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Abstract. We study shifted standard Young tableaux (SYT). The limiting surface of
uniformly random shifted SYT of staircase shape is determined, with the integers in
the SYT as heights. This implies via properties of the Edelman–Greene bijection results
about random 132-avoiding sorting networks, including limit shapes for trajectories
and intermediate permutations. Moreover, the expected number of adjacencies in SYT
is considered. It is shown that on average each row and each column of a shifted SYT
of staircase shape contains precisely one adjacency.
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A shifted standard Young tableau (SYT) of staircase shape is an increasing filling of
the shifted diagram of the partition (n − 1, . . . , 2, 1) with the integers 1, 2, . . . , (n

2). See
Figure 1a for an example and Section 1 for the exact definition.

Shifted diagrams and tableaux are important combinatorial objects that appear in
various contexts. In representation theory shifted Young diagrams correspond to pro-
jective characters of the symmetric group, and shifted tableaux lend themselves to being
studied via RSK-type methods. In the theory of partially ordered sets shifted diagrams
alongside non-shifted Young diagrams and rooted trees form the three most interesting
families of d-complete posets. The most salient property of d-complete posets is the fact
that their linear extensions (in our case shifted SYT) are enumerated by elegant product
formulas. Shifted diagrams also appear as order filters in the root poset of type Bn, and
shifted SYT play an important role in the enumeration of reduced words of elements of
the Coxeter group of type Bn. Moreover, as is topical in this paper, shifted SYT are also
relevant to the study of certain reduced words in the symmetric group.

The topics of this paper can be divided into three parts.
In Section 2 we study the surface obtained by viewing the integers in random SYT

as heights. The study of limit phenomena for partitions and tableaux is an active field
of research combining methods from combinatorics, probability theory and analysis.
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(a) A shifted SYT of staircase shape.

(b) The limit shape of uniformly random
shifted SYT of staircase shape.

Figure 1

We refer to [16] for a general survey. Shifted objects have been treated as well, for
example Ivanov [8] proves a central limit theorem for the Plancherel measure on shifted
diagrams. In the present paper we determine the limiting surface for uniformly random
shifted SYT of staircase shape, see Figure 1b and Theorem 2.3. The deduction of our
results relies on a paper by Pittel and Romik [14] where the limit shape for random
rectangular SYT is determined. In fact, we end up with the same variational problem,
and the limit surface for shifted staircase SYT is the surface for square SYT restricted to
a triangle. This analogy is in part explained by a combinatorial identity (2.1) relating
shifted and non-shifted tableaux. There are very few shapes for which the limit surface
has been determined previously. As far as we know the only other case is that of staircase
SYT, where again the same limit surface appears, but cut along a different diagonal [1].
Results of this type have applications in other fields of mathematics such as geometric
complexity theory [13].

Secondly, we study 132-avoiding sorting networks, which are by definition reduced
words w1 . . . w(n

2)
of the reverse permutation such that sw1 · · · swk is 132-avoiding for all

1 ≤ k ≤ (n
2). These objects have received considerable recent interest and also appear in

different guises, for example as chains of maximum length in the Tamari lattice [2]. Fishel
and Nelson [6] showed that 132-avoiding sorting networks are in bijection with shifted
SYT of staircase shape via the Edelman–Greene correspondence. This has been rediscov-
ered several times [17, 4, 10]. They are also in bijection with reduced words of the signed
permutation (−(n− 1),−(n− 2), . . . ,−1) via the shift si 7→ si−1 as was remarked in [17,
Sec. 1.3]. In Section 3 the Edelman–Greene bijection is used to transfer the limit shape of
shifted SYT to determine the limit shapes of intermediate permutations (Theorem 3.2)
and trajectories (Theorem 3.3) in random 132-avoiding sorting networks. These results
are motivated by a remarkable paper of Angel, Holroyd, Romik and Virág [1] that con-
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tains a number of tantalising conjectures about random sorting networks, now proven
by Dauvergne [3]. See Section 1 for a description of some of them. Our results are a
parallel to their (former) conjectures restricted to a subclass of random sorting networks.

