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Combinatorics of the double-dimer model

Helen Jenne∗1
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Abstract. We prove that the partition function for tripartite double-dimer configura-
tions of a planar bipartite graph satisfies a recurrence related to the Desnanot–Jacobi
identity from linear algebra. A similar identity for the dimer partition function was
established nearly 20 years ago by Kuo and has applications to random tiling theory
and the theory of cluster algebras. This work was motivated in part by the potential
for applications in these areas. Additionally, we discuss an application to Donaldson–
Thomas and Pandharipande–Thomas theory which will be the subject of a forthcoming
paper. The proof of our recurrence requires generalizing work of Kenyon and Wilson;
specifically, lifting their assumption that the nodes of the graph are black and odd or
white and even.
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1 Introduction
Let G = (V1, V2, E) be a finite edge-weighted bipartite
planar graph embedded in the plane with |V1| = |V2|.
Let N denote a set of special vertices called nodes on
the outer face of G numbered consecutively in counter-
clockwise order. A double-dimer configuration on (G, N)
is a multiset of the edges of G with the property that
each internal vertex is the endpoint of exactly two
edges, and each vertex in N is the endpoint of exactly
one edge. In other words, it is a configuration of paths
connecting the nodes in pairs, doubled edges, and dis-
joint cycles of length greater than two (called loops). De-
fine a probability measure Pr where the probability of a
configuration is proportional to the product of its edge

1 2 3

4

567

8

Figure 1: A double-dimer con-
figuration on a grid graph with 8
nodes.

weights times 2`, where ` is the number of loops in the configuration. Kenyon and
Wilson initiated the study of the double-dimer model in [6], by showing how to compute
the probability that a random double-dimer configuration has a particular node pairing.

Before going into the details of Kenyon and Wilson’s work, we will describe Kuo’s
recurrence for dimer configurations, which is the motivation for our work, and state one of
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our main results. A dimer configuration (or perfect matching) of G is a collection of the
edges that covers all of the vertices exactly once. The weight of a dimer configuration is
the product of its edge weights. Let ZD(G) denote the sum of the weights of all possible
dimer configurations on G. In [7], Kuo proved that ZD(G) satisfies an elegant recurrence.

Theorem 1.1 ([7, Theorem 5.1]). Let G = (V1, V2, E) be a planar bipartite graph with a given
planar embedding in which |V1| = |V2|. Let vertices a, b, c, and d appear in a cyclic order on a
face of G. If a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G− {a, b, c, d}) = ZD(G− {a, b})ZD(G− {c, d}) + ZD(G− {a, d})ZD(G− {b, c}).

His proof uses a technique called graphical condensation, named for its resemblance to
Dodgson condensation, a method for computing the determinants of square matrices.
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Figure 2: The pairing of the nodes on the left
is a tripartite pairing because the nodes can be
colored contiguously using three colors so that
no pair contains nodes of the same color. The
pairing on the right is not a tripartite pairing be-
cause four colors are required.

We prove that when σ is a tripartite pair-
ing, a similar recurrence to Theorem 1.1
holds for ZDD

σ (G, N), the weighted sum of
all double-dimer configurations on (G, N)
with pairing σ.

A planar pairing σ is a tripartite pair-
ing if the nodes can be divided into three
circularly contiguous sets R, G, and B so
that no node is paired with a node in the
same set (see Figure 2). We often color the
nodes in the sets red, green, and blue, in
which case σ is the unique planar pairing
in which like colors are not paired.

