
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #66, 12 pp. Series and Algebraic Combinatorics (Ljubljana)

Affine transitions for involution Stanley symmetric
functions

Eric Marberg and Yifeng Zhang

Department of Mathematics, Hong Kong University of Science and Technology

Abstract. We define a new family of Stanley symmetric functions for affine involutions
and study the basic properties of these power series. After classifying the covering
relations in the Bruhat order of the affine symmetric group restricted to involutions,
we prove an affine transition formula for involution Stanley symmetric functions.
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1 Introduction

The notion of the Stanley symmetric function Fπ of a permutation π ∈ Sn dates to work
of Stanley [15] in the 1980s. These symmetric functions are of interest as the stable
limits of the Schubert polynomials Sπ, which represent the cohomology classes of certain
orbit closures in the type A flag variety. They are also useful as a tool for studying the
enumeration of reduced expressions for permutations.

Several variations of Stanley’s construction have been studied in the literature. In
2006, Lam [9] introduced a generalized family of symmetric functions Fπ indexed by
affine permutations π ∈ S̃n. These affine Stanley symmetric functions represent cohomol-
ogy classes for the affine Grassmannian [10, §7]. On the other hand, some recent papers
by Hamaker, Pawlowski, and the first author [6, 5, 7] study the so-called involution Stan-
ley symmetric functions F̂z, which are indexed by self-inverse permutations z = z−1 ∈ Sn.
Up to a scalar factor, these power series are the stable limits of the involution Schubert
polynomials Ŝz introduced by Wyser and Yong [16] to represent the cohomology classes
of orbit closures of the orthogonal group acting on the type A flag variety.

The subject of this article is a family of symmetric functions indexed by affine invo-
lutions z = z−1 ∈ S̃n, generalizing both of the preceding constructions. (For a diagram-
matic summary of the relationships between our new family and other kinds of Stanley
symmetric functions, see Figure 1.) Our first results concern several equivalent defini-
tions and basic properties of these “affine” involution Stanley symmetric functions. We
expect that these power series are related to the geometry of affine analogues of certain
symmetric varieties.
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Figure 1: Families of polynomials and symmetric functions of interest. The relation-
ships between each family are indicated as follows: ↪→ means “is a special case of”
while ; means “has stable limit” while⇒ means “expands positively into.”

The symmetric functions Fπ and F̂z are noteworthy for their positivity properties. For
finite permutations π ∈ Sn, the power series Fπ is always Schur positive, i.e., an N-linear
combination of Schur functions sλ [3]. Similarly, each involution Stanley symmetric
function F̂z is an N-linear combination of Schur P-functions [5]. The Stanley symmetric
functions Fπ indexed by affine permutation π ∈ S̃n, while not always Schur positive, are
at least “affine Schur positive” [10] (see Section 2).

One way to prove these positivity properties is via transition equations: certain families
of identities relating sums of affine/involution Stanley symmetric functions indexed by
Bruhat covers of a given permutation. Lam and Shimozono described transition equa-
tions for affine Stanley symmetric functions in [11]. Transition equations for involution
Stanley symmetric functions are derived in [4, 5, 7]. Our results in Section 4 show how
to extend the latter formulas to the affine case. Formulating these identities is the first
step towards studying the positivity properties of affine involution Stanley symmetric
functions, which are not yet well understood.

The next section reviews some preliminaries on affine permutations and Stanley sym-
metric functions. Section 3 introduces our new family of affine involution Stanley symmet-
ric functions and surveys their basic properties. We omit most proofs in this extended
abstract; for complete arguments, see the full length article [13].



Affine transitions for involution Stanley symmetric functions 3

2 Affine permutations

Let n be a positive integer. Write Z for the set of integers and define [n] = {1, 2, . . . , n}.

Definition 2.1. The affine symmetric group S̃n is the group of bijections π : Z → Z satis-
fying π(i + n) = π(i) + n for all i ∈ Z and π(1) + π(2) + · · ·+ π(n) = 1 + 2 + · · ·+ n.

We refer to elements of S̃n as affine permutations. A window for an affine permutation
π ∈ S̃n is a sequence of the form [π(i + 1), π(i + 2), . . . , π(i + n)] where i ∈ Z. An
element π ∈ S̃n is uniquely determined by any of its windows, and a sequence of n
distinct integers is a window for some π ∈ S̃n if and only if the integers represent each
congruence class modulo n exactly once.