We remark that the limit surface for shifted SYT of staircase shape contains complete
information on the limit surface for SYT of square shape. This suggests the perhaps less
intuitive idea that the relatively small subset of 132-avoiding sorting networks contains
a lot of information on random sorting networks in general.

The third set of results is obtained in Section 4 and concerns patterns in 132-avoiding
sorting networks. We first observe that adjacencies in a shifted SYT (that is, integers i
and i + 1 in neighbouring cells) translate directly to adjacencies in a 132-avoiding sorting
network (that is, j and j+ 1 next to each other in the reduced word). Corollary 4.3 asserts
that the expected number of adjacencies in each column and each row in a shifted SYT
of staircase shape is exactly 1. The proof uses promotion and evacuation techniques
very similar to the methods used by Schilling, Thiéry, White and Williams [17] to derive
results on Yang–Baxter moves (that is, patterns of the form j(j ± 1)j) in 132-avoiding
sorting networks. Related results on general sorting networks are due to Reiner [15] and
Tenner [18].

This is an extended abstract of [11].

1 Background

In this section we fix notation and review some facts about partitions, tableaux and
random sorting networks. For n ∈ N let [n] = {1, . . . , n}. Throughout this paper we
denote N = (n

2).
A partition is a weakly decreasing sequence λ = (λ1, . . . , λn) of positive integers. If

a partition is strictly decreasing it is called strict. The sum ∑ λi is called the size of the
partition λ and is denoted by |λ|. The number of entries λi is called the length of the
partition and is denoted by `(λ). Define the staircase partition as ∆n = (n− 1, . . . , 2, 1).
The Young diagram of a partition λ is defined as the set λdg = {(i, j) : i ∈ [`(λ)], j ∈ [λi]}.
The elements (i, j) are indexed with matrix notation and typically referred to as cells of
λ. Given a strict partition λ we also define its shifted Young diagram as

λsh = {(i, j + i− 1) : i ∈ [`(λ)], j ∈ [λi]}.

Thus the shifted Young diagram is obtained from the normal Young diagram by shifting
rows to the right, row i by i− 1 steps.

A tableau of shape λdg is a map T : λdg → Z. A tableau T is called a standard Young
tableau (SYT) if T : λdg → [n] is a bijection and T(i, j) < T(i, j+ 1) and T(i, j) < T(i+ 1, j)
whenever the respective cells lie in λdg. Similarly a shifted standard Young tableau of shape
λsh is a bijection T : λsh → [n] such that T(i, j) < T(i, j + 1) and T(i, j) < T(i + 1, j)
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Figure 2: The intermediate permutation matrices of σbαNc of a 1000-element random
sorting network at times α = 1

4 , 1
2 and 3

4 .

whenever the respective cells lie in the shifted Young diagram λsh. Let Tn denote the
set of shifted SYT of shape ∆sh

n . For example, Figure 1a shows a shifted standard Young
diagram of shape ∆sh

5 . The number f λ of SYT of shape λ and the number f λ
sh of shifted

SYT of shape λsh are given by nice product formulas involving the hook-lengths of these
diagrams [7, 19].

For i ∈ [n − 1] let si = (i, i + 1) denote the i-th adjacent transposition. The reverse
permutation w0 ∈ Sn is defined by w0(i) = n− i + 1 for i ∈ [n]. A reduced word of w0 is a
word w = w1 · · ·wN in the alphabet [n− 1] such that w0 = sw1 · · · swN .

Angel, Holroyd, Romik and Virág introduced n-element random sorting networks as the
set of reduced words of the reverse permutation w0 ∈ Sn equipped with the uniform
probability measure in [1]. In the same paper, Angel et al. pose several striking conjec-
tures about random sorting networks, which have now been proven by Dauvergne [3].

Suppose w = w1 . . . wN is a sorting network. Then w1 . . . wk defines the intermedi-
ate permutation σk = sw1 · · · swk ∈ Sn for all k ∈ [N]. One of the consequences of [3,
Thm. 2] (previously [1, Conj. 2]) is that asymptotically the 1s in the permutation ma-
trices of intermediate configurations of random sorting networks lie inside ellipses. In
particular, at half-time the permutation matrix is supported on a disc. Figure 2 provides
an illustration.

