
Séminaire Lotharingien de Combinatoire 84B (2020) Proceedings of the 32nd Conference on Formal Power
Article #84, 12 pp. Series and Algebraic Combinatorics (Online)

On Cohen–Macaulay Hopf monoids in species
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Abstract. We study Cohen–Macaulay Hopf monoids in the category of species. The
goal is to apply techniques from topological combinatorics to the study of polyno-
mial invariants arising from combinatorial Hopf algebras. Given a polynomial invari-
ant arising from a linearized Hopf monoid, we show that under certain conditions
it is the Hilbert polynomial of a relative simplicial complex. If the Hopf monoid is
Cohen–Macaulay, we give necessary and sufficient conditions for the corresponding
relative simplicial complex to be relatively Cohen–Macaulay, which implies that the
polynomial has a nonnegative h-vector. We apply our results to the weak and strong
chromatic polynomials of acyclic mixed graphs, and the order polynomial of a double
poset.
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1 Introduction

Suppose we have a sequence A0, A1, . . . of finite sets and, for each a ∈ Ai, we have a
polynomial p(a, x) with the property that p(a, k) ∈ N for all k ∈ N. Recall that the
W-transform of a polynomial p(a, x) is given by

W(a, x) = (1− x)d+1 ∑
k≥0

p(a, k)xk

where d is the degree of p(ai, k). The W-transform is a polynomial of degree d with
integer coefficients. Write W(a, x) = ∑d

k=0 hkxk, and refer to (h0, . . . , hd) as the h-vector
of p(a, x). When is the h-vector nonnegative? When this happens, we say that p(a, k) is
h-positive. There is a similar concept for quasisymmetric functions called F-positivity,
where F refers to the basis of fundamental quasisymmetric functions.

A classical example of the above problem is where An is the set of graphs with vertex
set [n] = {1, . . . , n}, and p(G, k) is the chromatic polynomial. In this case, the h-vector is
always nonnegative, as was shown by Brenti [6].

We will give sufficient conditions for nonnegativity of the h-vector for the weak and
strong chromatic polynomials of an acyclic mixed graph, and for the order polynomial
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of a double poset. Our conditions also imply F-positivity for corresponding quasisym-
metric functions.

Our first observation is that all of these polynomial invariants arise from the theory
of Hopf monoids. If we have collections of labeled objects, with rules for how to com-
bine the combinatorial objects and decompose them, and the rules are ‘well-behaved’,
then we have a linearized Hopf monoid. We review the definition in Section 2. If we
have some distinguished Hopf submonoid S satisfying certain conditions, then there
is a polynomial invariant χS

H(h, k) which counts decompositions of an H-structure into
S-structures. For example, graphs form a linearized Hopf monoid G, and if S is the sub-
monoid of edgeless graphs, then χS

G(g, k) counts decompositions into edgeless graphs,
and thus is the chromatic polynomial. We refer the polynomial χS

H(h, k) as the charac-
teristic polynomial of h with respect to S.

We recently [13] gave conditions for when characteristic polynomials are Hilbert
polynomials. Given a linearized Hopf monoid H, a geometric Hopf submonoid S, and
an H-structure h, we constructed a relative simplicial complex (Σ(h), ΓS(h)) such that
χS

H(h, k + 1) is the Hilbert polynomial of the double cone of (Σ(h), ΓS(h)). The complex
ΓS(h) is a generalization of the coloring complex of a graph [12].

Thus, if our sets Ai form a linearized Hopf monoid and our polynomial invariant is
a characteristic polynomial, then we are studying Hilbert polynomials of relative sim-
plicial complexes. If a relative simplicial complex is relatively Cohen–Macaulay, then
the Hilbert polynomial is h-positive. In our case, the corresponding quasisymmetric
functions are also F-positive. We arrive at the problem we study in this paper: find
nice combinatorial conditions on H, S and h to ensure that (Σ(h), ΓS(h)) is relatively
Cohen–Macaulay, to obtain a new tool for showing h-positivity. Our main assumption is
that H is Cohen–Macaulay, which means that Σ(h) is Cohen–Macaulay for every h. This
tends to be true for most examples we know of.

Theorem 1.1. Let H be a linearized Hopf monoid and let S be a geometric Hopf submonoid. Let
N be a finite set, and let h ∈ HN. Then h is relatively Cohen–Macaulay with respect to S if and
only if the following condition is satisfied:

• For all S ⊂ T ⊆ N, if |T \ S| ≥ 2, then ΓS(h|T/S) is a connected pure simplicial complex
of dimension dim Σ(h|T/S)− 1.

