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Abstract. We introduce the s-weak order on decreasing trees, a lattice which general-
izes the classical weak order on permutations. Restricting this lattice to certain trees
gives rise to the s-Tamari lattice, a sublattice which generalizes the Tamari lattice. The
s-weak order and the s-Tamari lattice have beautiful underlying geometric structures
which we call the s-permutahedron and the s-associahedron. We provide geometric
realizations of these objects in dimensions two and three, and conjecture that similar
constructions exist in general. We also show that our construction is related to the
ν-Tamari lattices of Préville-Ratelle and Viennot.

Résumé. Nous définissons le s-ordre faible sur les arbres décroissants : un treillis qui
généralise l’ordre faible sur les permutations. En restreignant à certains arbres, nous
obtenons le treillis de s-Tamari, un sous-treillis qui généralise le treillis de Tamari. Ces
deux objets ont de jolies structures géomé-triques sous-jacentes que nous nommons
le s-permutohèdre et s-associaèdre. Nous donnons les réalisations géométriques de
ces objets en dimensions deux et trois et conjecturons que des constructions similaires
existent en général. Par ailleurs, notre travaille est lié au treillis de ν-Tamari de Préville-
Ratelle et Viennot.

Keywords: Weak order, Permutahedron, Tamari Lattice, Associahedron.

1 Introduction

The weak order is a partial order on the set of permutations of [n], which is defined as
the inclusion order of their corresponding inversion sets. This partial order turns out to
be a lattice, whose Hasse diagram can be realized geometrically as the edge graph of a
polytope called the permutahedron. Restricting the weak order to the set of 231-avoiding
permutations gives rise to the Tamari lattice, a well-studied lattice whose Hasse diagram
can be realized as the edge graph of another polytope called the associahedron [7]. A
beautiful realization of the associahedron obtained by removing certain facets of the
permutahedron is described by Hohlweg and Lange in [6].
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Figure 1: The s-permutahedron and the s-associahedron for s = (0, 2, 2). Their edge
graphs are the Hasse diagrams of the s-weak order and the s-Tamari lattice, respec-
tively.

In this article, we introduce a wider generalization of these concepts indexed by a
weak composition s = (s(1), s(2), . . . , s(n)). Our generalizations recover the classical ob-
jects for s = (1, 1, . . . , 1). The s-weak order is a partial order on a set of certain trees which
we call s-decreasing trees, and is defined as the inclusion order of their s-tree inversions.
We show that the s-weak order has the structure of a lattice (Theorem 2.6), and give a
complete characterization of its cover relations in terms of a simple combinatorial rule on
the trees (Theorem 2.7). Restricting the s-weak order to certain trees, which play the role
of 231-avoiding permutations, gives rise to a sublattice which we call the s-Tamari lattice
(Theorem 3.2). As in the classical case, the s-weak order and the s-Tamari lattice possess
beautiful underlying geometric structures which are illustrated in Figure 1. We described
them in purely combinatorial terms as potential polyhedral complexes which we call the
s-permutahedron and the s-associahedron. We conjecture that the s-permutahedron can be
realized geometrically as a polytopal subdivision of a polytope (Conjecture 1), and that
the s-associahedron can be obtained from it by removing certain facets (Conjecture 2)1.
We show that these two conjectures hold in dimensions two and three (n = 3 and n = 4
resp.). Some 3-dimensional examples are illustrated in Figure 2.

In [9], Préville-Ratelle and Viennot introduced another generalization of the Tamari
lattice called the ν-Tamari lattice. Its Hasse diagram was recently proved to be realizable
as the edge graph of the ν-associahedron, a polyhedral complex induced by an arrange-
ment of tropical hyperplanes introduced in [3]. We prove that the ν-Tamari lattices and
the ν-associahedra are isomorphic to the s-Tamari lattices and the s-associahedra, respec-
tively, for specific choices of ν and s (Theorems 3.5 and 5.6). This gives a new perspective

1When s contains no zeros except possibly for s(1).
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Figure 2: The s-permutahedron and the s-associahedron obtained from it by removing
certain facets, for s = (0, 2, 2, 2) and s = (0, 3, 3, 3).

for the geometric realization problem of ν-associahedra.
The s-weak order has been considered in [8] for the case s = (m, . . . , m) under the

name "metasylvester lattice". The results in this paper are more general and we study
the objects in consideration from a more geometrical point of view.

