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On a fourfold refined enumeration of alternating
sign trapezoids

Hans Höngesberg∗1
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Abstract. Alternating sign trapezoids have recently been introduced as a generaliza-
tion of alternating sign matrices. Fischer established a threefold refined enumeration
of alternating sign trapezoids and provided three statistics on column strict shifted
plane partitions with the same joint distribuition. We extend this result by another
statistic that generalizes the number of −1’s in alternating sign matrices.
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1 Introduction

Since their introduction in the early 1980s, alternating sign matrices have aroused great
interest among combinatorialists. Mills, Robbins, and Rumsey [10] conjectured them
to be equinumerous with descending plane partitions, which had been enumerated by
Andrews [1] a few years earlier; it was finally independently proved over a decade later
by Zeilberger [11] and Kuperberg [9]. Since then, the spellbinding research of alternat-
ing sign matrices has revealed new equinumerous classes of combinatorial objects but
finding bijections between them remains one of the most challenging problems. Equally
distributed statistics on these objects might finally lead to those eagerly awaited bijec-
tions. Embracing this idea, we provide a fourfold refined enumeration of alternating sign
trapezoids, a recently defined generalization of alternating sign matrices. Moreover, we
establish four statistics on certain column strict shifted plane partitions with the same
joint distribution. Thus, we generalize the recent refined enumerations of alternating
sign trapezoids and of column strict shifted plane partitions by Fischer [5].

2 Preliminaries

We start by introducing alternating sign trapezoids and column strict shifted plane partitions
together with four statistics on each of these classes of objects.
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Definition 2.1. For given integers n ≥ 1 and l ≥ 2, an (n, l)-alternating sign trapezoid is
an array of −1s, 0s, and +1s in a trapezoidal shape with n rows of the following form

a1,1 a1,2 · · · · · · · · · · · · · · · · · · a1,2n+l−2
a2,2 · · · · · · · · · · · · · · · a2,2n+l−3

. . . ...
an,n · · · an,n+l−1

such that
• the nonzero entries alternate in sign in each row and each column,
• the topmost nonzero entry in each column is 1 (if existent),
• the entries in each row sum up to 1, and
• the entries in the central l − 2 columns sum up to 0.

An (n, 1)-alternating sign trapezoid is defined as above with the exception that the entry
in the bottom row can be 0 or 1.

The entries in each column of an alternating sign trapezoid sum up to 0 or 1. A
column whose entries sum up to 1 is called a 1-column. If, in addition, the bottom entry
of a 1-column is 0, we call that column a 10-column. Note that the number of 1-columns
in any (n, l)-alternating sign trapezoid is exactly n if l 6= 1; otherwise, it is n or n− 1.

0 0 0 0 0 1 0 0 0 0
1 0 0 0 −1 0 1 0

0 0 0 0 1 0
1 0 0 0

Figure 1: (4, 4)-alternating sign trapezoid with weight QR2T2

We introduce four different statistics on alternating sign trapezoids by associating the
following weight to (n, l)-alternating sign trapezoids if l ≥ 2:

Q# −1s R# 1-columns within the n leftmost columns

× S# 10-columns within the n leftmost columns T# 10-columns within the n rightmost columns.

An example of a (4, 4)-alternating sign trapezoid is given in Figure 1. For (n, 1)-alternating
sign trapezoids, however, we have to adapt the weight in the following way:

Q# −1s R# 1-columns within the n leftmost columns

× S# 10-columns within the n− 1 leftmost columns T# 10-columns within the n− 1 rightmost columns

× (S + T −Q)[the central column is a 10-column],
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where we make use of the Iverson bracket: For any logical proposition P, [P] = 1 if P is
satisfied and [P] = 0 otherwise.

Ayyer, Behrend, and Fischer [2] showed that n × n-alternating sign matrices are
equinumerous with (n − 1, 3)-alternating sign trapezoids. As a corollary of [2, Theo-
rem 1.2], the statistic Q generalizes the number of −1s in alternating sign matrices.

Definition 2.2. A shifted Young diagram is a finite collection of cells arranged in rows of
strictly decreasing lengths such that each row is indented by one cell compared to the
row above. The shape of a shifted Young diagram is the sequence λ = (λ1, . . . , λn) of
its row lengths. Note that λ is a strict partition, that is, a sequence of strictly decreasing
positive integers.