Let si for i ∈ Z be the unique element of S̃n that interchanges i and i + 1 while fixing
every integer j /∈ {i, i + 1} + nZ. One has si = si+n for all i ∈ Z, and {s1, s2, . . . , sn}
generates the group S̃n. With respect to this generating set, S̃n is the affine Coxeter
group of type Ãn−1. The parabolic subgroup Sn = 〈s1, s2, . . . , sn−1〉 ⊂ S̃n is the finite
Coxeter group of type An−1; its elements are the permutations π ∈ S̃n with π([n]) = [n].

A reduced expression for π ∈ S̃n is a minimal-length factorization π = si1si2 · · · sil .
The length of π ∈ S̃n, denoted `(π), is the number of factors in any of its reduced
expressions. The value of `(π) is also the number of equivalence classes in the inversion
set {(i, j) ∈ Z × Z : i < j and π(i) > π(j)} under the relation ∼ on Z × Z with
(a, b) ∼ (a′, b′) if and only if a− a′ = b− b′ ∈ nZ.

Definition 2.2. A reduced expression π = si1si2 · · · sil for an affine permutation is cycli-
cally decreasing if sij+1 6= sik for all 1 ≤ j < k ≤ l. An element π ∈ S̃n is cyclically
decreasing if it has a cyclically decreasing reduced expression.

Definition 2.3 (Lam [9]). The (affine) Stanley symmetric function of an element π ∈ S̃n is the

sum Fπ = ∑π=π1π2··· x
`(π1)
1 x`(π

2)
2 · · · ∈ Z[[x1, x2, . . . ]] over all factorizations π = π1π2 · · ·

of π into countably many (possibly empty) cyclically decreasing factors πi ∈ S̃n such
that `(π) = `(π1) + `(π2) + . . . .

Example 2.4. Suppose n = 4 so that s1 = s5. There are two reduced expressions for
[0, 3, 6, 1] = s1s2s4s3 = s1s4s2s3 ∈ S̃4. The length-additive factorizations of this element
into nontrivial cyclically decreasing factors are (s1)(s2)(s4)(s3) and (s1)(s4)(s2)(s3) and
(s1s4)(s2)(s3) and (s1)(s2s4)(s3) = (s1)(s4s2)(s3) and (s1)(s2)(s4s3), so we have F[0,3,1,6] =
2m14 + m212 , where mλ denotes the usual monomial symmetric function of a partition.

One can motivate the definition of Fπ using the theory of combinatorial coalgebras [1].
Define a combinatorial coalgebra (C, ζ) to be a graded, connected Q-coalgebra C with a
linear map ζ : C → Q. A morphism of combinatorial coalgebras (C, ζ) → (C′, ζ ′) is a
morphism of graded coalgebras φ : C → C′ satisfying ζ = ζ ′ ◦ φ. For π ∈ S̃n, we write
π •= π′π′′ to indicate that π′, π′′ ∈ S̃n, π = π′π′′, and `(π) = `(π′) + `(π′′).
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Proposition 2.5. The graded vector space QS̃n, in which π ∈ S̃n is homogeneous of
degree `(π), is a graded, connected coalgebra with coproduct ∆(π) = ∑π •=π′π′′ π

′ ⊗ π′′.

Let QSym ⊂ Q[[x1, x2, . . . ]] denote the graded, connected Hopf algebra of quasi-
symmetric functions over Q, and write ζQSym for the algebra homomorphism QSym→ Q

which sets x1 = 1 and x2 = x3 = · · · = 0. Define ζCD : QS̃n → Q to be the linear map
with ζCD(π) = 1 if π ∈ S̃n is cyclically decreasing and with ζCD(π) = 0 otherwise.

Proposition 2.6. The linear map with π 7→ Fπ for π ∈ S̃n is the unique morphism of
combinatorial coalgebras (QS̃n, ζCD)→ (QSym, ζQSym).

Corollary 2.7 (Lam [9, Theorem 12]). If π ∈ S̃n then ∆(Fπ) = ∑π •=π′π′′ Fπ′ ⊗ Fπ′′ .

Let Sym ⊂ QSym denote the Hopf subalgebra of symmetric functions over Q. Let Parn

be the set of partitions with all parts less than n and Sym(n) = Q-span{mλ : λ ∈ Parn}.