Instead of trying to determine which polynomials are h-positive, as was done with
the chromatic polynomial [6], or trying to determine which subcomplexes ΓS(h) are
shellable from first principles as was done for the coloring complex in [9], we merely
have to determine when ΓS(h) is pure, connected, and has the right dimension.

We apply our techniques to three new examples: the weak and strong chromatic
polynomials of acyclic mixed graphs, and the order polynomial of a double poset. In all
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three examples, we obtain necessary and sufficient combinatorial conditions for determin-
ing whether or not the relative simplicial complexes are Cohen–Macaulay. Our approach
also implies known results for coloring complexes of hypergraphs [7], and can be used
to prove h-positivity results there.

The paper is organized as follows. In Section 2, we review linearized Hopf monoids,
along with the special example of acyclic mixed graphs. We also define the characteristic
polynomials and quasisymmetric functions, along with the strong chromatic polynomial.
In Section 3, we define our simplicial complexes, and the definition of Cohen–Macaulay
Hopf monoid. In that section we also focus on the example of acyclic mixed graphs, and
show that strong chromatic polynomial of an acyclic mixed graph is h-positive. Then we
apply our theorem to the weak chromatic polynomial and to double posets. In Section 6,
we sketch a proof of our theorem.

2 linearized Hopf monoids

In this section, we study Hopf monoids in the category of linear species. The motiva-
tion is that many examples of combinatorial Hopf algebras come from linearized Hopf
monoids in set species. Moreover, the coproduct of a basis element is a multiplicity-free
sum of tensors of basis elements. A set species is a functor F : Set→ Set from the category
of finite sets with bijections, to the category of finite sets with bijections. A linear species
is a functor F : Set → Vec from the category of finite sets with bijections to the category
of finite dimensional vector spaces over a field K and linear transformations. Given a
set species F, there is an associated linear species KF called the linearization: we define
(KF)N to be the vector space with basis FN. We refer to f as an F-structure if there exists
a finite set N such that f ∈ FN.

A Hopf monoid is a Hopf monoid object in the category of linear species [3]. We give
some of the structural definition and axioms related to associativity and compatability.
There are also unit, counit morphisms and antipode axioms. We refer to [4, 1] for more
details. For every pair of disjoint finite sets M, N, we have linear transformations µM,N :
HM ⊗HN → HMtN and ∆M,N : HMtN → HM ⊗HN. We refer to µ as multiplication and
∆ as comultiplication. We require several axioms, including:

1. µL,MtN ◦ 1L ⊗ µM,N = µLtM,N ◦ µL,M ⊗ 1N

2. 1L ⊗ ∆M,N ◦ ∆L,MtN = ∆L,M ⊗ 1N ◦ ∆LtM,N.

3. ∆AtC,BtD ◦ µAtB,CtD = µA,C ⊗ µB,D ◦ 1A ⊗ τB,C ⊗ 1D ◦ ∆A,B ⊗ ∆C,D.

Note that these are equalities of functions, and 1 is the identity map. We let ∆L,M,N =
1L ⊗ ∆M,N ◦ ∆L,MtN, and x · y = µM,N(x⊗ y).

Let H be a species, and suppose that the linearization KH is a Hopf monoid. We say
that H is a (weakly) linearized Hopf monoid if KH is a Hopf monoid, and:
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Figure 1: an acyclic mixed graph, and some of its induced subgraphs.

1. for every pair of disjoint finite sets N, M, and every x ∈ HM, y ∈ HN, we have
x · y ∈ HMtN.

2. for every pair of disjoint finite sets M, N and every x ∈ HMtN, if ∆M,N(x) 6= 0 then
there exists x|M ∈ HM and x/M ∈ HN with ∆M,N(x) = x|M ⊗ x/M.

In other words, the monoid structure is also linearized, and the coproduct ∆M,N sends
basis elements to simple tensors of basis elements or 0. The notion of linearized Hopf
monoids have been introduced before [4]. Our definition is weaker, as we allow
∆M,N(h) = 0. We refer to h|T/S as a minor of h for any S ⊆ T ⊆ N. Most Hopf monoids
that have been studied are Hadamard products of linearized Hopf monoids and their
duals. Examples of linearized Hopf monoids include the Hopf monoid of graphs, posets,
matroids, hypergraphs, set partitions, linear orders, and generalized permutohedra. In
fact, almost every Hopf monoid studied in [1] is a linearized Hopf monoid. We will
often describe the multiplication and comuliplication operations on H, and leave it to
the reader to see that the induced maps on KH turn H into a linearized Hopf monoid.

