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On the realization space of the cube
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Abstract. We prove that the realization space of the d-dimensional cube is contractible.
For this we first show that any two realizations are connected by a finite sequence of
projective transformations and normal transformations. As an application we use this
fact to define an analog of the connected sum construction for cubical d-polytopes, and
apply this construction to certain cubical d-polytopes to conclude that the rays spanned
by f -vectors of cubical d-polytopes are dense in Adin’s cone. The connectivity result
on cubes extends to any product of simplices, and further, it shows the respective
realization spaces are contractible.

Résumé. Nous considérons l’espace de réalisation du cube en dimension d et mon-
trons que tous les deux cubes sont liés par une combinaison de transformations pro-
jectives et de transformations normales.
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1 Introduction

Perhaps the most natural transformations on polytopes that preserve the combinatorial
type, namely the facial structure, are projective transformations and normal transforma-
tions. Loosely speaking, the former are given by perspective transformation from one
hyperplane where the polytope lies to another hyperplane, while the latter are given by
scaling the outer normal vectors to facets so that facets do not degenerate. While the
former are connected to the projective linear group acting on vector spaces, the latter
is connected to the Chow cohomology of toric varieties, and in particular inherits an
algebra structure via the Minkowski sum [7]. (By polytope we always mean a convex
polytope.)

The simplex, of any fixed dimension, is projectively unique, namely, any simplex can
be continuously transformed to any other simplex of the same dimension by a homotopy
of projective transformations. Thus, any two simplicial polytopes, after applying an ap-
propriate projective transformation to one of them, can be glued along a common facet
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whose hyperplane separates them, to produce again a convex polytope. This realizes the
connected sum operation geometrically.

However, the d-cube is not projectively unique for d ≥ 3; this can be seen even by
a dimension count: the realization space of the (combinatorial) d-cube has dimension
larger then the dimension of the space of projective transformations. Indeed, the group
of projective transformations on Rd is of dimension d(d + 2), while the realization space
of the d-cube has dimension 2d2. In particular, we can not realize the connected sum
operation geometrically for cubical d-polytopes, d ≥ 4.

We enlarge the set of transformations by adding normal transformations to the gen-
erating set. While the first author mentioned this theorem in passing, assuming it had
to be known, it was to our surprise that the following results appear to be new, even the
qualitative assertion in (a).

Theorem 1.1 (Cubes are normal-projectively unique). Fix a dimension d.

(a) For any two realizations of the d-cube, one can be obtained from the other by a composition
of finitely many transformations, each is either projective or normal. In fact, 8d of them
suffice.

(b) The constructed algorithm transforms cubes continuously to the standard cube. In partic-
ular, we obtain a deformation retraction to a point. Thus, the realization space of cubes is
contractible.

Let us stress that we stay entirely inside the space of cubes. Every transformation
takes us from one cube to another; not one of the projective transformations results in
an unbounded polytope.

As a corollary of the quantitative assertion in (a), we obtain a cubical analog of the
connected sum construction, at a small price.

Theorem 1.2. (a) (Bounded towers) For any two realizations C1 and C2 of the (d− 1)-cube,
there exists a cubical d-polytope C made of m (m ≤ 4d) d-cubes stacked one on top of
the other, such that C1 and C2 are projectively equivalent to its bottom and top facets,
respectively. Call C a d-tower of m cubes.

(b) (Cubical connected sum) For any two cubical d-polytopes P1 and P2, and facets Fi of Pi,
i = 1, 2, there exists a projective transformation φ and a d-tower T of at most 4d cubes,
such that P := P1 ∪ T ∪ φ(P2) is convex, P1 ∩ T = F1 and φ(P2)∩ T = φ(F2) are the top
and bottom facets of T respectively. We call P the C-connected sum of P1 and P2 along
F1 and F2.