9 8 8 7 3

7 7 5

6 1

Figure 2: A shifted Young diagram of shape (5, 3, 2) and a column strict shifted plane
partition of class 4 of the same shape with weight Q2R3ST for d = 3

A column strict shifted plane partition is a filling of a shifted Young diagram with posi-
tive integers such that the entries weakly decrease along each row and strictly decrease
down each column. It is of class k if the first entry of each row i is exactly k + λi, that is,
exactly k plus its corresponding row length.

Note that we cannot always associate a class to a given column strict shifted plane
partition. Column strict shifted plane partitions of class 2 correspond to descending plane
partitions.

We introduce four different statistics on column strict shifted plane partitions of class
k of which two depend on a fixed parameter d ∈ {1, . . . , k}:
• Q counts the number of parts equal to {2, 3, . . . , j− i + k} \ {j− i + d},
• R counts the number of rows,
• S counts the number of parts equal to j− i + d, and
• T counts the number of 1s,

where i is the row and j is the column of the respective part.
An example of a shifted Young diagram and a column strict shifted plane partition is

presented in Figure 2. Note that the parts counted by the statistic Q generalize the parts
in descending plane partitions that are referred to as special parts by Mills, Robbins, and
Rumsey [10] and enumerated by Behrend, Di Francesco, and Zinn-Justin [3].

Fischer [5] established refined enumerations of alternating sign trapezoids and col-
umn strict shifted plane partition taking account of the statistics S, T, and P. We extend
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her proof by adding the fourth statistic in order to prove the following main theorem of
this paper:

Theorem 2.3. Let n, l ≥ 1 and 1 ≤ d ≤ l − 1. Then the joint distribution of the corresponding
statistics Q, R, S, and T on (n, l)-alternating sign trapezoids and on column strict shifted plane
partitions of class l − 1 with at most n entries in the first row coincide.

Note that we can generalize Theorem 2.3 by providing a combinatorial interpretation
for the case d = 0.

3 Weighted Enumeration of Alternating Sign Trapezoids

First, we provide the generating function of (n, l)-alternating sign trapezoids. For this
purpose, we heavily exploit the correspondence between alternating sign trapezoids and
truncated monotone triangles, both as defined below. For the sake of simplicity, we assume
that l ≥ 2 throughout the extended abstract. However, note that Theorem 2.3 includes
the case l = 1.

Definition 3.1. For a given integer n ≥ 1, a monotone triangle of order n is an array of
integers in a triangular shape with n rows of the following form

an,1 an,2 an,3 . . . an,n

an−1,1 an−1,2 . . . an−1,n−1

. . . . . . . . .
a2,1 a2,2

a1,1

such that the entries strictly increase along rows and weakly increase both along ↗-
diagonals and↘-diagonals.

Definition 3.2. For given integers p, q ≥ 0 and n ≥ 1 such that p + q ≤ n as well
as a weakly decreasing sequence s = (s1, s2, . . . , sp) and a weakly increasing sequence
t = (tn−q+1, tn−q+2, . . . , tn) of nonnegative integers, we define an (s,t)-tree as an array of
integers which arises from a monotone triangle of order n by truncating the diagonals
as follows: for each 1 ≤ i ≤ p, we delete the si bottom entries of the ith ↗-diagonal;
for each n − q + 1 ≤ i ≤ n, we delete the ti bottom entries of the ith ↘-diagonal. All
diagonals are counted from left to right.

We say that an (s,t)-tree has bottom row k = (k1, . . . , kn) if the following holds true:
for all i such that 1 ≤ i ≤ p or n− q + 1 ≤ i ≤ n, the integer ki is the bottom entry of
the ith ↗-diagonal or the ith ↘-diagonal, respectively; and, for all p < i < n− q + 1, the
integer ki is equal to the entry an,i in the bottom row of the original monotone triangle.
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-1 2
2 3

-3 3
1

Figure 3: ((2), (1))-tree with bottom row (−3,−1, 2, 3)