Our primary example of a linearized Hopf monoid will be the linearized Hopf
monoid of acyclic mixed graphs. An acyclic mixed graph on N has both directed edges
and undirected edges, without any directed cycles. We require that our acyclic mixed
graphs are simple: there is at most one edge between any two vertices.

Now we describe a Hopf monoid structure on the species of acyclic mixed graphs.
Let MN be the set of acyclic mixed graphs on N. Given g ∈ MM and h ∈ MN, where
M and N are disjoint sets, we let g · h be the disjoint union. This defines our multiplica-
tion operation. Now we define the comultiplication operation. Let g ∈ MMtN. If there
exists a directed edge of the form (m, n) where m ∈ M and n ∈ N, then ∆M,N(g) = 0.
Otherwise, we let ∆M,N(g) = g|M ⊗ g|N, where g|M is the induced subgraph on M.
For example, given the acyclic mixed graph g, on the left in Figure 1, we see that
∆{a,b,d},{c}(G) = g1 ⊗ g2, where g1 is the acyclic mixed graph in the middle of Fig-
ure 1, and g2 is the vertex c by itself. On the other hand, ∆{d},{a,b,c}(g) = 0. With our
multiplication and comultiplication operations, M is a linearized Hopf monoid.

A geometric Hopf submonoid S of H is a species such that:

1. SN ⊆ HN for all N
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2. For x ∈ HM and y ∈ HN, we have x · y ∈ SMtN if and only if x ∈ SM and y ∈ SN.

3. For x ∈ SMtN, if ∆M,N(x) 6= 0, then x|M ∈ SM and x/M ∈ SN.

The motivation for the term geometric will be revealed in the next section. For the Hopf
monoid of acyclic mixed graphs, we can let SN = {DN} where DN is the edgeless graph.
Then S is a geometric Hopf submonoid.

For this paper, we focus on quasisymmetric function and polynomial invariants asso-
ciated to a geometric Hopf submonoid. The fact that our constructions form quasisymmetric
functions relies on the existence of certain characters, the Fock functors of Aguiar and
Mahajan [3], and the theory of combinatorial Hopf algebras [2]. However, we will limit
ourselves to the definitions of the invariants for this extended abstract.

Let N be a finite set, and let h ∈ HN. Let f : N → N. We say that f is S-proper
if h| f−1([i])/ f−1([i − 1]) exists and is an S-structure for all i. For example, consider an
acyclic mixed graph g, and let S be the geometric Hopf submonoid of edgeless graphs.
In order for a function f to be S-proper we see that, for every i, f−1([i]) must not contain
a vertex u that is part of a directed edge (u, v) with f (v) > i. If f (v) = j > i, then
g| f−1([j])/ f−1([j− 1]) does not exist. Moreover, the induced subgraph on f−1(i) has no
edges. This implies that, for every directed edge (u, v), we must have f (u) < f (v). Also,
for every undirected edge uv, we must have f (u) 6= f (v). Hence f is a strong coloring of
g as defined in [5].

Let {xi : i ∈N} be a set of commuting indeterminates.

Definition 2.1. Let H be a linearized Hopf monoid and S be a Hopf submonoid. Fix a
finite set N, and h ∈ HN. Then the characteristic quasisymmetric function with respect to S
is given by

ΨS
H(h) = ∑

f
∏

n∈N
x f (n)

where the sum is over S-proper functions. For k ∈ N, we define χS
H(h, k) to be the

number of S-proper functions with codomain [k]. This is the characteristic polynomial (in
the variable k) with respect to S.

For example, χS
M(g, k) counts the number of strong colorings, and is called the strong

chromatic polynomial, and ΨS
M(g) is the strong chromatic quasisymmetric function. When

g has no directed edges, we recover the usual chromatic polynomial, and Stanley’s chro-
matic symmetric function [11]. We will use χ̄(g, k) to denote the strong chromatic poly-
nomial. The strong chromatic polynomial of the graph g on the left in Figure 1 has
h-vector (0, 1, 2, 3).



6 Jacob A. White

bc

b abd

ad

aabc

ab

Figure 2: An example of a simplicial complex coming from an M-structure.