2 The s-weak order on decreasing trees

We denote by P the set of positive integers, N the set of nonnegative integers and
for any n ∈ P let [n] := {1, 2, . . . , n}. A weak composition is a finite sequence µ =
(µ(1), µ(2), . . . , µ(n)) of numbers µ(i) ∈ N. For a weak composition µ we define its
weight |µ| := ∑i µ(i) and its length `(µ) := n.

2.1 s-decreasing trees

Let s = (s(1), s(2), . . . , s(n)) be a weak composition (with possible zero entries). An s-
decreasing tree is a plane rooted tree with n internal nodes labeled from 1 to n, such that
node i has s(i) + 1 children (we write the corresponding subtrees Ti

0, . . . , Ti
s(i)) and all

its descendants have smaller labels (see Figure 3). If s(i) 6= 0 for all i, the s-decreasing
trees are in bijection with 212-avoiding permutations of the word 1s(1)2s(2) . . . ns(n) (also
known as Stirling s-permutations), see e.g. [2, Sec. 3.3.1] and the references therein.

Definition 2.1 (Tree-inversions). Let T be an s-decreasing tree and 1 ≤ x < y ≤ n. The
cardinality #T(y, x) of (y, x) in T is determined as follows: if x belongs Ty

0 or is left of y, then
#T(y, x) = 0; if x ∈ Ty

i with Ty
i a middle child of y (i.e. with 0 < i < s(y)), then #T(y, x) = i;

if x belongs to Ty
s(y) or is right of y, then #T(y, x) = s(y).

This covers all positions of x relatively to y. If #T(y, x) > 0, we say that (y, x) is a tree-
inversion of T, and denote by inv(T) the multi-set of tree-inversions counted with their cardi-
nalities. When the context is clear, we omit T and simply write #(y, x).

An example is given in Figure 3. Note that if s(y) = 0 then #T(y, x) = 0 for every
x < y. If s = (m, m, . . . , m) with m > 0, this definition coincides with the one given
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in [8]. When s = (1, 1, . . . , 1), the s-decreasing trees are decreasing binary trees, which
are in natural bijection with permutations, and tree-inversions are exactly inversions of
permutations. We will provide a characterization of the sets of tree-inversions in general
below.

5

4 3

2

1

T5
0 =

4

(strict) left child

T5
1 = ∅

middle children

T5
2 =

3

2

1

T5
3 = ∅ (strict) right child

#(5, 4) = 0 #(5, 3) = 2 #(5, 2) = 2 #(5, 1) = 2
#(4, 3) = 1 #(4, 2) = 1 #(4, 1) = 1

#(3, 2) = 2 #(3, 1) = 2
#(2, 1) = 0

Figure 3: An s-decreasing tree and its tree-inversions for s = (0, 0, 2, 1, 3).

Definition 2.2. A multi inversion set on 1, . . . , n is a multi set I of inversions (y, x) with
1 ≤ x < y ≤ n. We write #I(y, x) for the number of occurrences of (y, x) in I. If there is no
occurrence of (y, x) in I we write (y, x) /∈ I or equivalently #I(y, x) = 0.

Given two multi inversion sets I and J, we say that I is included in J (resp. strictly included)
and write I ⊆ J (resp. I ⊂ J) if #I(y, x) ≤ #J(y, x) (resp. #I(y, x) < #J(y, x)) for every
1 ≤ x < y ≤ n.

Given a weak composition s with `(s) = n, we denote by Σs the maximal s-inversion set
defined by #Σs(y, x) = s(y) for all 1 ≤ x < y ≤ n.

Definition 2.3. Let s be a weak composition with `(s) = n and I ⊆ Σs a multi inver-
sion set. Then I is said to be an s-tree-inversion set if it satisfies the following two rules:

• Transitivity: if a < b < c with #(c, b) = i, then
#(b, a) = 0 or #(c, a) ≥ i.