We apply this cubical connected sum operation to the cubical polytopes constructed
recently in [2]; the f -vectors of the latter approach the extremal rays of Adin’s cone,
which is conjectured to contain all f -vectors of cubical d-polytopes [1]. The following
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density result extends the results of Babson, Billera and Chan (see the remark after
Theorem 5.7 in [5]) from cubical spheres to cubical polytopes. Let �d denote the d-cube
and f (P) denote the f -vector of the polytope P. Let Ad be the Adin cone (its apex is
f (�d) and its dimension is bd/2c by the cubical Dehn–Sommerville relations [1]).

Theorem 1.3 (Ray density in Adin’s cone). For any ε > 0 and any x ∈ Ad there exists a
cubical d-polytope P such that the angle ]x f (�d) f (P) is smaller than ε.

Lastly, we note that our cubical connected sum construction endows the set of f -
vectors of cubical d-polytopes with the structure of an affine semigroup (see [10]).

A complete version of this extended abstract can be found in [3].

2 Preliminaries

For further background on polytopes see e.g. [11].

2.1 Two notions of equivalence of d-polytopes

Let P =
{

x ∈ Rd
∣∣ Ax ≤ b

}
be a d-polytope, with the origin in its interior P◦. Denote by

r1, . . . , rm the rows of A. By scaling we may assume these are the facet outer normals.
The polar polytope

P4 =
{

y ∈ Rd
∣∣∣ 〈y, x〉 ≤ 1 for all x ∈ P

}
= conv(p1, . . . , pm)

is the d-polytope with vertices p1 = 1
b1

r1, . . . , pm = 1
bm

rm.
A projective transformation is a map

ϕ : Rd −→ Rd

defined by

x 7→ Ax + b
cTx + α

,

for some A ∈ Md×d(R), b, c ∈ Rd, and α ∈ R that satisfy

det
(

A b
cT α

)
6= 0.

These transformations form a group under composition.

Definition 2.1. Two d-polytopes P and Q are projectively equivalent if there is a projec-
tive transformation ϕ such that Q = ϕ(P).
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Recall that two d-polytopes are combinatorially equivalent if they have isomorphic
face lattices. We will need another notion of equivalence:

Definition 2.2. Two d-polytopes P and Q are normally equivalent if they are combina-
torially equivalent and have the same set of facet outer normals.

In this case we say Q = ψ(P) for a normal transformation ψ. Thus, given a polytope
P, any two polytopes normally equivalent to it differ by a normal transformation. On the
dual polytopes we say Q4 = ψ4(P4) for a dual normal transformation ψ4 (it scales
the vertices along the rays from the origin while preserving the combinatorial type).

2.2 Connected sums of d-polytopes

Suppose P and Q are d-polytopes whose intersection is a common facet F = P ∩ Q of
both. If R = P∪Q is convex then its proper faces are precisely the proper faces of either
P or Q, excluding F:

faces(R) = (faces(P) ∪ faces(Q)) \ {F}.

The following lemma, a proof of which can be found in [9, Lemma 3.2.4], tells us
when and how the connected sum of two polytopes can be formed.

Lemma 2.3. Let P and Q be d-polytopes that have projectively equivalent facets F1 and F2
respectively. Then there exists a projective transformation ϕ so that P ∩ ϕ(Q) = F1 = ϕ(F2)
and R = P ∪ ϕ(Q) is convex.

The combinatorial type of R in Lemma 2.3 is called the connected sum of P and Q
along F1 and F2, denoted P#F1∼F2 Q, or simply P#FQ when the faces F1, F2 combinatorially
isomorphic to F are understood.

2.3 Cubical polytopes

We give just a brief reminder of the definitions of a cubical d-polytope and its hc-vector
and gc-vector. For more details, in particular, for the construction used in Section 5,
see [2].

A d-polytope Q is cubical if each of its proper faces is combinatorially a cube. Its
f -polynomial is defined by

f (Q, t) =
d−1

∑
i=0

fiti

where fi = fi(Q) is the number of i-dimensional faces of Q.
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We then define the short cubical h-polynomial:

hsc(Q, t) = (1− t)d−1 f
(

Q,
2t

1− t

)
,

and the cubical h-polynomial

hc(Q, t) =
d

∑
i=0

hc
i ti =

t(1− t)d−1

1 + t
f
(

Q,
2t

1− t

)
+ 2d−1 1− (−t)d+1

1 + t
.