Theorem 1.2 ([3, Theorem 1.0.2]). Let G = (V1, V2, E) be a finite edge-weighted planar bi-
partite graph with a set of nodes N. Divide the nodes into three circularly contiguous sets R, G,
and B such that |R|, |G| and |B| satisfy the triangle inequality and let σ be the corresponding
tripartite pairing1. Let x, y, w, v be nodes appearing in a cyclic order such that the set {x, y, w, v}
contains at least one node of each RGB color. If x, w ∈ V1 and y, v ∈ V2 then

ZDD
σ (G, N)ZDD

σ5
(G, N− {x, y, w, v})

= ZDD
σ1

(G, N− {x, y})ZDD
σ2

(G, N− {w, v}) + ZDD
σ3

(G, N− {x, v})ZDD
σ4

(G, N− {w, y})

where σi is the unique planar pairing on the corresponding node set in which like colors are not
paired together.

We illustrate Theorem 1.2 with an example.

1If |R|, |G|, and |B| do not satisfy the triangle inequality, there is no corresponding tripartite pairing σ.
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Example 1.3. If G is a graph with eight nodes colored red, green, and blue as below,
then σ = ((1, 8), (3, 4), (5, 2), (7, 6)). If x = 8, y = 1, w = 2, v = 5, then by Theorem 1.2,

ZDD
σ (N)ZDD

σ5
(N− 1, 2, 5, 8) = ZDD

σ1
(N− 1, 8)ZDD

σ2
(N− 2, 5) + ZDD

σ3
(N− 1, 2)ZDD

σ4
(N− 5, 8)
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We were motivated to find an analogue of Theorem 1.1 by its potential applications,
which we discuss in the next section.

1.1 Applications

Kuo’s work has a variety of applications. For example, Kuo uses graphical condensation
to give a new proof that the number of tilings of an order-n Aztec diamond is 2n(n+1)/2 [7,
Theorem 3.2] and a new proof for MacMahon’s generating function for plane partitions
that are subsets of a box [7, Theorem 6.1]. His results also have applications to random
tiling theory (see [7, Section 4.1]) and the theory of cluster algebras.

Cluster algebras are a class of commutative rings introduced by Fomin and Zelevin-
sky [2] to study total positivity and dual canonical bases in Lie Theory. The theory of
cluster algebras has since been connected to many areas of math, including quiver rep-
resentations, Teichmüller theory, Poisson geometry, and integrable systems [17]. In [8,
9], Tri Lai and Gregg Musiker study toric cluster variables for the quiver associated to
the cone over the del Pezzo surface dP3, giving algebraic formulas for these cluster vari-
ables as Laurent polynomials. Using identities similar to Kuo’s Theorem 1.1, they give
combinatorial interpretations of most of these formulas [8].

We expect Theorem 1.2 to have similar applications. In addition, by using both Theo-
rem 1.1 and Theorem 1.2 we can give a direct proof of a problem in Donaldson–Thomas
and Pandharipande–Thomas theory.

1.1.1 Application to Donaldson–Thomas and Pandharipande–Thomas theory.

Donaldson–Thomas (DT) theory, Pandharipande–Thomas (PT) theory, and Gromov–Wit-
ten (GW) theory are branches of enumerative geometry closely related to mirror symme-
try and string theory. The DT and GW theories give frameworks for counting curves2 on
a threefold X. A conjecture in [11, 12] gives a correspondence between the DT and GW
frameworks, which has been proven in special cases, such as when X is toric [13].

2The frameworks differ in what is meant by a curve on X.
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PT theory gives a third framework for counting curves when X is a nonsingular
projective threefold that is Calabi-Yau. The correspondence between the DT and PT
frameworks was first conjectured in [14] and was proven in [1], which is closely related to
the work in [16]. Specifically, let X be a toric Calabi-Yau 3-fold. Define ZDT(q) = ∑

n
Inqn,

where In counts length n subschemes of X, and ZPT(q) = ∑
n

Pnqn, where Pn counts stable

pairs on X (see [14]). Bridgeland proved that these generating functions coincide up to

a factor of M(q) =
∞
∏

n=1

1
(1− qn)n , which is the total q-weight of all plane partitions [10].

Theorem 1.4 ([1, Theorem 1.1]). ZDT(q) = ZPT(q)M(−q).