For 0 ≤ α ≤ 1, [3, Thm. 1] (previously [1, Conj. 1]) states that the scaled trajectories
defined by fw,i(α) = 2σ−1

αN(i)/n− 1 for αN ∈ Z, and by linear interpolation otherwise,
converge to random sine curves. See Figure 3a.

The permutahedron is an embedding of Sn into a sphere in Rn defined by σ 7→
(σ−1(1), . . . , σ−1(n)). Random sorting networks correspond to paths on the permuta-
hedron. The strongest theorem, [3, Thm. 4] (previously [1, Conj. 3]), which implies both
of the previous ones, states that these paths are close to great circles.

This paper considers similar questions restricted to 132-avoiding sorting networks, that
is, those reduced words w1 . . . wN of the reverse permutation in Sn such that sw1 · · · swk



On random shifted SYT and 132-avoiding sorting networks 5

(a) (b)

Figure 3: Scaled trajectories in a random (a) ordinary and (b) 132-avoiding sorting
network with 1000 elements.

is 132-avoiding for all k ∈ [N]. For background on pattern avoidance in permutations
the reader is referred to [9]. With a random 132-avoiding sorting network, we will refer to
uniform distribution among all such networks of the same length.

The connection between 132-avoiding sorting networks and shifted SYT is the follow-
ing. Let w = w1 . . . wN be a 132-avoiding sorting network. Then, for k ∈ [N], define a
SYT Qw1...wk by letting its j-th column consist of the indices m ∈ [k] such that wm = j.
Furthermore, define a shifted SYT Q→w1...wk

by shifting the rows of Qw1...wk . For example,
the reduced word w = 1213423121 corresponds to the shifted SYT in Figure 1a.

Theorem 1.1 ([6, Thm. 3.3 and Thm. 4.6]). For all n ∈ N, the map w 7→ Q→w is a bijection
from n-element 132-avoiding sorting networks to shifted SYT of shape ∆sh

n . The map w 7→
Qw agrees with the restriction of the Edelman–Greene correspondence to 132-avoiding sorting
networks.

The same bijection was also described in [10], [17, Fig. 4] in terms of heaps, and [4,
Prop. 5.2] in terms of descent sets.

Reversing a sorting network preserves the property of being 132-avoiding. See [10]
for a proof.

Proposition 1.2. A reduced word w1 . . . wN is a 132-avoiding sorting network if and only if
wN . . . w1 is.

2 The limit shape

In this section we present a limit shape for random shifted SYT of staircase shape. We
may interpret a shifted SYT T ∈ Tn as the graph of a function LT by viewing the entries
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Figure 4: The shift-symmetric partition Λ = (7, 6, 5, 5, 2, 1) of the strict partition λ =

(6, 4, 2, 1).

as heights. Our main result, Theorem 2.3, states that with a suitable choice of scaling,
the functions LT(n) converge with probability 1 to the surface depicted in Figure 1b, for a
sequence of tableaux T(n) ∈ Tn chosen uniformly at random. The proof of Theorem 2.3
relies heavily on the work of Pittel and Romik [14]. In this extended abstract we only
outline the ideas that lead to Theorem 2.3.

An important concept for connecting the shifted case to the setting of Pittel and
Romik is the following definition. Given a strict partition λ define a partition Λ by
letting its Young diagram equal

Λdg =
{
(i, j + 1) : (i, j) ∈ λsh} ∪ {(j, i) : (i, j) ∈ λsh}.

It is easy to see that this really is the Young diagram of a partition. See Figure 4. We call
Λ the shift-symmetric partition corresponding to λ. The motivation for this definition is
the fact that shifted hook-lengths of the cells in λsh correspond to hook-lengths of cells
in Λdg.

The following proposition is not new and can be obtained by extracting coefficients
from an identity of symmetric functions found in [12, Chap. III, Sec. 8, Example 9.(b)].
Alternatively, one can give a simple proof using induction and the hook-length formula.