Adin [1] has shown that hc(Q, t) is symmetric, that is

hc
i = hc

d−i (0 ≤ i ≤ d).

These dd/2e equations are the cubical Dehn–Sommerville relations. We thus define
the cubical g-vector gc(Q) = (gc

0, . . . , gc
bd/2c) by

gc
0 = hc

0 = 2d−1, gc
i = hc

i − hc
i−1 for 1 ≤ i ≤ bd/2c .

Adin conjectured

Conjecture 2.4 (Question 2 in [1]). For a cubical d-polytope we have

gc
i ≥ 0 (1 ≤ i ≤ bd/2c). (2.1)

The cone (2.1) is the nonnegative orthant in Rbd/2c, and its image under the map
transforming gc-vectors back into f -vectors yields the Adin cone Ad in Rd.

In [2], for each 1 ≤ i ≤ bd/2c, the authors exhibit a sequences of cubical d-polytopes
whose corresponding sequence of gc-vectors approaches the ray spanned by ei. This
translates into sequences of f -vectors approaching the extremal rays of Ad.

3 Any two combinatorial d-cubes are related by normal
and projective transformations

We will use the following lemma, which describes the effect of a projective transforma-
tion on the polar polytope.

Lemma 3.1. Let P be a d-polytope with 0 ∈ P◦, and P4 = conv(p1, . . . , pm). Then for any
v ∈ P◦ there exists a d-polytope Q which is projectively equivalent to P, and Q4 = conv(p1 +
v, . . . , pm + v).
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Proof. Consider the effect of a projective transformation ϕ : Rd −→ Rd that takes P to Q
on the polar polytopes P4 and Q4. It is easy check that the map

ϕ4 : Rd −→ Rd

defined by

x 7→ ATx− c
−bTx + α

where (·)T denotes the transpose, is a projective transformation that satisfies

ϕ4(Q4) = P4.

Denote ϕ−4 = (ϕ4)−1, so that
Q4 = ϕ−4(P4).

Taking A = Id×d, b = 0, c = v, and α = 1 produces a projective transformation ϕ for
which

ϕ−4(x) = x + v

and the claim follows.

Let Q =
{

x ∈ Rd
∣∣ Ax ≤ b

}
be a combinatorial d-cube, with the origin in its interior,

and r1, . . . , r2d the rows of A are the facet outer normals. We may assume that they
are ordered by pairs of combinatorially opposite facets, that is, ri is normal to a facet
opposite to the facet normal to ri+1, for i = 1, 3, . . . , 2d− 1. The polar polytope Q4 is the
combinatorial d-crosspolytope with vertices p1 = 1

b1
r1, . . . , p2d = 1

b2d
r2d, and we denote

by `i = [p2i−1, p2i], for 1 ≤ i ≤ d, the line segments connecting the pairs of opposite
vertices. The following proposition proves Theorem 1.1(a).

Proposition 3.2. Let Q and Q′ be two combinatorial d-cubes. Then there is a sequence φ1, . . . φs
(s ≤ 8d− 1) of projective and normal transformations such that

Q′ = (φs ◦ · · · ◦ φ1)(Q).

Proof sketch. We present the sequence in terms of the polar d-crosspolytopes. For each
pair of antipodal vertices of P := Q4 we perform a sequence of 4 transformations, alter-
nating between projective and ray transformations, arriving at a d-crosspolytope which
is ray equivalent to the standard d-crosspolytope, namely the convex hull of the stan-
dard basis elements and their negatives. We refer to the sequence of 4 transformations
for the i-th pair of antipodal vertices as the i-th iteration. We denote the crosspolytope ob-
tained after the i-th iteration by P(i), its vertices by p(i)1 , p(i)2 , . . . , p(i)2d and the line segments

connecting its pairs of opposite vertices p(i)2j−1, p(i)2j by `
(i)
j for j = 1, 2, . . . d.
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1. Use Lemma 3.1 to translate the crosspolytope P(i−1) so that the origin lies on the
interior of the line segment `(i−1)

i = [p(i−1)
2i−1 , p(i−1)

2i ], say on its mid point to make a
canonical choice; this projective transformation produces a polytope P′.