The application of Theorem 1.2 that we describe relates to Theorem 1.4 at the level
of the topological vertex. Define Vλ,µ,ν = qc(λ,µ,ν) ∑

π
q|π|, where the sum is taken over all

plane partitions π asymptotic to (λ, µ, ν). Maulik, Nekrasov, Okounkov, and Pandhari-
pande [11, 12] proved that ZDT(q) = Vλ,µ,ν and thus Vλ,µ,ν is called the DT topological
vertex. Let Wλ,µ,ν = qc(λ,µ,ν) ∑

i
diqi where di is a certain weighted enumeration of labeled

box configurations of length i [15]. In [15, Theorem/Conjecture 2] Pandharipande and
Thomas conjecture that Wλ,µ,ν is the stable pairs vertex, i.e. that ZPT(q) = Wλ,µ,ν.

Conjecture 1.5 ([15, Calabi-Yau case of Conjecture 4]). Vλ,µ,ν = Wλ,µ,νM(−q).

Pandharipande and Thomas remark that a straightforward (but long) approach to
this conjecture using DT theory exists [15]. In a forthcoming paper with Gautam Webb
and Ben Young [4], we give a direct proof by showing that Vλ,µ,ν is a single dimer model
and Wλ,µ,ν is a double-dimer model, and then using Theorems 1.1 and 1.2 to show that
both sides of the above equation satisfy the same recurrence.

2 Proof of Theorem 1.2

Presently, we discuss the main ideas behind the proof of Theorem 1.2. We start by giving
an overview of the results from [6, 5] that are needed for our work.

2.1 Background

Kenyon and Wilson gave explicit formulas for the probability that a random double-
dimer configuration has a particular node pairing σ. When σ is a tripartite pairing, this
probability is proportional to the determinant of a matrix.

To be more precise, we need to introduce some notation and definitions. Since G is
bipartite, we can color its vertices black and white so that each edge connects a black
vertex to a white vertex. Let GBW be the subgraph of G formed by deleting the nodes
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except for the ones that are black and odd or white and even. Define GWB analogously,
but with the roles of black and white reversed. Let GBW

i,j be the graph GBW with nodes
i and j included if and only if they were not included in GBW . For convenience, they
assume the nodes alternate in color, so all nodes are black and odd or white and even.
(If a graph G does not have this property, we can add edges of weight 1 to each node
that has the wrong color to obtain a graph whose double-dimer configurations are in a
one-to-one weight-preserving correspondence with double-dimer configurations of G.)

For each planar pairing σ, Kenyon and Wilson showed the normalized probability

P̂r(σ) := Pr(σ)
ZD(GWB)

ZD(GBW)
=

ZDD
σ (G, N)

(ZD(GBW))2

that a random double-dimer configuration has pairing σ is an integer-coefficient homo-

geneous polynomial in the quantities Xi,j :=
ZD(GBW

i,j )

ZD(GBW)
[6, Theorem 1.3].

For example, the normalized probability P̂r that a random double-dimer configura-
tion on eight nodes has the pairing ((1, 8), (3, 4), (5, 2), (7, 6)) (see Figure 1) is

P̂r
(

1 3 5 7
8 4 2 6

)
= X1,8X3,4X5,2X7,6 − X1,4X3,8X5,2X7,6 + X1,6X3,4X5,8X7,2

−X1,8X3,6X5,2X7,4 − X1,4X3,6X5,8X7,2 + X1,6X3,8X5,2X7,4.

Kenyon and Wilson gave an explicit method for computing these polynomials. They
defined a matrix P (DD) with entries P (DD)

σ,τ ; the rows are indexed by planar pairings
and the columns are indexed by odd-even pairings. They showed how to calculate the
columns of the matrix combinatorially and proved that for any planar pairing σ,

P̂r(σ) = ∑
odd-even pairings τ

P (DD)
σ,τ X′τ. (2.1)

where X′τ = (−1)# crosses of τ ∏
i odd

Xi,τ(i) [6, Theorem 1.4].