3 Cohen–Macaulay Hopf Monoids

We define Cohen–Macaulay complexes and Cohen–Macaualay Hopf monoids. The for-
mer is a well-known concept, while the latter is new. We assume the reader is familiar
with terminology regarding simplicial complexes such as the link of a face σ, which we
denote linkΣ(σ), reduced homology H̃i(Σ), and relative homology. A simplicial complex
Σ is Cohen–Macaulay if dim H̃i(linkΣ(σ)) = 0 for i < dim linkΣ(σ) for every σ ∈ Σ.

Let H be a linearized Hopf monoid. Let N be a finite set, and consider h ∈ HN. We
define the simplicial complex Σ(h). The vertex set V(h) consists of all nonempty S ⊂ N
for which ∆S,N\S(h) 6= 0. We partially order V(h) by inclusion, and let Σ(h) be the order
complex, which consists of chains ∅ ⊂ S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊂ N such that ∆Si,N\Si

(h) 6= 0
for all i.

As an example, let M be the Hopf monoid of acyclic mixed graphs. Let g be the
acyclic mixed graph on the left in Figure 1. Then Σ(g) is depicted in Figure 2.

The relevance of Σ(h) is that the algebraic structure of Σ(h) encodes combinatorial
information about h. Namely, χH

H(h, k + 1) is the Hilbert polynomial of the double cone
over Σ(h) [13].

We say that H is Cohen–Macaulay if Σ(h) is Cohen–Macaulay for every H-structure h.

Theorem 3.1. Let H be a linearized Hopf monoid. Then H is Cohen–Macaulay if and only if for
every finite set N, every h ∈ HN, and every i < |N|, we have dim H̃i(Σ(h)) = 0.

Note that the advantage of the theorem is that we do not have to consider homology
groups of links. For many examples of linearized Hopf monoids appearing in the litera-
ture, all the complexes Σ(h) are contractible, and our theorem immediately implies that
H is thus Cohen–Macaulay.

Proposition 3.2. The species M of acyclic mixed graphs is a Cohen–Macaulay Hopf monoid.
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Figure 3: An example of a subcomplex.

Proof. For an acyclic mixed graph g, we define a partial order p(g) such that Σ(g) =
Σ(p(g)). Given nodes m, n ∈ N, we say m ≤ n in p if there exists a directed path
(using only directed edges) from n to m in g. This defines a partial order p(g), with
Σ(p(g)) = Σ(g). It is known that Σ(p(g)) is a triangulation of the poset polyhedron
[1]. Hence Σ(p(g)) is contractible for any partial order, and we see that Σ(g) has trivial
homology below top dimension for every acyclic mixed graph g. In particular, M is
Cohen–Macaulay.

Now we discuss relative simplicial complexes. A relative simplicial complex on a set
V consists of a pair (Σ, Γ) of simplicial complexes such that every face of Γ is a face of ∆.
A relative complex (Γ, Σ) is relatively Cohen–Macaulay if dim H̃i(linkΣ(σ), linkΓ(σ)) = 0
for i < dim linkΣ(σ) for every σ ∈ Σ.

Now let S be a geometric Hopf submonoid. Given a H-structure h, we let ΓS(h) be
the subcomplex of Σ(h) consisting of chains ∅ ⊂ S1 ⊆ · · · ⊆ Sk ⊂ N such that h|Si /Si−1
is not a S-structure for some i ∈ [k + 1], where we define Sk+1 = N. This generalizes
the coloring complex of a graph as introduced by Steingrímsson [12]. If we let g be
the acyclic mixed graph on the left in Figure 1, and we let S be the geometric Hopf
submonoid of edgeless graphs, then ΓS(g) is depicted in Figure 3.

Our main reason for studying relative simplicial complexes is that the characteristic
polynomial for S is essentially a Hilbert polynomial [13]. This is also the reason why
refer to S as a geometric Hopf submonoid. That is, given an H-structure h, χS

H(h, k + 1) is
the Hilbert polynomial associated to the double cone over the relative simplicial complex
(Σ(h), ΓS(h)).