Theorem 2.8 (Lam [9, Theorem 6]). If π ∈ S̃n then Fπ ∈ Sym(n) ⊂ Sym.

The code of an affine permutation π ∈ S̃n is the sequence c(π) = (c1, c2, . . . , cn) where
ci is the number of integers j ∈ Z with i < j and π(i) > π(j). If π(i) is minimal among
π(1), π(2), . . . , π(n), then ci = 0. An integer i ∈ Z is a descent of π if π(i) > π(i+ 1), i.e.,
if `(πsi) = `(π)− 1. If i ∈ [n] is a descent of π then c(πsi) = (c1, . . . , ci+1, ci − 1, . . . , cn),
interpreting indices cyclically. By induction |c(π)| = c1 + c2 + . . . cn = `(π), and the
map π 7→ c(π) is a bijection S̃n →Nn −Pn.

The shape λ(π) of π ∈ S̃n is the transpose of the partition that sorts c(π−1). Write <
for the dominance order on partitions.

Theorem 2.9 (Lam [9, Theorem 13]). If π ∈ S̃n then Fπ ∈ mλ(π) + ∑µ<λ(π) Nmν.

Since λ : S̃n → Parn is surjective, this implies that Q-span{Fπ : π ∈ S̃n} = Sym(n).

Example 2.10. Suppose n = 4 and π = [−3, 4, 3, 6] ∈ S̃4 so that w−1 = [5, 0, 3, 2]. Then
c(π) = (0, 2, 1, 2) and c(π−1) = (4, 0, 1, 0) so λ(π) = (2, 1, 1, 1) and λ(π−1) = (3, 2), and
we have Fπ = m213 + 4m15 and Fπ−1 = m32 + 2m312 + 2m221 + 3m213 + 4m15 .

Let DesR(π) = {si : i ∈ Z is a descent of π} and DesL(π) = DesR(π
−1) for π ∈ S̃n.

An affine permutation π ∈ S̃n is Grassmannian if π−1(1) < π−1(2) < · · · < π−1(n).

Definition 2.11. The affine Schur function Fλ indexed by λ ∈ Parn is the Stanley symmetric
function Fλ = Fπ where π ∈ S̃n is the unique Grassmannian element of shape λ.

Lam has shown that the symmetric functions Fπ are affine Schur positive:

Theorem 2.12 (Lam [10]). It holds that N-span{Fπ : π ∈ S̃n} = N-span{Fλ : λ ∈ Parn}.
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As mentioned in the introduction, each Fπ for π ∈ Sn ⊂ S̃n is Schur positive [3]. This
stronger property does not hold for all affine Schur functions.

One can refine Theorem 2.9. Write w 7→ w∗ for the automorphism of S̃n with si 7→
s∗i := sn−i for i ∈ Z. If λ ∈ Parn then there exists a unique Grassmannian permutation
π ∈ S̃n with λ = λ(π), and one defines λ∗ = λ(π∗). Let λ′(π) = λ(π−1)∗ for π ∈ S̃n.
Define <∗ to be the partial order on Parn with λ <∗ µ if and only if µ∗ < λ∗.

Theorem 2.13 (Lam [9, Theorem 21]). If π ∈ S̃n then Fπ ∈ Fλ′(π) + ∑λ′(π)<∗µ NFµ and
Fπ ∈ Fλ(π) + ∑µ<λ(π) NFµ.

The affine Schur functions form a basis for Sym(n), so there exists a unique linear
involution ω+ : Sym(n) → Sym(n) with ω+(Fλ) = Fλ∗ for all λ ∈ Parn. This map can be
defined directly in terms of the usual bases of symmetric functions; see [9, §9].

Theorem 2.14 (Lam [9, Theorem 15]). If π ∈ S̃n then ω+(Fπ) = Fπ∗ = Fπ−1 .

3 Affine involutions

For integers i < j 6≡ i (mod n), let tij ∈ S̃n be the affine permutation interchanging i and
j while fixing all integers k /∈ {i, j}+ nZ. Such permutations are precisely the reflections
in S̃n, i.e., the elements conjugate to si for some i ∈ Z.

Let Ĩn = {z ∈ S̃n : z = z−1} be the set of involutions in S̃n. When possible, we
represent elements of this set via winding diagrams like the following:

•
1 •2

•3
•4•5•6

• 7

•8

Here, the numbers 1, 2, . . . , n are arranged in order around a circle. A curve that con-
nects i and j by traveling m times clockwise around the vertex 1 corresponds to the
reflection ti,j+mn ∈ S̃n, and the winding diagram represents the commuting product of
these reflections. The given diagram represents z = t1,12 · t3,6 · t7,10 ∈ Ĩ8.