We can transform an alternating sign trapezoid into a tree; see [6] for the detailed
construction. To illustrate its main features, we number the n leftmost columns of an
(n, l)-alternating sign trapezoid from −n to −1 and the n rightmost columns from 1
to n. The 1-column vector c = (c1, . . . , cn) records the positions of the 1-columns of the
alternating sign trapezoid; hence, −n ≤ c1 < · · · < cm < 0 < cm+1 < · · · < cn ≤ n
for some 0 ≤ m ≤ n. The construction above yields an (s,t)-tree with bottom row
(c1, . . . , cm, cm+1 + l − 3, . . . , cn + l − 3) such that s = (−c1 − 1, . . . ,−cm − 1) and t =
(cm+1 − 1, . . . , cn − 1). Regarding the statistics of alternating sign trapezoids, we make
the following observations: a −1 in the alternating sign trapezoid corresponds to an
entry ai,j in the tree which has two neighbouring entries ai+1,j and ai+1,j+1 in the row
below such that ai+1,j < ai,j < ai+1,j+1. The positions of the 1-columns are reflected in
the bottom row of the tree, and 10-columns cause the corresponding diagonals in the tree
to have twice the same bottom entries. In Figure 3, we present the tree corresponding to
the (4, 4)-alternating sign trapezoid with 1-column vector (−3,−1, 1, 2) in Figure 1.

To enumerate monotone triangles and trees, we use operator formulae and con-
stant term expressions. To this end, we need to introduce several operators and nota-
tions. First, we define the symmetriser Sym and the antisymmetriser ASym of a function
f (x1, . . . , xn). Let Sn be the symmetric group of degree n. Then

Symx1,...,xn
f (x1, . . . , xn) := ∑

σ∈Sn

f (xσ(1), . . . , xσ(n)) and

ASymx1,...,xn
f (x1, . . . , xn) := ∑

σ∈Sn

sgn(σ) f (xσ(1), . . . , xσ(n)).

We use Symx and ASymx as an abbreviation if x = (x1, . . . , xn) is clear from the con-
text. Furthermore, CTx f (x) = CTx1,...,xn f (x1, . . . , xn) denotes the constant term of the
function f with respect to the variables x1, . . . , xn. Finally, we define the shift operator
Ex f (x) := f (x + 1), the forward difference operator ∆x := Ex− id, and the backward dif-
ference operator δx := id−E−1

x , where id denotes the standard identity operator. We
use the notation Ea f (a) := Ex f (x)|x=a for a given a variable x and an integer a. This
abbreviatory notation is correspondingly used for other operator expressions.

Fischer and Riegler [7] provided a weighted enumeration of monotone triangles:

Theorem 3.3. The generating function of monotone triangles of order n with bottom row k =
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(k1, . . . , kn) with respect to the statistic Q is given by Mn(k) with Mn (x) defined as

CTy

(
ASymy

(
n

∏
i=1

(1 + yi)
xi ∏

1≤i<j≤n

(
Q− (1−Q)yi + yj + yiyj

))
∏

1≤i<j≤n

(
yj − yi

)−1

)
.

(3.1)

The crucial observation is that if we repeatedly apply −∆xi and δxi to Mn(x)|Q=1, we
enumerate monotone triangles with truncated diagonals. By generalising the difference
operators, we obtain the following enumeration formula for trees with respect to the
statistic Q as a corollary of [4, Theorem 5].

Theorem 3.4. The generating function of (s,t)-trees with s = (s1, s2, . . . , sp), t = (tn−q+1,
tn−q+2, . . . , tn) and bottom row k = (k1, . . . , kn) with respect to the statistic Q is given by

p

∏
i=1

(
− Q∆ki

)si
n

∏
i=n−q+1

Qδ
ti
ki

Mn (k) ,

where Q∆x := (Q− (1−Q)∆x)−1 ∆x and Qδx := (Q− (Q− 1)δx)−1δx.

We use the correspondence between alternating sign trapezoids and trees to obtain
enumeration formulae. First, we consider alternating sign trapezoids with prescribed 1-
column vectors. The following theorem can be proved by similar means as [8, Theorem
4.4]:

Lemma 3.5. The generating function of (n, l)-alternating sign trapezoids with 1-column vector
c with respect to the statistics Q, S, and T is given by

m

∏
i=1

(
id− S

Q
δci

)(
id+ Q∆ci

) (
− Q∆ci

)−ci−1 n

∏
i=m+1

(
id+

T
Q

∆ci

)(
id−Qδci

)
Qδ

ci−1
ci Mn (c̃) ,

(3.2)
where c̃ = (c1, . . . , cm, cm+1 + l − 3, . . . , cn + l − 3).