• Planarity: if a < b < c with #(c, a) = i, then
#(b, a) = s(b) or #(c, b) ≥ i. a a

transitivity

b

c

b

planarity

c

b a

Proposition 2.4. s-decreasing trees are in bijection with s-tree-inversions sets.

2.2 Lattice definition and cover relations

Tree-inversions are an analogue of permutation inversions. This motivates the following
definition of an analogue of the weak order on s-decreasing trees.

Definition 2.5. Let s be a weak composition and R and T be two s-decreasing trees. We say that
R 4 T if inv(R) ⊆ inv(T) using the inclusion of multi inversion sets from Definition 2.2. We
call the relation 4 the s-weak order.
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It is immediate to see that this defines a partial order, see Figure 4 for some examples.
Note that when s = (1, 1, . . . , 1), this is the classical weak order on permutations which is
known to be a lattice. In the case where s = (m, m, . . . , m), this is the metasylvester lattice
defined in [8]. For general s (possibly including some zero entries), the proof of [8] does
not apply. We use the following two operations.

• the union I ∪ J of two multi inversion sets I and J is the smallest multi inversion
set, in terms of inclusion, containing both I and J.

• the transitive closure Itc of a multi inversion set I is the smallest transitive multi
inversion set, in terms of inclusion, containing I.

Theorem 2.6. For any weak composition s, the s-weak order on s-decreasing trees is a lattice.
The join of two s-decreasing trees T and R is determined by

inv(T ∨ R) = (inv(T) ∪ inv(R))tc . (2.1)
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s = (0, 0, 2) s = (0, 1, 2) s = (0, 2, 2)

Figure 4: Examples of s-weak lattices.

Indeed, planarity is stable through union and transitive closure. The cover relations
of the s-weak-order can be described in terms of certain rotations on trees which we call
s-tree rotations. Such rotations can be performed along tree-ascents, which generalize the
classical notion of ascents of a permutation. A tree-ascent of an s-decreasing tree T is a
pair (a, c) such that:

(i) a ∈ Tc
i for some 0 ≤ i < s(c) (a is a non-right descendant of c);

(ii) if a ∈ Tb
i and c > b > a, then i = s(b) (a is a right descendant of b);
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(iii) if s(a) > 0, then Ta
s(a) is empty (strict right descendant of a is empty).

Having a tree-ascent (a, c) means that we can move the tree rooted in a along the
node c. The tree rooted in a needs to have no strict right child. It will move, taking
along its middle children but not its left child. This can be expressed formally by the
s-tree rotation: we increase the cardinality #(c, a) by one and take the transitive closure of
the obtained multi inversion set. We write the new multi inversion set (inv(T) + (c, a))tc

and prove that it is indeed a tree-inversion set. The corresponding tree is called the s-tree
rotation of T along (a, c).

Theorem 2.7. The cover relations of the s-weak order are in correspondence with s-tree rotations.

3 The s-Tamari lattice and the ν-Tamari lattice

3.1 The s-Tamari lattice

Definition 3.1. An s-decreasing tree T is called an s-Tamari tree if for any a < b < c

#T(c, a) ≤ #T(c, b).

In other words, the labels in Tc
i are smaller than all the labels in Tc

j for i < j2. The multi set of
inversions of an s-Tamari tree is called an s-Tamari inversion set.

Theorem 3.2. The collection of s-Tamari trees forms a sublattice of the s-week order, which we
call the s-Tamari lattice.

An example is given in Figure 5. Similarly as in the s-weak order, the cover relations
of the s-Tamari lattice can be described in terms of certain tree rotations. We say that
(a, c) is an s-Tamari-ascent of T is a is a non-right (direct) child of c. As before, we can
compute the multi inversion set (inv(T) + (c, a))tc. We prove that this corresponds to
an s-Tamari tree which we call the s-Tamari rotation of T along (a, c). Basically, a is still
moving along c but now it takes along its middle children and strict right child.

Theorem 3.3. The cover relations of the s-Tamari lattice are in correspondence with s-Tamari
rotations.