There exists a unique associative product ◦ : S̃n × S̃n → S̃n with si ◦ si = si for
i ∈ Z and π′ ◦ π′′ = π whenever π •= π′π′′, and it holds that Ĩn = {π−1 ◦ π : π ∈ S̃n}.
The set AHecke(z) := {π ∈ S̃n : π−1 ◦ π = z} is therefore nonempty and finite, since
`(π) ≤ `(π−1 ◦π) for all π ∈ S̃n. Let A(z) be the subset of minimal-length permutations
in AHecke(z). We refer to elements of A(z) and AHecke(z) as atoms and Hecke atoms for z.

Definition 3.1. The (affine) involution Stanley symmetric function of z ∈ Ĩn is F̂z = ∑
π∈A(z)

Fπ.
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This is an affine generalization of the symmetric functions studied in [4, 6, 5, 7],
which are defined by the same formula but with z restricted to the set In := Ĩn ∩ Sn.

One can describe AHecke(z) and A(z) more concretely. Suppose a1, a2, . . . , aN ∈ Z

represent all congruence classes modulo n at least once. Define [[a1, a2, . . . , aN]] ∈ S̃n to
be the affine permutation with a window given by reading the sequence [a1, a2, . . . , aN]
left to right and omitting aj whenever ai ≡ aj (mod n) for some i < j. For example, if
n = 5 then [[1, 3, 0, 1, 2,−1, 4, 8]] = [1, 3, 0, 2,−1] = [3, 0, 2,−1, 6] = [0, 2,−1, 6, 8] ∈ S̃5.
Let z ∈ Ĩn. Write a1 < a2 < · · · < al for the numbers a ∈ [n] with a ≤ z(a) and define

αmin(z) = [[z(a1), a1, z(a2), a2, . . . , z(al), al]]
−1 ∈ S̃n.

Next write b1 < b2 < · · · < bl for the numbers b ∈ [n] with z(b) ≤ b and define

αmax(z) = [[b1, z(b1), b2, z(b2), . . . , bl, z(bl)]]
−1 ∈ S̃n.

Let ≈ be the weakest equivalence relation on S̃n that has u−1 ≈ v−1 ≈ w−1 whenever
u, v, w ∈ S̃n have windows that are identical except in three consecutive positions where
u = [· · · c, b, a · · · ], v = [· · · c, a, b · · · ], and w = [· · · b, c, a · · · ] for some a < b < c.

Theorem 3.2. If z ∈ Ĩn then AHecke(z) = {π ∈ S̃n : π ≈ αmin(z)}.

Let ≺ be the weakest relation on S̃n that has v−1 ≺ w−1 whenever v and w have win-
dows that are identical except in three consecutive positions where v = [· · · c, a, b · · · ]
and w = [· · · b, c, a · · · ] for some a < b < c.

Theorem 3.3 ([12, Theorem 6.14]). Let z ∈ Ĩn. Restricted to A(z), the relation ≺ is a
graded partial order and A(z) = {π ∈ S̃n : αmin(z) � π} = {π ∈ S̃n : π � αmax(z)}.

Example 3.4. Suppose n = 4 and z = t3,8 = [1, 2, 8,−1] ∈ Ĩ4. The elements of A(z) are

αmin(z) = [1, 2, 8, 3]−1 = [2, 3, 5, 0] = [2, 8, 3, 5]−1

≺ [2, 5, 8, 3]−1 = [0, 3, 6, 1] = [5, 8, 3, 6]−1

≺ [5, 6, 8, 3]−1 = [0, 1, 7, 2] = [1, 2, 4,−1]−1 = αmax(z).

The elements of AHecke(z) − A(z) are [2, 8, 5, 3]−1 and [5, 8, 6, 3]−1. Both [2, 3, 5, 0] =
s4s1s2s3 and [0, 1, 2, 7] = s2s1s4s3 have a single reduced expression, and it holds that
F[2,3,0,5] = m14 and F[0,1,2,7] = m14 + m212 + m22 + m31. We saw in Example 2.4 that
F[0,3,1,6] = 2m14 + m212 . Therefore F̂z = F̂[1,2,8,−1] = 4m14 + 2m212 + m22 + m31.