We say that h is relatively Cohen–Macaulay (with respect to S) if (Σ(h), ΓS(h)) is rel-
atively Cohen–Macaulay. This implies that χS

H(h, k + 1) is h-positive and ΨS
H(h) is F-

positive.
Now we apply Theorem 1.1 to the Hopf monoid of acyclic mixed graphs. Let S be the
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Hopf submonoid of edgless graphs. Let N be a finite set, and let g be an acyclic mixed
graph. Then ΓS(g) is always a connected pure simplicial complex of dimension |N| − 1.
Since minors of acyclic mixed graphs are also acyclic mixed graphs, the condition of
Theorem 1.1 holds.

Theorem 3.3. Let S be the geometric Hopf submonoid of edgeless graphs. Let g be an acyclic
mixed graph. Then g is relatively Cohen–Macaulay with respect to S. Moreover, χ̄(g, k + 1) is
h-positive, and the strong chromatic symmetric function ΨS

M(g) is F-positive.

4 Another application to acyclic mixed graphs

Another polynomial invariant associated to acyclic mixed graphs is the weak chromatic
polynomial. The weak chromatic polynomial χ(g, k) counts the number of functions f :
V → [k] subject to:

1. if (u, v) is a directed edge, then f (u) ≥ f (v),

2. if uv is an undirected edge, then f (u) 6= f (v).

The weak chromatic polynomial also comes from a geometric Hopf submonoid.
Given a finite set N, let ~DN be the set of directed graphs. Then ~D forms a geometric
Hopf submonoid. However, it is not the case that every acyclic mixed graph is relatively
Cohen–Macaulay with respect to ~D. The simplest example is given by the graph on the
left in Figure 1. The reader can check that the h-vector for χ(g, k) is given by (0, 3, 4,−1),
which has negative entries.

Given an acyclic mixed graph g, and two undirected edges e and f , let C be the
smallest convex subset of p(g) containing the endpoints of e and f , and let I be the
smallest ideal containing the endpoints of e. We call e and f crossing if the C ∩ I contains
one vertex of f and not the other. We show in the extended version that if g has a pair
of noncrossing edges, then g has a minor where Γ~D(g|T/S) which is disconnected.

If g has no pair of crossing edges then g is noncrossing. When g is noncrossing, Γ~D(g)
is connected, pure and of the correct dimension. It is clear that being noncrossing is
closed under minors, so the same fact is true of the Γ-complex for every minor. Hence,
Theorem 1.1 applies.

Theorem 4.1. Let S be the geometric Hopf submonoid of directed graphs. Let g be an acyclic
mixed graph. Then g is relatively Cohen–Macaulay with respect to S if and only if g is non-
crossing. Moreover, χ(g, k + 1) is h-positive, and the corresponding weak chromatic symmetric
quasifunction is F-positive.
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5 Double Posets

As our second application, we consider the Hopf monoid of double posets. This is
related to the Hopf algebra of double posets introduced by Malvenuto and Reutenauer
[10]. A double poset p is on N is a triple (N,<1,<2), where <1 and <2 are both strict
partial orders. Grinberg [8] also has studied them, and showed that many examples of
quasisymmetric functions in the literature are p-partition enumerators for some double
poset p.

A p-partition is a function f : p→N subject to:

1. if x <1 y, then f (x) ≤ f (y).

2. if x <1 y and y <2 x, then f (x) < f (y).

The p-partition enumerator is given by

K(p) = ∑
f

∏
v∈N

x f (v)

and the corresponding order polynomial is Ω(p, k) which counts the number of p-
partitions f with f (x) ≤ k for all x.

We show how the p-partition enumerator does arise from the theory of linearized
Hopf monoids. Let DN be the set of double posets on N. Given p ∈ DM and q ∈ DN,
where M and N are disjoint sets, we define a double poset p · q = (M t N,<1,<2). For
x, y ∈ M t N, we say x <1 y if one of the following holds:

1. x, y ∈ M and x <1 y in p.

2. x, y ∈ N and x <2 y in q.

For x, y ∈ M t N, we say x <2 y if one of the following holds:

1. x, y ∈ M and x <1 y in p.

2. x, y ∈ N and x <2 y in q.

3. x ∈ M and y ∈ N.

Hence we have a multiplication operation for D. Now we define the comultiplication.
Let p ∈ DMtN. We define p|M as follows: for x, y ∈ M, we say x <i y in p|M if and only
if x <i y in p. We define ∆M,N(p) = p|M ⊗ p|N if M is an order ideal of <1.

Proposition 5.1. The species D of double posets is a Cohen–Macaulay Hopf monoid.
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Figure 4: A double poset. The left diagram is <1, while the right is <2 .