In the case where σ is a tripartite pairing, P̂r(σ) is a determinant of a matrix.

Theorem 2.1 ([5, Theorem 6.1]). Suppose that the nodes are contiguously colored red, green,
and blue (a color may occur zero times), and that σ is the (unique) planar pairing in which like
colors are not paired together. Let σ(i) denote the item that σ pairs with item i. We have

P̂r(σ) = det[1i,j colored differently Xi,j]
i=1,3,...,2n−1
j=σ(1),σ(3),...,σ(2n−1).

Initially, it seems that Theorem 1.2 will follow immediately from combining Theo-
rem 2.1 with the Desnanot–Jacobi identity.
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Theorem 2.2 (Desnanot–Jacobi identity). Let M = (mi,j)
n
i,j=1 be a square matrix, and let Mj

i
be the matrix resulting from M by deleting the ith row and the jth column for 1 ≤ i, j ≤ n. Then

det(M)det(Mi,j
i,j) = det(Mi

i)det(Mj
j)− det(Mj

i)det(Mi
j).

However, we run into some technical obstacles, which we illustrate with an example.

2.2 Example

Suppose we wish to prove the equation from Example 1.3:

ZDD
σ (N)ZDD

σ5
(N− {1, 2, 5, 8}) = ZDD

σ1
(N− {1, 8})ZDD

σ2
(N− {2, 5})

+ZDD
σ3

(N− {1, 2})ZDD
σ4

(N− {5, 8})

where recall that σ = ((1, 8), (3, 4), (5, 2), (7, 6)). Then the matrix M from Theorem 2.1 is

M =


X1,8 X1,4 0 X1,6
X3,8 X3,4 0 X3,6
X5,8 0 X5,2 0

0 X7,4 X7,2 X7,6

 .

Since the first row and column of M correspond to nodes 1 and 8, respectively, and
the third row and column correspond to nodes 5 and 2, we apply the Desnanot–Jacobi
identity with i = 1 and j = 3:

det(M)det(M1,3
1,3) = det(M1

1)det(M3
3)− det(M3

1)det(M1
3).

By Theorem 2.1, det(M) =
ZDD

σ (G, N)

(ZD(GBW))2 .

We also need to prove, for example, that

det(M3
3) =

ZDD
σ2

(G, N− {2, 5})
(ZD(GBW))2 (2.2)

where M3
3 =

X1,8 X1,4 X1,6
X3,8 X3,4 X3,6

0 X7,4 X7,6

. An

example of a double-dimer configura-
tion counted by ZDD

σ2
(G, N − {2, 5}) is

shown in Figure 3 to the right.
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Figure 3: Left: A double-dimer configuration
on a grid graph with node set N− {2, 5}. Right:
The same double-dimer configuration after rela-
beling the nodes.
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We cannot apply Theorem 2.1 to prove (2.2) because the nodes are not numbered
consecutively. We might hope to resolve this by relabeling the nodes, as shown in Figure
3.But since Kenyon and Wilson assume that all nodes are black and odd or white and
even, in order to satisfy the assumptions of Kenyon and Wilson’s theorem, we need
to add edges of weight 1 to nodes 2 and 3. Call the resulting graph G̃ and let X̃i,j =

ZD(G̃BW
i,j )

ZD(G̃BW)
. The matrix from Theorem 2.1 is

M̃ =

X̃1,6 0 X̃1,4
X̃3,6 X̃3,2 0

0 X̃5,2 X̃5,4


To prove (2.2) it suffices to show

(ZD(G̃BW))2 det(M̃) = (ZD(GBW))2 det(M3
3), (2.3)

since det(M̃) =
ZDD

σ2
(G̃, N− {2, 5})
(ZD(G̃BW))2

by Theorem 2.1.