There is an analogue of Proposition 2.6 which motivates Definition 3.1. Define `′(π)
to be n minus the number of orbits of π ∈ S̃n acting on Z/nZ. The map `′ : S̃n → N is
constant on conjugacy classes, and if the congruence classes i+ nZ and i+ 1+ nZ belong
to distinct orbits under π ∈ S̃n then `′(wsi) = `′(w) + 1. Define ˆ̀(z) = 1

2(`(z) + `′(z))
for z ∈ Ĩn. One can show that ˆ̀(z) = `(π) for any π ∈ A(z). Give QS̃n the coalgebra
structure from Proposition 2.5 and write ∆ for its coproduct.
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Proposition 3.5. The graded vector space Q Ĩn, in which z ∈ Ĩn is homogeneous of degree
ˆ̀(z), is a graded right comodule for QS̃n with coproduct ∆̂ : Q Ĩn → Q Ĩn ⊗QS̃n given by

∆̂(z) = ∑
(y,π)∈ Ĩn×S̃n

ˆ̀(z)= ˆ̀(y)+`(π)
z=π−1◦y◦π

y⊗ π for z ∈ Ĩn.

Let F be the coalgebra morphism QS̃n → Sym with π 7→ Fπ for π ∈ S̃n. The graded
vector space Q Ĩn is then a graded right QSym-comodule with respect to the coproduct
(id⊗ F) ◦ ∆̂. The coalgebra QSym is automatically a right comodule for itself.

Proposition 3.6. The linear map with z 7→ F̂z for z ∈ Ĩn is the unique morphism of
graded right QSym-comodules Q Ĩn → QSym satisfying 1 7→ 1 ∈ Q[[x1, x2, . . . ]].

Corollary 3.7. If z ∈ Ĩn then ∆(F̂z) = ∑ F̂y ⊗ Fπ where the sum is over all pairs (y, π) ∈
Ĩn × S̃n with ˆ̀(z) = ˆ̀(y) + ˆ̀(π) and z = π−1 ◦ y ◦ π.

The notions of codes, shapes, and so forth for affine permutations have analogues
for involutions. These definitions are affine generalizations of constructions from [6,
5]. To start, the involution code of z ∈ Ĩn is the sequence ĉ(z) = (c1, c2, . . . , cn) where
ci is the number of integers j ∈ Z with i < j and π(i) > π(j) and i ≥ π(j). An
integer i ∈ Z is a visible descent of z ∈ Ĩn if z(i) > z(i + 1) and i ≥ z(i + 1). Let
DesV(z) = {si : i ∈ Z is a visible descent of z}.

Lemma 3.8. If z ∈ Ĩn then DesV(z) = DesR(αmin(z)) and ĉ(z) = c(αmin(z)).

Thus, every involution in Ĩn − {1} has at least one visible descent.

Corollary 3.9. The involution code is an injective map ĉ : Ĩn →Nn −Pn.

Corollary 3.10. Suppose z ∈ Ĩn and ĉ(z) = (c1, c2, . . . , cn). Then ˆ̀(z) = c1 + c2 + · · ·+ cn,
and i ∈ Z is a visible descent of z if and only if ci > ci+1, interpreting indices modulo n.

Corollary 3.11. For z ∈ Ĩn, the following are equivalent: (a) DesV(z) ⊂ {sn}; (b) ĉ(z) is
weakly increasing; and (c) αmin(z)−1 is Grassmannian.

This corollary suggests the property DesV(z) ⊂ {sn} as a natural definition for the
“involution” analogue for a Grassmannian permutation. However, the functions F̂z in-
dexed by z ∈ Ĩn with this property fail to span Q-span{F̂z : z ∈ Ĩn}, although they are
linearly independent.

The (involution) shape µ(z) of z ∈ Ĩn is the transpose of the partition that sorts ĉ(z). The
maps ĉ : Ĩn → Nn −Pn and µ : Ĩn → Parn are not surjective, and it is an open problem
to characterize their images. By results in [5, §4], the shape map µ restricts to a bijection
from In = Ĩn ∩ Sn to the set of strict partitions contained in (n − 1, n − 3, n − 5, . . . ).
However, µ(z) is not strict for all z ∈ Ĩn.