3.2 Isomorphism with the ν-Tamari lattice

We will show that the s-Tamari lattice is isomorphic to the ν-Tamari lattice introduced
by Préville-Ratelle and Viennot in [9]. We recall the definition of this lattice in terms of
certain combinatorial objects called ν-trees following [4].

2This is a natural generalization of 231-avoiding permutations for s-decreasing trees.
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Let ν be a lattice path in the plane which starts at the origin and consists of a finite
number of north and east unit steps. We denote by Aν the set of lattice points weakly
above ν inside the smallest rectangle containing ν. We say that two points p, q ∈ Aν are
ν-incompatible if and only if p is southwest or northeast of q and the south-east corner of
the smallest rectangle containing p and q is weakly above ν. Otherwise, we say that p
and q are ν-compatible.

Definition 3.4. A ν-tree is a maximal set of pairwise ν-compatible elements in Aν.

Each ν-tree can be regarded as a rooted binary tree: each vertex is connected to the
next vertex to its right if any, and to the next vertex below it if any. This gives an
identification between ν-trees and rooted binary trees [4, Lem. 2.4].

Let p, q, r be three vertices of a ν-tree T , such that q lies below p and to the left of r.
Then q may be exchanged by the vertex q′ located to the right of p and above r, creating
a new ν-Tamari tree T ′. In such a case, q is called a ν-ascent of T, and exchanging q by
q′ is called a ν-Tamari rotation. The ν-Tamari lattice is the lattice of ν-trees whose cover
relations are ν-Tamari rotations. An example is shown in Figure 5.

Let s = (s(1), . . . , s(n)) be a weak composition and denote by ν(s) the lattice path
ν(s) := NEs(n) . . . NEs(1). From now on we fix ν = ν(s). By [4, Lem. 2.11], all ν-trees
have exactly 1+ s(1)+ · · ·+ s(n) vertices, which is the number of vertices of every s-tree.

Let T be an s-Tamari tree. We say that its vertices (internal nodes and leaves) are
traversed from right-to-left if we visit the root r first and then traverse from right-to-left
each of the trees Tr

i such that Tr
i is visited before Tr

j for i > j. We label the vertices of
T with the numbers 0, 1, . . . , n, such that a vertex u has label i if the number of internal
nodes traversed strictly before u is equal to i. We denote by ϕ(T) the unique ν-tree
containing as many vertices with y-coordinate equal to i as there are vertices in T with
label i. Such a ν-tree can be uniquely constructed using the right flushing algorithm
described in [4, Section 3.2]. See Figure 5 for an illustration.

Theorem 3.5. The map ϕ is isomorphism between the s-Tamari lattice and the ν(s)-Tamari
lattice.

4 The s-Permutahedron

Let T be an s-decreasing tree and A be a subset of tree-ascents of T. We will denote by
T + A the s-decreasing tree with inversion set (inv(T) + A)tc.

Definition 4.1 (The s-permutahedron). The s-permutahedron Perm(s) is the complex3

whose faces are pairs (T, A) where T is an s-decreasing tree and A is a subset of tree-ascents
of T. The dimension of (T, A) is equal to |A|. In particular,

3We have strong indications that it is a polyhedral complex, which we should prove in a longer version
of this abstract.



8 Cesar Ceballos and Viviane Pons

3

2

1

3

2

1

3

2

1

3

1 2

3

1 2

3

2

1

3

2

1

3

2

1

3

1 2

3

2

1

3

2

1

3

2

1

0

1

2

3
33

33

0

1

22

3

3

33

0

1

22
3

3

33

0

0

0

0

0

0

0

0

0

11

11
1

11

111

11 11
1

11
1

2

2
2

22
2

22
2

2

222

22
1

2

22

22
2

22

2

3
33

3

3
3

3

3

3

3

3

3
33

3
3

3

3 2

3

right-to-left traversal ν(s) = NE2NE2NE0

Figure 5: The s-Tamari lattice and the ν(s)-Tamari lattice for s = (0, 2, 2).

1. the vertices of Perm(s) are s-decreasing trees T, and

2. two trees T and T′ are connected by an edge if they are related by an s-tree rotation.

The face (T, A) is contained in (T′, A′) if and only if [T, T + A] ⊆ [T′, T′ + A′] as intervals in
the s-weak order. See an example in Figure 1.