Proposition 2.1. Let λ be a strict partition and Λ its shift-symmetric partition. Then

f Λ = ( f λ
sh)

2 ·
(

2 |λ|
|λ|

)
· 2−`(λ). (2.1)

Proposition 2.1 allows us to transfer many of the results of Pittel and Romik to the
shifted staircase. The first important step is to obtain an analogue of [14, Lem. 1], which
introduces a hook-integral in order to estimate the probability that a fixed subdiagram
λsh ⊆ ∆sh

n contains precisely the integers 1, . . . , k in a random SYT of shape ∆sh
n chosen

uniformly at random.
Fix n and let λ be a partition with |λ| = k. Define a function γλ : R>0 → R≥0 by

γλ(x) = λd(n−1)xe/(n− 1), where by convention λi = 0 for i > `(λ). See Figure 5a.



On random shifted SYT and 132-avoiding sorting networks 7

y

x
4

n−1

γλ

(a) The function γλ for λ = (6, 4, 2, 1).

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) The curves v = g̃α(u) for α =

0.05, 0.1, . . . , 0.95.

Figure 5

Lemma 2.2. Let α ∈ (0, 1), k = k(n) be a sequence such that k/N → α as n → ∞, and let Pn
denote the uniform probability measure on Tn. Then, as n→ ∞,

Pn
(
T ∈ Tn : T(λsh) = [k]

)
= exp

(
−
(
1 + o(1)

)n2

2
(

I(γΛ) + H(α) + C
))

uniformly over all strict partitions λ of k with λ1 < n, where

C =
3
2
− 2 ln 2, I(γ) =

∫ 1

0

∫ 1

0
ln
∣∣∣γ(x) + γ−1(y)− x− y

∣∣∣dydx,

H(α) = −α ln(α)− (1− α) ln(1− α), γ−1(y) = inf{x ∈ [0, 1] : γ(x) ≤ y} ,

and Λ denotes the shift-symmetric partition of λ.

Results of the type of Lemma 2.2 lead to a so-called large deviation principle, which
heuristically can be understood as follows: Suppose that n is large, and let λ be the
strict partition of size k = bαNc with shift-symmetric partition Λ minimising I(γΛ). Let
µ be another strict partition of size k with shift-symmetric partition M, which deviates
from λ, meaning that I(γM) > I(γΛ) + ε. Then the probability that µ contains the
numbers 1, . . . , k in a random shifted SYT T ∈ Tn is exponentially smaller (by a factor
exp(−εn2/2)) than the probability that λ contains these numbers. Hence the shape
formed by the entries 1, . . . , k in a random shifted SYT will be close to the minimising
partition λ with high probability. This leads to the variational problem of identifying the
function γ in a certain search space depending on α that minimises the integral I(γ).

A function g : [−
√

2/2,
√

2/2] → [0,
√

2] is called α-admissible if it is 1-Lipschitz and
satisfies ∫ √2/2

−
√

2/2
(g(u)− |u|)du = α .
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As is explained in [14, Sec. 2.2] our problem is equivalent the following formulation:
For each α ∈ (0, 1) find the unique α-admissible function g which is symmetric, that is,
g(−u) = g(u), and minimises the integral

K(g) = −1
2

∫ √2/2

−
√

2/2

∫ √2/2

−
√

2/2
g′(s)g′(t) ln |s− t|dsdt . (2.2)

The only difference between our situation and the situation in [14] is the fact that our
search space is a subset of theirs since we require that Λ is the shift-symmetric partition
of a strict partition. In [14, Sec. 2 and 3] Pittel and Romik show that the variational
problem (2.2) without the assumption g(−u) = g(u) has the unique solution g̃α. The
family of functions g̃α is illustrated in Figure 5b. Since this solution already exhibits the
additional symmetry g̃α(−u) = g̃α(u), we may apply it to the shifted case as well.

Our limit shape result is an analogue of [14, Thm. 1]. The obtained limit shape is
the same as the limit shape for random SYT of square shape except that the domain is
restricted from a square to a triangle. Let

L :
{
(u, v) ∈ R2 : −

√
2/2 ≤ u ≤ 0, |u| ≤ v ≤

√
2− |u|

}
→ R≥0

be the surface defined by the level curves given by g̃α(u) for α ∈ (0, 1). Let

L :
{
(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 1

}
→ R≥0

be the rotated version of L.