Recall the definitions of λ(π), λ′(π), and λ∗ from the discussion before Theorem 2.13.
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Lemma 3.12. If z ∈ Ĩn then µ(z) = λ(αmax(z)) and µ(z)∗ = λ′(αmin(z)).

Since ∗ is involution, this implies that λ(αmax(z)) = λ(αmin(z)−1).

Theorem 3.13. If z ∈ Ĩn then F̂z ∈ mµ(z) + ∑ν<µ(z) Nmν ⊂ Sym(n).

Theorem 3.14. If z ∈ Ĩn then F̂z ∈
(

Fµ(z)∗ + ∑µ(z)∗<∗ν NFν

)
∩
(

Fµ(z) + ∑ν<µ(z) NFν

)
.

Example 3.15. Again let z = t3,8 = [1, 2, 8,−1] ∈ S̃4, so that we have

αmin(z) = [2, 3, 5, 0] and αmax(z) = [1, 2, 4,−1]−1.

Then ĉ(z) = c(αmin(z)) = (1, 1, 2, 0) and c(αmax(z)−1) = (1, 2, 0, 1) so

µ(z) = λ(αmax(z)) = (3, 1) and µ(z)∗ = λ′(αmin(z)) = λ(αmin(z)−1)∗ = (3, 1)∗.

The Grassmannian permutation π ∈ S̃4 with λ(π) = (3, 1) is π = [−3, 3, 4, 6]−1. Since
π∗ = [−1, 1, 2, 8]−1 has shape λ(π∗) = (1, 1, 1, 1), we have µ(z)∗ = (1, 1, 1, 1). This agrees
with Theorems 3.13 and 3.14 since F̂z = m14 + m212 + m22 + m31 = F14 + F212 + F31.

Some basic questions about involution Stanley symmetric functions are still un-
resolved. The subspace generated by the functions F̂z as z ranges over the involu-
tions in the finite group Sn ⊂ S̃n is well-understood: this is precisely the span of
the Schur P-functions Pµ indexed by strict partitions µ contained in the “staircase”
(n− 1, n− 3, n− 5, . . . ) [5, Corollary 5.22].

By contrast, it is an open problem to identify a basis for Q-span{F̂z : z ∈ Ĩn} ⊂ Sym(n).
Computer calculations indicate that no subset of {F̂z : z ∈ Ĩn} gives a positive basis for
this space, that is, a basis in which every F̂z expands with positive coefficients. The
question of how to define the “Grassmannian” elements of Ĩn is subtler than for S̃n.

Finally, note that there are obvious “left-handed” versions of Propositions 2.5 and 3.5.
These statements would suggest ω+(F̂z) = ∑π∈A(z) Fπ−1 instead of F̂z as the natural sym-
metric function corresponding to z ∈ Ĩn. Computations support the following conjecture,
which implies that the choice of left- or right-handed convention is immaterial.

Conjecture 3.16. If z ∈ Ĩn then ω+(F̂z) = F̂z, that is, ∑π∈A(z) Fπ−1 = ∑π∈A(z) Fπ.

4 Transition equations

Given elements π, σ ∈ S̃n, we write π l σ if `(σ) = `(π) + 1 and σ = πtij for some
i < j 6≡ i (mod n). The transitive closure of l, denoted ≤, is the Bruhat order on S̃n. The
relation π l πtij is equivalent to the following more explicit condition:
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Lemma 4.1 ([2, Proposition 8.3.6]). Fix π ∈ S̃n and integers i < j 6≡ i (mod n). One has
π l πtij if and only if π(i) < π(j) and no e ∈ Z has i < e < j and π(i) < π(e) < π(j).

For π ∈ S̃n and r ∈ Z define the sets

Ψ−r (π) = {σ ∈ S̃n : π l σ = πtir for some integer i < r with i /∈ r + nZ},
Ψ+

r (π) = {σ ∈ S̃n : π l σ = πtrj for some integer j > r with j /∈ r + nZ}.
(4.1)

Lam and Shimozono [11, Theorem 7] proved the following transition formula for Fπ:

Theorem 4.2 ([11]). If π ∈ S̃n and r ∈ Z then ∑σ∈Ψ−r (π) Fσ = ∑σ∈Ψ+
r (π) Fσ.

Lam and Shimozono originally hoped to use this result to give a direct, algebraic
proof of Theorem 2.12, but an argument along these lines remains to be found [11, §3.3].
The affine transition formula has found other applications, however; see, e.g., [14].