Verifying (2.3) is a straightforward computation, but as we consider graphs with
more nodes, the computations quickly become more involved. To be able to interpret
the minors of Kenyon and Wilson’s matrix outside of small examples, we need to lift
their assumption that the nodes of the graph be black and odd or white and even.

Notice that under the assumption that the nodes of the graph are black and odd or

white and even, Xi,j =
ZD(GBW

i,j )

ZD(GBW)
=

ZD(Gi,j)

ZD(G)
. This suggests that the correct generaliza-

tion of Kenyon and Wilson’s matrix will have entries
ZD(Gi,j)

ZD(G)
.

2.3 Generalization of Kenyon and Wilson

The previous remark motivates our approach, which is to define Yi,j :=
ZD(Gi,j)

ZD(G)
and

P̃r(σ) =
ZDD

σ (G, N)

(ZD(G))2 . When G is a graph with nodes that are either black and odd or

white and even, ZD(G) = ZD(GBW), so Yi,j = Xi,j and P̃r(σ) = P̂r(σ).
Many of Kenyon and Wilson’s results from [6, 5] have analogues in the variables Yi,j.

Following Kenyon and Wilson’s approach, for any black-white pairing ρ, we define

Y′ρ = (−1)# crosses of ρ ∏
i black

Yi,ρ(i).
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Note that we work with black-white pairings rather than odd-even pairings since we are
not requiring that the nodes are black and odd or white and even. In [6, 5], black-white
pairings and odd-even pairings coincide, so Xi,j = 0 when i and j have the same parity,
which occurs exactly when they have the same color. In our general setting, Yi,j may be
nonzero when i and j have the same parity, but if i and j are the same color then there
are no dimer configurations of Gi,j, so Yi,j = 0.

Our analogue of Kenyon and Wilson’s matrix P (DD) (see (2.1)) is Q(DD). To define
Q(DD), we use Kenyon and Wilson’s work as a road map, proving analogues of Lemmas
3.1− 3.5 and Theorem 3.6 from [6]. The rows of Q(DD) are indexed by planar pairings
and columns are indexed by black-white pairings. To prove that Q(DD) is integer-valued,
we show that the columns of this matrix can be computed combinatorially. Given a
black-white pairing ρ, the corresponding column of Q(DD) can be computed (up to a
sign) by repeatedly applying the following transformation rule.

Rule 2.3 ([6]). If a pairing ρ is nonplanar, then there will exist items a < b < c < d such
that a and c are paired, and b and d are paired. Let the remaining pairs be denoted by
“rest”. Then the transformation rule is

ac|bd|rest→ −ab|cd|rest− ad|bc|rest.

To describe how we correct the signs of the column entries, we need two definitions.

Definition 2.4. If σ is an odd-even pairing, then signOE(σ) is the parity of the permuta-

tion
(

σ(1)
2

σ(2)
2 · · · σ(2n−1)

2

)
, written in one-line notation.

Definition 2.5. If ρ is a black-white pairing, then we can write ρ = ((b1, w1), . . . , (bn, wn)),
where b1 < b2 < · · · < bn. Let r : {w1, . . . , wn} → {1, . . . , n} be the map defined by
r(k) = #{i : wi ≤ wk}. Then signBW(ρ) is the parity of the permutation(
r(w1) r(w2) · · · r(wn)

)
, written in one-line notation.

Rule 2.6 ([3, Rule 2.5.2]). For a black-white pairing ρ, repeatedly apply Rule 2.3 until we
have written ρ as a linear combination of planar pairings. Then multiply each planar
pairing σ in this sum by signOE(σ)signBW(ρ).

We prove the following theorem, which generalizes [6, Theorem 1.4].