It is not hard to see that D is a linearized Hopf monoid. For a double poset p, we see
that Σ(p) = Σ(<1). In particular, D is Cohen–Macaulay.

We let SN consist of double posets p on N for which there does not exist a pair
(x, y) with x <1 y and y <2 x. We call such pairs inversions. If y covers x with respect
to <1, then we call it a descent. Then S forms a geometric Hopf submonoid. Then
ΨS

H(p) = K(p).
Of course, it is not the case that K(p) is always F-positive, and hence p is not always

Cohen–Macaulay with respect to S. For example, K(p) = F2,1 + F1,2− F1,1,1 for the double
poset in Figure 4. A double poset satisfies the inversion-to-descent condition if whenever
(x, y) is and inversion, then there exists a descent (w, z) with x ≤1 w and z ≤1 y. It turns
out that the inversion-to-descent condition is more general than the notion of tertispecial
introduced by Grinberg.

We show in the full version that if p does not satisfy the inversion-to-descent con-
dition, then it has a minor whose subcomplex Γ(p|T/S) has dimension smaller than
expected. It turns out that this is the only obstruction.

Theorem 5.2. Let S be the geometric Hopf submonoid of double posets p such that do not have
inversions. Let p be a double poset. Then p is relatively Cohen–Macaulay with respect to S
if and only if p satisfies the inversion-to-descent condition. Moreover, K(p) is F-positive and
Ω(p, k + 1) is h-positive.

6 Elements of the proof

The hard part of the proof of Theorem 1.1 is the converse direction. Suppose that H
is a Cohen–Macaulay Hopf monoid, and let S be a geometric Hopf submonoid. Let
h satisfy the conditions of the converse direction. In the full version, we prove the
converse in stages. First, we show that it suffices to prove that dim H̃i(ΓS(h|T/S)) = 0
for i < dim Σ(h|T/S)− 1. The full result follows by using Mayer-Vietoris exact sequences
to reduce the study of links to joins of complexes arising from minors.
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We also claim the following result: if ΓS(h) is connected, pure, and has dimension
|N| − 1, then dim H̃i(ΓS(h)) = 0 for i < |N| − 1. This would imply the previous claim.
We prove this stronger claim by focusing on the types of relative simplicial complexes
that could possibly arise from our construction.

Let M be a collection of subsets of [n], including ∅ and [n], ordered by inclusion. We
let Int(M) be the set of intervals, ordered by inclusion. Let F be an order filter in Int(M).
Then define Σ(M) to be the order complex of M \ {∅, [n]}, and Γ(F , M) to consist of
those chains S1 ⊆ S2 · · · ⊆ Sk such that [Si, Si+1] ∈ F for some i ∈ [k + 1], where we let
Sk+1 = [n].

Lemma 6.1. Suppose Σ(M) is Cohen–Macaulay. Suppose the minimal elements of F have
length 2. If Γ(F , M) is connected, then dim H̃i(Γ(F , M)) = 0 for i < dim(Σ(M))− 1.

Proof Sketch. The proof proceeds by induction on the number of intervals of length 2 that
are not in F . In the base case, Γ(F , M) is the (n − 1)-skeleton of Σ(M), and hence is
Cohen–Macaulay.

Since F is non-empty, we have an interval of length two in F , and an interval of
length two that is not in F . The main idea is to find another pair (F ′, M′) such that
the intersection and union of Γ(F , M) and Γ(F ′, M′) are also complexes of the form
Γ(F ′′, M′′) for some F ′′ and M′′. Then we use induction and a Mayer-Vietoris exact
sequence for the pair Γ(F , M) and Γ(F ′, M′) in order to compute the reduced homology
of Γ(F , M). There are some technicalities involved to construct these things carefully,
and to make sure everything is connected.

For an arbitrary Cohen–Macaulay Hopf monoid H, and a Hopf submonoid S, let h be
an H-structure on [n]. Then we let M = {S ⊆ [n] : ∆S,[n]\S(h) 6= 0}. Then Σ(M) = Σ(h).
We let F = {[S, T] : h|T/S 6∈ ST\S}. Then Γ(F , M) = ΓS(h). If the latter is pure of
codimension 1, then the minimal elements of F consist only of intervals of length 2,
and the lemma applies. Hence we find that homology is concentrated in top dimension
for ΓS(h). So we see that if ΓS(h) is connected, pure, and has codimension 1, then its
homology is concentrated in top dimension.
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