Theorem 2.3. For n ∈ N let ∆n denote the staircase partition of size N = (n
2), Tn the set of

shifted SYT of shape ∆sh
n , and Pn the uniform probability measure on Tn. Then for all ε > 0

lim
n→∞

Pn

(
T ∈ Tn : max

(i,j)∈∆sh
n

∣∣∣∣T(i, j)
N
− L

( i
n

,
j
n

)∣∣∣∣ > ε

)
= 0 . (2.3)

Moreover for all p ∈ (0, 1/2) and all q ∈ (0, p/2) such that 2p + q < 1

lim
n→∞

Pn

(
T ∈ Tn : max

(i,j)∈∆sh
n

σ(i/n,j/n)>n−q

∣∣∣∣T(i, j)
N
− L

( i
n

,
j
n

)∣∣∣∣ > n−p

)
= 0 , (2.4)

where σ(x, y) = min{xy, (1− x)(1− y)}.

In particular (2.3) provides point-wise convergence to the limit surface, while (2.4)
specifies the rate of convergence if we assume a sufficient distance to the sides.
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3 Intermediate permutations and trajectories

This section considers the limit of intermediate permutation matrices in random 132-
avoiding sorting networks, a parallel to [3, Thm. 2] (previously [1, Conj. 2]). The (Rothe)
diagram D(σ) of a permutation σ is the set of cells left unshaded when we shade all the
cells weakly to the east and south of 1-entries in the permutation matrix M(σ).

Theorem 3.1 ([10, Thm. 3.1, Cor. 3.4]). Let w = w1 · · ·wN be a 132-avoiding sorting network.
Then the Young diagram of the shape of Qw1...wk is D(σk).

Hence, the diagrams of intermediate permutation matrices are obtained by rotating
and shifting the level curves v = g̃α(u) of the limit surface L̄.

Theorem 3.2. Let σ0 = id and σk = sw1 · · · swk for k ∈ [N], where w = w1 . . . wN is a sorting
network. Let Pn be the uniform probability measure on R132

n , the set of n-element 132-avoiding
sorting networks. Finally, let

Jw(α) =
{

j ∈ [n] : σbαNc(j) ≤ σbαNc(1)
}

and Jc
w(α) = [n] \ Jn(α). For all 0 ≤ α ≤ 1, ε > 0,

Pn

(
w ∈ R132

n : max
j∈Jw(α)

∣∣∣∣σbαNc(j)
n

− 1√
2

(
g̃α

(
−j

n
√

2

)
− j

n
√

2

)∣∣∣∣ > ε

)
→ 0,

as n→ ∞. By symmetry, for all 0 ≤ α ≤ 1, ε > 0,

Pn

(
w ∈ R132

n : max
j∈Jc

w(α)

∣∣∣∣σbαNc(j)
n

+
1√
2

(
g̃1−α

(
−j

n
√

2

)
− j

n
√

2

)
− 1
∣∣∣∣ > ε

)
→ 0,

as n→ ∞.

Next, inspired by the former sine trajectories conjecture [1, Conj. 1] of Angel et al.
(now [3, Thm. 1]), we study trajectories in random 132-avoiding sorting networks. The
trajectory of the element i ∈ [n] in w = w1 . . . wN is the function k 7→ σ−1

k (i). The
scaled trajectory fi(α) = fw,i(α) of i in an n-element 132-avoiding sorting network w is
defined by fi(α) = σ−1

αN(i)/n for αN ∈ Z, and by linear interpolation for other α ∈ [0, 1].
Figure 3b contains some examples. Using Theorem 3.1 and Proposition 1.2, we get that
the trajectories are given by the limit shape as follows.

Theorem 3.3. Fix m/n = β. Let Dβ =
{
(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 1, y = β or x = β

}
.

