x and the edges of type (1, 2, 1) have size y, where

x =
1

2π
arccos(

√
3

3
) and y =

1

2π
arccos(

1

3
).

The entries above the main diagonal are 0.

face v0 v1 v2 v3
center 1

vertices 1/2 1/2

short edges 1/2− x 1/2 x

long edges 1/2− y 1/2 y

triangles 1/4 11/24 1/4 1/24

y

xx

Each circle is composed of four edges of size x and two edges of size y, so 4x+ 2y = 1.
The arrangement under a circle is combinatorially isomorphic to the braid arrangement
of rank 2. Employing (6.5) we obtain that its characteristic polynomial is

4
[
(
1

2
− x) −

1

2
t+ xt2

]
+ 2
[
(
1

2
− y) −

1

2
t+ yt2

]
= 2− 3t+ t2.

For the characteristic polynomial of the whole arrangement we obtain

24
(
−
1

4
+
11

24
t−

1

4
t2 +

1

24
t3
)
= −6+ 11t− 6t2 + t3.

Both calculations agree with (5.2).
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