Instead of evaluating the previous polynomial at c̃, we can shift the argument by
suitable operators and take the constant term. In particular, (3.2) is equal to

CTx

(
m

∏
i=1

Eci
xi

(
id− S

Q
δci

)(
id+ Q∆ci

) (
− Q∆ci

)−ci−1

×
n

∏
i=m+1

Eci+l−3
xi

(
id+

T
Q

∆ci

)(
id−Qδci

)
Qδ

ci−1
ci Mn (x)

)

= CTx

(
m

∏
i=1

E−1
xi

Q− (S−Q)∆xi

Q− (1−Q)∆xi

( −δxi

Q− (1−Q)∆xi

)−ci−1

×
n

∏
i=m+1

El−2
xi

Q + (T −Q)∆xi

Q + (1−Q)∆xi

( −∆xi

Q + (1−Q)δxi

)−ci−1

Mn (x)

)
. (3.3)
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We analyse how the operators in (3.3) interact with the argument of the antisymmetriser
in (3.1): The effect of the shift operator Exi is the multiplication by 1 + yi. Therefore,
the application of the forward difference operator ∆xi or of the backward difference
operator δxi is equivalent to the multiplication by yi or by yi(1 + yi)

−1, respectively. This
observation implies that (3.3) equals

CTy

(
ASymy

(
m

∏
i=1

(−yi)
−ci−1 (1 + yi)

ci (Q− (1−Q)yi)
ci+1 Q− (S−Q)yi

Q− (1−Q)yi

×
n

∏
i=m+1

yci−1
i (1 + yi)

ci+l−3 (Q + yi)
−ci+1 Q + Tyi

Q + yi

× ∏
1≤i<j≤n

(
Q− (1−Q)yi + yj + yiyj

))
∏

1≤i<j≤n

(
yj − yi

)−1

)
. (3.4)

Thus far, we have considered (n, l)-alternating sign trapezoids with prescribed 1-column
vector c. To sum over all ci such that −n ≤ c1 < · · · < cm < 0 < cm+1 < · · · < cn ≤ n, we
ignore the upper and lower bound in the summation since the polynomial in (3.4) has
no constant term if c1 < n or cn > n. Hence, by using some geometric series evaluation,
we obtain that the argument of the antisymmetriser in (3.4) is equal to

m

∏
i=1

1
1 + yi

(
−yi

(1 + yi) (Q− (1−Q)yi)

)m−i

×
(

1−
i

∏
j=1

(
−yj(

1 + yj
) (

Q− (1−Q)yj
)))−1

Q− (S−Q)yi

Q− (1−Q)yi

×
n

∏
i=m+1

(1 + yi)
l−2
(

yi (1 + yi)

Q + yi

)i−m−1
(

1−
n

∏
j=i

(
yj
(
1 + yj

)
Q + yj

))−1
Q + Tyi

Q + yi

× ∏
1≤i<j≤n

(
Q− (1−Q)yi + yj + yiyj

) (
yj − yi

)−1 . (3.5)

Before summing over all m such that 0 ≤ m ≤ n, we apply the symmetriser to the
expression (3.5). To this end, we use the following trick by Fischer [5]: We set Sm

n :=
{σ ∈ Sn | σ(i) < σ(j) ∀ 1 ≤ i < j ≤ m ∨ m + 1 ≤ i < j ≤ n} and define

Subsetsxm+1,...,xn
x1,...,xm f (x1, . . . , xn) := ∑

σ∈Sm
n

f
(

xσ(1), . . . , xσ(n)

)
.

It follows that

Symx1,...,xn
f (x1, . . . , xn) = Subsetsxm+1,...,xn

x1,...,xm Symx1,...,xm
Symxm+1,...,xn

f (x1, . . . , xn).

That is, we first apply Symy1,...,ym
and Symym+1,...,yn

to (3.5) by means of the following
antisymmetriser lemma [8]:
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Lemma 3.6. Let n ≥ 1. Then

ASymx

 n

∏
i=1

(
xi(1+xi)

Q+xi

)i−1

1−∏n
j=i

xj(1+xj)
Q+xj

∏
1≤i<j≤n

(Q− (1−Q)xi + xj + xixj)


=

n

∏
i=1

Q + xi

Q− x2
i

∏
1≤i<j≤n

(Q(1 + xi)(1 + xj)− xixj)(xj − xi)

Q− xixj
.

Eventually, we obtain

m

∏
i=1

Q− (S−Q)yi

Q(1 + yi)2 − y2
i

∏
1≤i<j≤m

Q− yiyj

Q(1 + yi)(1 + yj)− yiyj

n

∏
i=m+1

(1 + yi)
l−2 Q + Tyi

Q− y2
i

× ∏
m+1≤i<j≤n

Q(1 + yi)(1 + yj)− yiyj

Q− yiyj

m

∏
i=1

n

∏
j=m+1

Q− (1−Q)yi + yj + yiyj

yj − yi
. (3.6)

Next, we need to apply the operator Subsetsym+1,...,yn
y1,...,ym to (3.6) and take the constant term.