Proposition 4.2. The f -vector of Perm(s) is the coefficient vector of

∑
T
(1 + t)asc(T),

where the sum ranges over all s-decreasing trees T and asc(T) denotes the number of s-tree
ascents of T.

The polynomial E(s) = ∑T tasc(T) may be regarded as an s-generalization of the Eu-
lerian polynomials, since they coincide for s = (1, . . . , 1).

The Hasse diagram of the s-permutahedron seems to be realizable as the edge graph
of a polytopal subdivision of a polytope. This polytope should be combinatorially iso-
morphic to the zonotope

Z(s) = ∑
1≤i<j≤n

s(j)∆ij, (4.1)

where ∆ij = conv{ei, ej} ⊂ Rn. In particular, if s has no zeros (except possibly
for s(1)) then Z(s) is combinatorially an (n− 1)-dimensional permutahedron.

Conjecture 1. The s-permutahedron can be realized as a polyhedral subdivision of a polytope
which is combinatorially isomorphic to Z(s).



The s-weak order and s-permutahedra 9

5 The s-associahedron and the ν-associahedron

5.1 The s-associahedron

Let T be an s-Tamari tree and A be a subset of Tamari-ascents of T. For simplicity, we
will denote by T + A the s-Tamari tree with inversion set (inv(T) + A)tc.

Definition 5.1 (The s-associahedron). The s-associahedron Asso(s) is the polyhedral com-
plex4 whose faces are pairs (T, A) where T is an s-Tamari tree and A is a subset of Tamari-ascents
of T. The dimension of (T, A) is equal to |A|. In particular,

1. the vertices of Asso(s) are s-Tamari trees T, and

2. two s-Tamari trees are connected by an edge if they are related by an s-Tamari rotation.

The face (T, A) is contained in (T′, A′) if and only if [T, T + A] ⊆ [T′, T′ + A′] as intervals in
the s-Tamari lattice. See an example in Figure 1.

Proposition 5.2. The f -vector of Asso(s) is the coefficient vector of

∑
T
(1 + t)tasc(T),

where the sum ranges over all s-Tamari trees T and tasc(T) denotes the number of s-Tamari
ascents of T.

The entries of ∑T ttasc(T) may be regarded as s-generalizations of the Narayana num-
bers. The s-Narayana numbers have already been considered in [3, 2] in this general set
up, and in [1] for the special case of rational Catalan combinatorics.

Conjecture 2. If s has no zeros (except for s(1)), there exists a geometric realization of Perm(s)
such that Asso(s) can be obtained from it by removing certain facets.5

5.2 Isomorphism with the ν-associahedron

It was shown in [3] that the Hasse diagram of the ν-Tamari lattice can be realized as the
edge graph of a polyhedral complex, called the ν-associahedron. We recall its definition
following the conventions in [4].

Let ν be a lattice path as before. A ν-face is a pairwise ν-compatible subset of Aν. A
ν-face F is said to be covering if it contains the top left corner in Aν and at least one point
in each row and each column.

4This follows from Theorem 5.6 and [3, Thm. 5.2].
5If s contains zeros other than s(1) then Asso(s) is not convex (Theorem 5.6 and [3, Cor. 5.13]).
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Definition 5.3. The ν-associahedron Asso(ν) is the polyhedral complex of covering ν-faces
ordered by reverse inclusion. The dimension of a covering ν-face F is `(ν) + 1− |F|, where `(ν)
is the length of ν. In particular,

1. the vertices of Asso(ν) are ν-trees, and

2. two ν-trees are connected by an edge if they are related by a ν-Tamari rotation.

Before matching the definitions of s-associahedra and ν-associahedra we need the
following lemmas.

Lemma 5.4. Covering ν-faces F are in bijection with pairs (T ,A) such that T is a ν-tree and A
is a subset of ν-ascents of T . The bijection is determined by F = T rA and dim(F ) = |A|.

For a ∈ A we denote by Ta the ν-tree obtained from T by applying a ν-Tamari
rotation at the ν-ascent a, and by T +A the join of the set {Ta : a ∈ A}.