2. For P′ = {x| Ax ≤ b} with vertex notation as in P(i−1), choose c2i−1 ≥ 1
b2i−1

so
that there exists an affine hyperplane Hi orthogonal to `i, which strictly separates
q2i−1 := c2i−1r2i−1 from Vert(P′) \ {p2i−1}. To make a canonical choice, let c be the
infimum of the possible values for such c2i−1s, fix c2i−1 = c + 1 and fix the Hi as
above that intersects the ray spanned by q2i−1 at (c + 0.5)r2i−1.

Set P′′ = conv(q2i−1 ∪ P′). Then P′′ is ray equivalent to P′.

3. Again denote the vertices of P′′ by pi, in correspondence with the vertices of P(i−1),
so p2i−1 = q2i−1. Use again Lemma 3.1 to move the origin close enough to p2i−1
along the segment `i, that is, so that the origin and p2i−1 are on the same side
of the hyperplane Hi of step (2). To make a canonical choice, move the origin to
(c + 0.7)r2i−1. Then

Hi ∩ P′′ ∼= conv(Hi ∩ Span(pj) | j ∈ [2d] \ {2i− 1, 2i}).

(Here ∼= means combinatorially equivalent). The resulted polytope P′′′ is projec-
tively equivalent to P′′.

4. Set qj := Hi ∩ Span(pj) for j ∈ [2d] \ {2i− 1, 2i}. Then
P(i) = conv(q1, . . . , q2i−2, p2i−1, p2i, q2i+1,...,q2d) is ray equivalent to P′′′.

After performing this process for every pair of antipodal vertices we obtain a com-
binatorial d-crosspolytope, with segments `1, . . . , `d, such that, for each 1 ≤ i ≤ d, there
exists an affine hyperplane Hi, which is orthogonal to `i, and contains all other segments
`j, j 6= i. It follows that the segments `1, . . . , `d all intersect in a point, and are pairwise
orthogonal.

We perform the same procedure for Q′4 to get a combinatorial d-crosspolytope which
is normally equivalent to the standard d-crosspolytope. To finish, we do a final normal
transformation to concatenate the two sequences of transformations performed on Q
and on Q′. In fact, the resulted 3 normal transformations in a row can be replaced by a
single one. This algorithm gives s = 8d− 1.

To conclude Theorem 1.1(b), that is, that the realization space R is contractible, we
note that the (arbitrarily) canonical choices in each of the 4 steps of our algorithm, pro-
duce a continuous path from any point x ∈ R to the point p ∈ R corresponding to the
standard cube. See [3] for the details, and a figure depicting an iteration of the algorithm
for an octahedron.
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4 A cubical connector d-polytope and the C-connected sum

Definition 4.1. A d-tower of s cubes is a cubical stacked d-polytope T obtained by stack-
ing on the facet opposite to the facet stacked on in the previous step.

Explicitly, for s = 1 it is just a d-cube. Mark some two opposite facets as bottom and
top. For s > 1, a d-tower of s cubes is obtained from a d-tower of s− 1 cubes with bottom
facet F and top facet F′ by stacking a d-cube onto F′. Then the polytope T has a unique
bottom facet and a unique top facet.

Given two combinatorial (d− 1)-cubes Q1 and Q2, we use Proposition 3.2 to construct
a d-tower having bottom facet Q′1 and top facet Q′2, with Q′i projectively equivalent to Qi,
i = 1, 2 . The following lemma shows how to translate each normal transformation from
Proposition 3.2 into a d-tower of 1 cube.

Lemma 4.2. Let Q1 and Q2 be two combinatorial (d− 1)-cubes which are normally equivalent.
Then there exists a d-cube Q in which Q1 and Q2 (both realized in Rd) are opposite facets.

Proof. Assume that both Q1 and Q2 are realized in Rd on the last coordinate = 0 hyper-
plane. Lift the vertices of Q2 (say to height 1), and take the convex hull, denote it by
Q.