To simplify the computation, we divide (3.6) by the polynomial ∏1≤i<j≤n(Q(1 + yi)(1 +
yj)− yiyj)(Q− yiyj), which is symmetric and, thus, invariant under the application of
Subsetsym+1,...,yn

y1,...,ym . However, we need to incorporate its constant term Q2(n
2). We get

Q2(n
2)

m

∏
i=1

(Q− (S−Q)yi)
m

∏
i,j=1

1
Q(1 + yi)(1 + yj)− yiyj

n

∏
i=m+1

(1 + yi)
l−2 (Q + Tyi)

×
n

∏
i,j=m+1

1
Q− yiyj

m

∏
i=1

n

∏
j=m+1

Q− (1−Q)yi + yj + yiyj(
yj − yi

) (
Q(1 + yi)(1 + yj)− yiyj

) (
Q− yiyj

) . (3.7)

This expression can be written in determinantal form. For this purpose, we consider the
Cauchy determinant

det
1≤i,j≤n

(
1

xi + yj

)
=

∏1≤i<j≤n
(
xj − xi

) (
yj − yi

)
∏n

i,j=1
(
xi + yj

)
and set xi =

Q(1+yi)
Q−(1−Q)yi

for all 1 ≤ i ≤ m and xi = −Q
yi

for all m + 1 ≤ i ≤ n. This yields
that

det
1≤i,j≤n


Q−(1−Q)yi

Q(1+yi)(1+yj)−yiyj
, 1 ≤ i ≤ m

−yi
Q−yiyj

, m + 1 ≤ i ≤ n


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is equal to

(−1)n−mQ(n
2)

m

∏
i=1

(Q− (1−Q)yi)
m

∏
i,j=1

1
Q(1 + yi)(1 + yj)− yiyj

∏
1≤i<j≤m

(
yj − yi

)2

×
n

∏
i=m+1

yi

n

∏
i,j=m+1

1
Q− yiyj

∏
m+1≤i<j≤n

(
yj − yi

)2

×
m

∏
i=1

n

∏
j=m+1

(
yj − yi

) (
Q− (1−Q)yi + yj + yiyj

)(
Q(1 + yi)(1 + yj)− yiyj

) (
Q− yiyj

) .

Simple row and column transformations of the determinant’s underlying matrix show
that (3.7) equals

Q(n
2)

∏1≤i<j≤n
(
yj − yi

)2 det
1≤i,j≤n


Q−(S−Q)yi

Q(1+yi)(1+yj)−yiyj
, 1 ≤ i ≤ m

(1 + yi)
l−2 Q+Tyi

Q−yiyj
, m + 1 ≤ i ≤ n

 .

It can be shown that the application of Subsetsym+1,...,yn
y1,...,ym and the summation over all

1 ≤ m ≤ n finally yield

Q(n
2)

∏1≤i<j≤n
(
yj − yi

)2 det
1≤i,j≤n

(
R

Q− (S−Q)yi

Q(1 + yi)(1 + yj)− yiyj
+ (1 + yi)

l−2 Q + Tyi

Q− yiyj

)
, (3.8)

where the exponent of R takes account of m.
The determinantal formula (3.8) is our first expression for the fourfold refined enu-

meration of (n, l)-alternating sign trapezoids. We transform it into a determinant in-
volving binomial coefficients. Our key tool is the following formula by Behrend, Di
Francesco, and Zinn-Justin [3, (43)-(47)]:

Lemma 3.7. For a given power series f in variables x and y, it holds that

det1≤i,j≤n
(

f (xi, yj)
)

∏1≤i<≤n
(
xj − xi

) (
xj − xi

) ∣∣∣∣∣
x=y=0

= det
0≤i,j≤n−1

([
xiyj

]
f (x, y)

)
;

here,
[
xiyj] f (x, y) denotes the coefficient of xiyj in the series expansion of f .