Example 4.3. Suppose n = 4 and π = [1, 0, 2, 7] ∈ S̃4. Setting r = 3, we have

Ψ−3 (π) = {[2, 0, 1, 7], [1, 2, 0, 7]} = {πti,3 : i ∈ {1, 2}},
Ψ+

3 (π) = {[1, 0, 7, 2], [−2, 0, 5, 7], [1,−2, 4, 7]} = {πt3,j : j ∈ {4, 5, 6}},

and F[2,0,1,7] + F[1,2,0,7] = F[1,0,7,2] + F[−2,0,5,7] + F[1,−2,4,7] = F2111 + F221 + F311 + F32.

Our goal in this section is to prove an analogue of Theorem 4.2 for the symmetric
functions F̂y. Write lI for the covering relation of the Bruhat order < on S̃n restricted to
Ĩn, so that y lI z for y, z ∈ Ĩn if and only if {π ∈ Ĩn : y ≤ π < z} = {y}. For each pair
of integers i < j 6≡ i (mod n), we introduce associated operators τn

ij : Ĩn → Ĩn that will
play the role of multiplication by a reflection in the poset ( Ĩn,<). Just as π l σ only if
σ = πtij for some i, j, it will hold that y lI z only if z = τn

ij (y) for some i, j. To define τn
ij

precisely, we need some auxiliary terminology.
Fix y ∈ Ĩn and integers i < j 6≡ i (mod n). Define Gij(y) to be the graph with vertex

set {i, j, y(i), y(j)} and edge set {{i, y(i)}, {j, y(j)}} \ {{i}, {j}}, in which the vertices i
and j are colored white and all other vertices are colored black. Let ∼ be the equivalence
relation on vertex-colored graphs with integer vertices in which G ∼ H if and only there
exists a graph isomorphism G → H which is an order-preserving bijection on vertex
sets. Finally, writing m ∈ {2, 3, 4} for the size of {i, j, y(i), y(j)}, define Dij(y) to be the
unique vertex-colored graph on {1, 2, . . . , m} satisfying Dij(y) ∼ Gij(y).

There are twenty possibilities for Dij(y), which we draw by arranging the vertices in
order from left to right, using ◦ and • for the white and black vertices. For example, if
y, z ∈ Ĩn are involutions such that y(i) < j = y(j) < i and i < z(j) < j < z(i), then

Dij(y) = • ◦ ◦ and Dij(z) = ◦ • ◦ • .

The following slightly rephrases [12, Definition 8.6]:
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Definition 4.4. Fix y ∈ Ĩn and i, j ∈ Z with i < j 6≡ i (mod n). Define

tii = tjj = 1, (◦, ◦) = tij, (◦, •) = ti,y(j), and (•, ◦) = ty(i),j.

Let y ∈ Ĩn be the affine permutation fixing each integer in the set {i, j, y(i), y(j)}+ nZ

and acting on all other integers as k 7→ y(k). Finally, define τn
ij (y) ∈ Ĩn by

τn
ij (y) =



(◦, ◦) · y · (◦, ◦) if Dij(y) is • ◦ ◦ • or ◦ ◦ • • or • • ◦ ◦
(◦, •) · y · (◦, •) if Dij(y) is ◦ • • ◦ and i 6≡ y(j) (mod n)
(◦, ◦) · y if Dij(y) is ◦ • • ◦ and i ≡ y(j) (mod n)
(◦, ◦) · y if Dij(y) is ◦ ◦ or ◦ • ◦ or ◦ • ◦ or ◦ • • ◦
(◦, •) · y if Dij(y) is ◦ ◦ • or ◦ • ◦ •
(•, ◦) · y if Dij(y) is • ◦ ◦ or • ◦ • ◦
y otherwise.

The operators τn
ij are affine analogues of the “covering transformations” studied in [7,

8]. They are related to the Bruhat order on affine involutions by the following theorem.

Theorem 4.5. If y, z ∈ Ĩn then the following are equivalent: (a) y lI z; (b) for each
σ ∈ A(z), some π ∈ A(y) has π l σ; and (c) ˆ̀(z) = ˆ̀(y) + 1 and z = τn

ij (y) for some i, j.