Theorem 2.7 ([3, Theorem 1.3.1]). Any black-white pairing ρ can be transformed into a formal
linear combination of planar pairings by repeated application of Rule 2.6, and the resulting linear
combination does not depend on the choices made when applying Rule 2.6, so that we may write

ρ→ ∑
planar pairings σ

Q(DD)
σ,ρ σ.
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For any planar pairing σ, these same coefficients Q(DD)
σ,ρ satisfy the equation

P̃r(σ) :=
ZDD

σ (G, N)

(ZD(G))2 = ∑
black-white pairings ρ

Q(DD)
σ,ρ Y′ρ.

Establishing that we can compute the columns of Q(DD) using Rule 2.6 is key in
proving Theorem 2.13, which is our generalization of Kenyon and Wilson’s determinant
formula (Theorem 2.1). Once we have Theorem 2.13 we will be able to apply the proof
method described in Section 2.1 to prove Theorem 1.2.

2.3.1 Generalization of Theorem 2.1

To prove Theorem 2.1, Kenyon and Wilson use two results from their study of groves. If
G is a finite edge-weighted planar graph with a set of nodes, a grove is a spanning acyclic
subgraph of G such that each component tree contains at least one node. The weight of
a grove is the product of the weights of the edges it contains.

The connected components of a grove partition the nodes into a planar partition. If σ

is a planar partition of 1, 2, . . . , n, let Pr(σ) be the probability that a random grove of G

partitions the nodes according to σ. Kenyon–Wilson showed that
...
Pr(σ) :=

Pr(σ)
Pr(1|2| · · · |n)

is an integer-coefficient homogeneous polynomial in the variables Li,j
3 [6, Theorem 1.2].

The grove polynomials
...
Pr(σ) and the double-dimer polynomials P̂r(σ) are related: when

σ is a pairing, the grove polynomials specialize to the double-dimer polynomials.

Theorem 2.8 ([6, Theorem 4.2]). If a planar partition σ only contains pairs and we make the
following substitutions to the grove partition polynomial

...
Pr(σ):

Li,j →
{

0, if i and j have the same parity,
(−1)(|i−j|−1)/2Xi,j, otherwise,

then the result is signOE(σ) times the double-dimer pairing polynomial P̂r(σ), when we interpret
σ as a pairing.

In the case where σ is a partition that is a tripartite pairing, the grove polynomial...
Pr(σ) can be expressed as a Pfaffian.

Theorem 2.9 ([5, Theorem 3.1]). Let σ be the tripartite pairing partition defined by circularly
contiguous sets of nodes R, G, and B, where |R|, |G|, and |B| satisfy the triangle inequality. Then

...
Pr(σ) = Pf

 0 LR,G LR,B
−LG,R 0 LG,B
−LB,R −LB,G 0


3When G is viewed as a resistor network with conductances equal to the edge weights, Li,j is the current

flowing into node j if node i were set to one volt with all other nodes set to zero volts [6, Appendix A].



10 Helen Jenne

where LR,G is the submatrix of L whose rows are the red nodes and columns are the green nodes.

Kenyon and Wilson’s Theorem 2.1 follows quickly from Theorems 2.8 and 2.9. We
prove Theorem 2.13 similarly. We can use Theorem 2.9 as stated, but we need an ana-
logue of Theorem 2.8 to obtain our polynomials P̃r(σ) from the grove polynomials.

In Theorem 2.8, (−1)(|i−j|−1)/2 is always an integer because Xi,j = 0 if i and j have
the same parity. Without the assumption that the nodes are black and odd or white and
even, Yi,j may be nonzero for i and j with the same parity. Therefore we need a different
way to define the sign of a pair of nodes (i, j). To motivate this definition, notice that
if two nodes of opposite color b and w have the same parity, it cannot be the case that
the nodes between b and w alternate black and white. Therefore we must keep track of
the number of consecutive nodes of the same color between b and w. Consecutive nodes
of the same color appear in pairs. For example, if we have a graph with eight nodes so
that nodes 1, 3, 4, and 6 are black and nodes 2, 5, 7, 8 are white, there are two pairs of
consecutive nodes of the same color: (3, 4) and (7, 8). Since we frequently use the term
pair when describing pairings of the nodes, we will refer to pairs of consecutive nodes
as couples of consecutive nodes instead.