Define fβ(α) = y− x, where L−1(α) = (x, y) ∈ Dβ, and

tβ(α) =


β if 0 ≤ α ≤ 1−

√
1−β2

2 ,

fβ(α) if 1−
√

1−β2

2 < α <
1+
√

2β−β2

2 ,

1− β if 1+
√

2β−β2

2 ≤ α ≤ 1.
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Figure 6: The intermediate permutation matrices of a random 132-avoiding sorting
network with 1000 elements at times α = 1

4 , 1
2 and 3

4 .

Finally, let R132
n denote the set of n-element 132-avoiding sorting networks and let Pn be the

uniform probability measure on R132
n . Then for all ε > 0,

lim
n→∞

Pn

(
w ∈ R132

n : sup
0≤α≤1

∣∣ fw,bβnc(α)− tβ(α)
∣∣ > ε

)
= 0.

Informally, we can trace the trajectory of bβnc by following the limit shape along
y = β until x = y, and then along x = β. If the height α = L(x′, y′) is given by
some point (x′, y′) along this curve, then the trajectory of bβnc is at height y′ − x′ at
time α. This combined with the implicit definition of L(x, y) means that it is difficult to
compute the trajectories of arbitrary elements explicitly. However, an accessible special
case, the scaled trajectory of 1 (the curve starting at the origin in Figure 3b) converges in
probability to

t0(α) =

{
2
√

α− α2 if 0 ≤ α ≤ 1
2 ,

1 if 1
2 < α ≤ 1.

By symmetry, the trajectory of n is given by the transformation α 7→ 1− α.

4 Adjacencies

Motivated by the former great circle conjecture [1, Conj. 3] (now [3, Thm. 4]) and trying
to understand the geometry of random 132-avoiding sorting networks on the permuta-
hedron, we next study adjacencies.

Let w be a reduced word of the longest element in Sn. An index k ∈ [N− 1] is called
an adjacency of w if |wk+1 − wk| = 1. In the permutahedron, an adjacency corresponds
to a pair of adjacent edges at an angle of π

3 . In the case of |wk+1 − wk| > 1 the edges
corresponding to wk and wk+1 are orthogonal. Adjacencies in a 132-avoiding sorting
network w correspond directly to adjacencies in the SYT Q→w as follows.
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Let λdg be a Young diagram. A pair (T, u) of a cell u = (i, j) ∈ λdg and a standard
tableaux T of shape λ is called a horizontal adjacency if T(i, j + 1) = T(u) + 1. The
pair (T, u) is called a vertical adjacency if T(i + 1, j) = T(u) + 1. The same definitions
apply to shifted diagrams λsh. For example, consider the tableau of Figure 1a. Then
the horizontal adjacencies are (T, (1, 1)), (T, (1, 3)), (T, (2, 3)) and (T, (3, 3)), whereas
(T, (1, 2)) and (T, (3, 4)) are the vertical adjacencies.

Proposition 4.1. Let w be a 132-avoiding sorting network. Then (wk, wk+1) = (j, j + 1) if and
only if (Q→w , (Q→w )−1(k)) is a horizontal adjacency. Similarly (wk, wk+1) = (j + 1, j) if and
only if (Q→w , (Q→w )−1(k)) is a vertical adjacency.

We next enumerate adjacencies in Young tableaux.

Theorem 4.2. Let λ be a (possibly strict) partition and Ac(λ) be the set of horizontal adjacencies
(T, (i, c)) in column c of any (possibly shifted) standard Young tableau T of shape λ. Then
|Ac(λ)| is equal to the number of (possibly shifted) SYT of shape λ with largest entry in or after
column c + 1.

Techniques similar to those used in the proof of Theorem 4.2 also appear in [17].
Theorem 4.2 implies the following two results on the expected number of adjacencies.

Corollary 4.3. The expected number of horizontal (resp. vertical) adjacencies in column c <
n− 1 (resp. row r < n− 1) of a uniformly random shifted staircase SYT is equal to 1.

Corollary 4.4. The expected number of adjacencies in a random 132-avoiding sorting network
of length N is 2(n− 2).

Compare this with the result of Schilling et al. below.

Theorem 4.5 ([17, Thm. 1.3]). The expected number of i (i + 1) i, 1 ≤ i ≤ n− 1, in a random
132-avoiding sorting network of length N is 1.
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