Here is an explicit description of Q: Let A1, A2 ∈ R(2d−2)×(d−1) and b1, b2 ∈ R2d−2 be
such that

Q1 =
{

x ∈ Rd−1
∣∣∣ A1x ≤ b1

}
, Q2 =

{
x ∈ Rd−1

∣∣∣ A2x ≤ b2

}
.

The fact that Q1 and Q2 are normally equivalent means that A1 = A2. We define

A =


|

A1 b1 − b2
|

0 · · · 0 1
0 · · · 0 −1

 , b =


|

b1
|
1
0

 , (4.1)

and
Q =

{
x ∈ Rd

∣∣∣ Ax ≤ b
}

.

Applying Lemma 4.2 to each of the normal transformations in Proposition 3.2, and
Lemma 2.3 to glue each such new d-cube to the previously constructed polytope so that
the result is again a convex polytope, we conclude Theorem 1.2:

Corollary 4.3. Let Q and Q′ be two combinatorial (d− 1)-cubes. Then there is a d-tower of 4d
cubes with bottom facet projectively equivalent to Q and top facet projectively equivalent to Q′.
We call this tower a cubical connector and denote it C(Q, Q′).
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Definition 4.4. Let Q1 and Q2 be cubical d-polytopes. Let F1 be a facet of Q1, F2 a facet
of Q2, and C = C(F1, F2) the appropriate cubical connector (a tower of 4d cubes). The
C-connected sum Q = Q1#Q2 is the cubical d-polytope obtained by taking the connected
sum Q1#F1C#F2 Q2.

5 Filling the gc-cone

We apply the connected sum construction to appropriate AKN-polytopes (see [2]) thus
obtaining sequences of cubical d-polytopes with corresponding gc-vector sequences ap-
proaching any ray in the nonnegative orthant of Rbd/2c.

Lemma 5.1. Let Q1#Q2 be a C-connected sum then

gc
1(Q1#Q2) = gc

1(Q1) + gc
1(Q2) + (4d + 1)2d−1,

gc
i (Q1#Q2) = gc

i (Q1) + gc
i (Q2) (2 ≤ i ≤ bd/2c).

(5.1)

Proof sketch. Let us first observe that for the (usual) connected sum Q#FQ′, when Q and
Q′ are cubical d-polytopes we have

f (Q#FQ′, t) = f (Q, t) + f (Q′, t)− f (�d−1, t)− td−1.

Then by a straightforward computation the claim on the cubical g-vectors follows; we
omit the details here.

The following proves Theorem 1.3:

Proposition 5.2. Let r be any ray in the nonnegative orthant in Rbd/2c. Then there exists a
sequence {Qn}∞

n=1 of cubical d-polytopes with the sequence {gc(Qn)}∞
n=1 approaching r.

Proof sketch. To construct the sequence Qn approaching r, the ray spanned by (s1, . . . ,
sbd/2c), we start by constructing a sequence having the correct ratio between the bd/2c-th
coordinate and the (bd/2c − 1)-th coordinate. Take the sequences from [2] approaching
the bd/2c-th coordinate and the (bd/2c − 1)-th coordinate:

Qm = Q(bd/2c , d, m), m→ ∞ and Q′l = Q(bd/2c − 1, d, l), l → ∞,

Let c =
sbd/2c−1

sbd/2c
. For each m ≥ d, define l = dlog c + m + log me, take the correspond-

ing subsequence of Q′l’s (we abuse notation and denote it again by Q′l), and construct
their C-connected sum:

Qn = Qm#Q′l, n→ ∞.

Analyzing the gc-vector of Qm and Q′l, and using Lemma 5.1 we obtain

lim
n→∞

gc
bd/2c−1(Qn)

gc
bd/2c(Qn)

=
sbd/2c−1

sbd/2c
.
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Do the same with the new sequence and an AKN-sequence approaching the (bd/2c−
2)-th ray, etc. Note that proceeding in this way (from the last coordinate backwards)
does not influence the ratios already taken care of, because the gc-entries are 0 after the
dominating coordinate in the AKN construction. For the last ratio a slight adaptation is
needed according to the formula for gc

1 in Lemma 5.1.