Definition 2.10 ([3, Definition 2.1.6]). If (b, w) is a pair of nodes, let ab,w be the number
of couples of consecutive nodes of the same color in the interval [min{b, w}, min{b, w}+
1, . . . , max{b, w}]. Define

sign(b, w) = (−1)(|b−w|+ab,w−1)/2

We observe that when the nodes of G alternate black and white, ab,w = 0 for all pairs
(b, w), so this agrees with Kenyon and Wilson’s definition of the sign of a pair of nodes.

Have established Definition 2.10, we can state our analogue of Theorem 2.8:

Theorem 2.11 ([3, Theorem 3.1.3]). If a planar partition σ only contains pairs and we make
the following substitutions to the grove partition polynomial

...
Pr(σ):

Li,j →
{

0, if i and j are the same color,
sign(i, j)Yi,j, otherwise,

then the result is signc(N)signOE(σ)P̃r(σ).

In Theorem 2.11, signc(N) depends on the order in which the couples of consecutive
nodes of the same color appear (see [3, Definition 2.1.8]). We prove Theorem 2.11 by
comparing Rule 2.6 to Kenyon and Wilson’s transformation rule for groves (see [6, Rule
1]) and applying the following lemma.

Lemma 2.12 ([3, Lemma 2.1.13]). If ρ is a black-white pairing,

signc(N)signBW(ρ) ∏
(b,w)∈ρ

sign(b, w) = (−1)# crosses of ρ.
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Recall that Kenyon and Wilson’s Theorem 2.1 states that when σ is a tripartite pairing,

P̂r(σ) = det[1i,j colored differently Xi,j]
i=1,3,...,2n−1
j=σ(1),σ(3)...,σ(2n−1).

By reordering the columns, we see that

P̂r(σ) = signOE(σ)det[1i,j colored differently Xi,j]
i=1,3,...,2n−1
j=2,4,...,2n .

Remarkably, our generalization of this theorem has no additional global sign.

Theorem 2.13 ([3, Theorem 1.3.2]). Let G be a finite edge-weighted planar bipartite graph with
a set of nodes. Suppose that the nodes are contiguously colored red, green, and blue (a color may
occur zero times), and that σ is the (unique) planar pairing in which like colors are not paired
together. We have

P̃r(σ) = signOE(σ)det[1i,j colored differently Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

.

where b1 < b2 < · · · < bn are the black nodes and w1 < w2 < · · · < wn are the white nodes.

By combining Theorem 2.13 with the Desnanot–Jacobi identity, we prove our main result:

Theorem 2.14 ([3, Theorem 1.3.3]). Let G = (V1, V2, E) be a finite edge-weighted planar
bipartite graph with a set of nodes N. Divide the nodes into three circularly contiguous sets R,
G, and B such that |R|, |G|, and |B| satisfy the triangle inequality and let σ be the corresponding
tripartite pairing. If x, w ∈ V1 and y, v ∈ V2 then

signOE(σ)signOE(σ
′
5)ZDD

σ (G, N)ZDD
σ5

(G, N− {x, y, w, v})
= signOE(σ

′
1)signOE(σ

′
2)ZDD

σ1
(G, N− {x, y})ZDD

σ2
(G, N− {w, v})

−signOE(σ
′
3)signOE(σ

′
4)ZDD

σ3
(G, N− {x, v})ZDD

σ4
(G, N− {w, y})

where σi is the unique planar pairing on the corresponding node set in which like colors are not
paired together and σ′i is the pairing after the corresponding node set has been relabeled so that
the nodes are numbered consecutively.

Theorem 1.2 follows as a corollary; the additional assumptions in Theorem 1.2 lead
to a nice simplification of the signs in Theorem 2.14.
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