We set

f (x, y) = R
Q− (S−Q)x

Q(1 + x)(1 + y)− xy
+ (1 + x)l−2 Q + Tx

Q− xy

and extract the coefficient
[
xiyj] f (x, y):

R(−1)i+j ∑
k≥0

(
j
k

)
Q−k

((
i− 1
k− 1

)
+

(
i− 1

k

)
SQ−1

)
+

(
l − 2
i− j

)
Q−j +

(
l − 2

i− j− 1

)
TQ−j−1;
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note that we set the binomial coefficient (n
k) := 0 for k < 0. Some manipulation and

Lemma 3.7 finally yield that (3.8) and hence the generating function of (n, l)-alternating
sign trapezoids with respect to the statistics Q, S, and T is equal to

det
0≤i,j≤n−1

(
R

i

∑
k=0

Ti−k
j

∑
m=0

(
j

m

)
Qk−m

((
k + l − 3

k−m

)
+

(
k + l − 3
k−m− 1

)
SQ−1

)
+ δi,j

)
; (3.9)

it can be shown that this is even true if l = 1.

4 Weighted Enumeration of Column Strict Shifted Plane
Partitions

In order to enumerate column strict shifted plane partitions, we transform them into a
family of nonintersecting lattice paths: Each row corresponds to a path that only consists
of vertical and horizontal unit steps. If p is the first entry of the corresponding row, then
the path starts at (−1, p − 1), and every row ends on the x-axis; the heights of the
vertical steps are the entries of the row diminished by 1. Figure 4 displays the family of
nonintersecting lattice paths corresponding to the column strict shifted plane partition
in Figure 2.

x

y
9

8 8
7

3

7 7

5
6

1

Figure 4: Family of nonintersecting lattice paths corresponding to the column strict
shifted plane partition in Figure 2.

This construction yields a bijective correspondence between column strict shifted
plane partitions of class l − 1 with at most n entries in the first row and the family of
nonintersecting lattice paths using only horizontal← and vertical ↑ unit steps with start
points S ⊆ {Si := (i, 0) | 0 ≤ i ≤ n− 1} and end points E ⊆ {Ei := (0, i + l− 1) | 0 ≤ i ≤
n− 1} such that Si ∈ S if and only if Ei ∈ E.



On a fourfold refined enumeration of alternating sign trapezoids 11

By this interpretation of column strict shifted plane partitions as a family of noninter-
secting lattice paths and by the Lindström-Gessel-Viennot lemma, it can be shown that
column strict shifted plane partitions of class l− 1 with at most n entries in the first row
are enumerated by

det
0≤i,j≤n−1

((
i + j + l − 1

i

)
+ δi,j

)
. (4.1)

This was first proved by Andrews [1]. In fact, this determinant (4.1) can be obtained
from (3.9) by setting Q = R = S = T = 1.

Andrews’ result can be generalized: By setting Q = 1 in (3.9), we obtain

det
0≤i,j≤n−1

(
R

i

∑
k=0

Ti−k
((

k + j + l − 3
k

)
+

(
k + j + l − 3

k− 1

)
S
)
+ δi,j

)
.

This is the generating function of column strict shifted plane partitions of class l− 1 with
at most n entries in the first row with respect to the statistics R, S, and T, which was
proved by Fischer [5]. In particular, we see that

i

∑
k=0

Ti−k
(

k + j + l − 3
k

)
is the generating function of lattice paths from (i, 0) to (0, j + l − 1) where the line y =
x + d is reached by a vertical step, and T counts the number of horizontal steps at height
0. As a straightforward consequence,

i

∑
k=0

Ti−k
j

∑
m=0

(
j

m

)(
k + l − 3

k−m

)
Qk−m

is the generating function of lattice paths from (i, 0) to (0, j + l − 1) where the line y =
x + d is reached by a vertical step, T takes the number of horizontal steps at height 0 into
account, and, in addition, Q counts the number of horizontal steps which are under the
line y = x + l− 1 and have at least height 1, that is, which are not already counted by T.
Similarly,

i

∑
k=0

Ti−k
j

∑
m=0

(
j

m

)(
k + l − 3
k−m− 1

)
SQk−m

is the generating function of lattice paths from (i, 0) to (0, j + l − 1) where the line
y = x + d is reached by a horizontal step which S keeps track of, T counts the num-
ber of horizontal steps at height 0, and Q counts the number of horizontal steps which
are beneath the line y = x + l − 1 that are not already taken into account by the statis-
tics T and S. As a result, (3.9) is also the generating function of column strict shifted
plane partitions of class l − 1 with at most n entries in the first row with respect to the
statistics Q, R, S, and T. This completes the proof of Theorem 2.3.
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