6 Concluding remarks: Generalizations and open ques-
tions

Let us start off by remarking that the bound on the number of iterated projections and
normal transformations may not be optimal, and the reason for this may lie in the fact
that we are not allowing the full action by projective transformations and normal trans-
formations, as we want to stay in the world of polytopes. Indeed, purely from a naive
dimension count for the realization space of the d-cube (2d2) compared to the projective
linear group (d(d + 2)) it might be possible that only a constant number of these opera-
tions suffice (namely 3, projective followed by normal followed by projective). We leave
this as an open problem.

Problem 6.1. How many normal and projective transformations are needed to transform any
combinatorial cube into the standard one?

Second is the natural question of more classes of combinatorial types of polytopes
that are connected by normal and projective transformations. Let us call those poly-
topes PN-unique. Dually, let us call polytopes weakly-PR-unique if they are related by
projective transformation, and a movement of its vertices along the rays they generate
within the same combinatorial type. But in the dual, this permits moving some facet
hyperplanes to infinity. If we want the dual to PN-uniqueness, then we add the con-
dition that the origin has to be in the interior of the polytope at all times; we call such
polytopes PR-unique. Then the PR-unique polytopes are precisely dual to the PN-unique
polytopes.

We note the following simple fact about simplicial stacking (connected sum with a
simplex S) on PR-unique polytopes:

Proposition 6.2. If P is PR-unique and F a simplex facet of P, then P#FS is PR-unique.

Proof. Do PR-transformations so that the P part has the correct shape, then get the new
vertex v to its desired position u with transformations that do not effect the P part: this
can always be done with a sequence of 3 PR-transformations. For example, scale v by ε

so that εv is close enough to F, namely so that the line through u and εv intersects the
interior of F, say at w. Then move the origin to w, then scale εv to u.
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We immediately conclude:

Corollary 6.3. Every polygon, and more generally every stacked polytope, is PR-unique. In
particular, in every dimension d ≥ 2, there are infinitely many combinatorial types of PR-unique
polytopes.

This is in contrast to projectively unique polytopes, which are only finitely many
in dimension 2 and 3. (However, in sufficiently large fixed dimension d there exist
projectively unique d-polytopes with arbitrarily many vertices – this was proved for
d ≥ 69 by Adiprasito and Ziegler [4], answering a question of Perles and Shephard [8].)

Let us briefly recall two polytopal constructions from [6], and then give two results
related to these constructions:

• The free join of two polytopes P and Q is the (dim P + dim Q + 1)-polytope ob-
tained by taking conv(P ∪Q) when P and Q are realized in skew affine spaces.

• The subdirect sum of two polytopes P and Q is the (dim P + dim Q)-polytope
obtained by taking conv(P ∪ Q) when P and Q are realized so that their affine
hulls intersect in a single point, which is a relatively interior point of the face F of
P and the face G of Q. The dual construction is called the subdirect product.

Proposition 6.4. The free join of two polytopes P and Q is weakly-PR-unique if and only if both
components are.

This follows easily, as we may act on each component separately. The same is not true
for PR-uniqueness, and therefore PN-uniqueness. A counterexample is the cone over the
crosspolytope. Indeed, it follows from the following observation, that is straightforward
from the definitions:

Lemma 6.5. If P is PR-unique then every facet of P is projectively unique.

The next result holds for PN-uniqueness, by following the proof of Proposition 3.2
for the cube case.

Theorem 6.6. The subdirect sum of a PR-unique polytope with a simplex is PR-unique, and
vice versa. Dually, the subdirect product with a simplex is PN-unique if and only if the original
polytope is.

This is especially interesting if one considers only those polytopes that are obtained
as products of simplices. These are PN-unique by the above theorem (and include the
cube). Moreover, the algorithm described in Proposition 3.2 goes through verbatim,
and is continuously dependent on the starting geometry. Hence, we once again obtain
that the realization space of such polytopes is contractible (a fact not known for general
PN-unique or PR-unique polytopes). We end with a question:

Problem 6.7. Is the dodecahedron PN-unique?
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