Lemma 5.5. Let (T ,A) and (T ′,A′) be two pairs of a ν-tree with a subset of ν-ascents, and let
F = T rA and F ′ = T ′ rA′ be their corresponding covering ν-faces. Then F ⊇ F ′ if and
only if [T , T +A] ⊆ [T ′, T ′ +A′] as intervals in the ν-Tamari lattice.

The bijection ϕ between s-Tamari trees and ν(s)-trees described in Section 3.2 extends
naturally to a bijection ϕ between the faces of the s-associahedron and the faces of the
ν(s)-associahedron. For each pair (T, A) of an s-Tamari tree T and a subset A of Tamari-
ascents of T, we can associate a pair (T ,A) of a ν-tree T = ϕ(T) and a subsets A of
ν-assents of T corresponding to A. We denote by ϕ the map that sends the pair (T, A)
to (T ,A). Lemmas 5.4 and 5.5 imply the following result.

Theorem 5.6. The map ϕ is an isomorphism between Asso(s) and Asso(ν(s)).

6 Geometric realizations in dimensions 2 and 3

There is a natural way of assigning coordinates to each s-decreasing tree. Let eij :=
ei − ej for i < j, where e1, . . . , en ∈ Rn are the standard basis vectors in Rn. Let s =
(s(1), s(2), . . . , s(n)) be a weak composition, T be an s-decreasing tree and A be a subset
of tree-ascents of T. We define

vT = ∑
i<j

#T(j, i)eij and F(T,A) = conv{vT′ : T′ ∈ [T, T + A]}.

For n = 3 and s(3) 6= 0, this gives a 2-dimensional realization of the s-permutahedron
in the subspace {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0} ⊂ R3, see Figure 6. This realization
“cuts” a polygon (a hexagon if s2 6= 0 or a quadrilateral if s(2) = 0) into smaller polygons.
Each polygon is convex and corresponds to one facet of the s-permutahedron.
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s = (0, 0, 2) s = (0, 1, 2) s = (0, 2, 2) s = (0, 4, 3)

Figure 6: Some geometric realizations of s-permutahedra in dimension 2.

One would hope that this construction directly extends to higher dimensions, but it
is not the case. For n ≥ 4, the convex hull of all vT’s is the zonotope Z(s) from (4.1),
which is still cut into identifiable pieces; however, those pieces do not form convex
polytopes. We were able to fix this realization in dimension 3 (n = 4 and s(4) 6= 0),
using a procedure illustrated in Figure 7. The first image shows the direct realization
obtained by vT: we notice some bent edges and can identify what we call a “broken
pattern” in trees related to those edges. The solution is to push the selected trees into a
given direction by a parameter given by a broken pattern itself. In certain compositions
s, this push leads to a “collision” (see middle of Figure 7) which again forces us to push
certain trees further away. The process can be explicitly described for dimension 3. The
new coordinates are given by vT = ∑i<j(3 #T(j, i) + fT(j, i))eij where fT(j, i) = 0 for j 6= 3
and

fT(3, i) =


0 if #T(3, i) = 0,
s3 + (#T(4, 1)− #T(4, 3)) + (#T(4, 2)− #T(4, 3)) if 0 < #T(3, i) < s3,
2s3 if #T(3, i) = s3.

See Figure 2 for examples. You can find 3-dimensional animations of these polyhedral
subdivisions and more in this webpage6. We conjecture that such a construction also
exists for higher dimensions.

4

3 2

1

4

2 3

1

4

1 3

2

4

3 1

2

Figure 7: Construction of a 3 dimensional realization.

Once we have a geometric realization of the s-permutahedron, we are able to identify
what we call Tamari-valid faces and construct a realization of the s-associahedron by

6https://www.lri.fr/˜pons/static/spermutahedron/

https://www.lri.fr/~pons/static/spermutahedron/
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removing faces of the s-permutahedron. This works for both our 2D and 3D realizations,
and is an analogue of a construction in [6] giving rise to Loday’s realization of the
associahedron. The process is illustrated in Figure 8 in 2D, see Figure 2 for 3D examples.

Figure 8: Realization of s-Associahedron for s = (0, 2, 2).
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