One always has y ≤ τn
ij (y) [12, Lemma 8.8], but determining whether y lI τn

ij (y) can
be complicated; see [12, Proposition 8.9]. The following is often useful for this purpose:

Lemma 4.6. Suppose y ∈ Ĩn and i < j 6≡ i (mod n) are such that y 6= τn
ij (y). Assume

i 6≡ y(j) (mod n) and either y(i) ≤ i or j ≤ y(j). Then y lI τn
ij (y) if and only if y l ytij.

The proof of our transition formula for F̂y relies on two technical theorems:

Theorem 4.7 (Covering property). Suppose y, z ∈ Ĩn and π ∈ A(y). Fix i < j 6≡ i (mod n)
such that π l πtij. Then πtij ∈ A(z) if and only if z = τn

ij (y) 6= y.

Theorem 4.8 (Toggling property). Suppose y ∈ Ĩn and π ∈ A(y). Fix i < j 6≡ i (mod n)
such that π lπtij and y = τn

ij (y). There are integers k < l 6≡ k (mod n) with k ∈ {j, y(j)}
and l ∈ {i, y(i)} (which can be described explicitly) such that π 6= πtijtkl ∈ A(y).

Fix y ∈ Ĩn and define Cyc(y) = {(i, j) ∈ Z×Z : i ≤ j = y(i)}. For r ∈ Z, define

Φ−r (y) =
{

z ∈ Ĩn : y lI z = τn
ir(y) for some i < r with i /∈ {r, y(r)}+ nZ

}
,

Φ+
r (y) =

{
z ∈ Ĩn : y lI z = τn

rj(y) for some j > r with j /∈ {r, y(r)}+ nZ
}

.
(4.2)

The following theorem, which is the main result of this section, is both an involution
analogue of Theorem 4.2 and an affine generalization of [5, Theorem 3.10].
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Theorem 4.9. If y ∈ Ĩn and (p, q) ∈ Cyc(y) then ∑z∈Φ−p (y) F̂z = ∑z∈Φ+
q (y) F̂z.

Proof sketch. Lam and Shimozono’s transition formula, Theorem 4.2, implies that we
have ∑π∈A(y) ∑σ∈Ψ−p (π)tΨ−q (π) Fσ = ∑π∈A(y) ∑σ∈Ψ+

p (π)tΨ+
q (π) Fσ. It follows by an argu-

ment using the covering property, Theorem 4.7, that this identity can be rewritten as
∑z∈Φ−p (y) F̂z + (extra terms) = ∑z∈Φ+

q (y) F̂z + (extra terms), where each extra term on the
left (respectively, right) has the form Fπtij for some π ∈ A(y) and i < j 6≡ i (mod n) with
π l πtij, y = τn

ij (y), and j ∈ {p, q} (respectively, i ∈ {p, q}). Using the toggling property,
Theorem 4.8, it can be shown that exactly the same extra terms appear on both sides.

We conclude with two examples.

Example 4.10. Suppose n = 4 and y = t3,8 = [1, 2, 8,−1] ∈ Ĩ4. Setting p = q = 2, we have

Φ−2 (y) = {t1,2t3,8} =
{

τ4
1,2(y)

}
and Φ+

2 (y) = {t2,8, t2,5t3,8} =
{

τ4
2,3(y), τ4

2,5(y)
}

,

so F̂[2,1,8,−1] = F̂[1,8,3,−2] + F̂[−2,5,8,−1] = F15 + F213 + F221 + F312 + F32.

Example 4.11. Suppose n = 5 and

y =
•1
•2

•3•4

•5 = t2,8t4,10 = [1, 8,−3, 10,−1] ∈ Ĩ5.

Setting (p, q) = (2, 8), we have

Φ−2 (y) =


•1
•2

•3•4

•5 ,
•1
•2

•3•4

•5

 = {t2,5t4,13, t1,8t4,10} =
{

τ5
−1,2(y), τ5

1,2(y)
}

,

Φ+
8 (y) =


•1
•2

•3•4

•5 ,
•1
•2

•3•4

•5

 = {t2,9t3,10, t2,10t4,8} =
{

τ5
8,9(y), τ5

8,10(y)
}

,

so F̂[1,5,−6,13,2] + F̂[8,2,−4,10,−1] = F̂[1,9,10,−3,−2] + F̂[1,10,−1,8,−3] = F217 + F2215 + F2313 + 2F241 +
F316 + F3214 + 3F32212 + F323 + F3213 + 2F3221 + F33 + F4213 + F4221 + F4312 + F432.
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