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Abstract. Let mG denote the number of perfect matchings of the graph G. We introduce
a number of combinatorial tools for determining the parity of mG and giving a lower
bound on the power of 2 dividing mG. In particular, we introduce certain vertex sets
called channels, which correspond to elements in the kernel of the adjacency matrix
of G modulo 2. A result of Lovász states that the existence of a nontrivial channel is
equivalent to mG being even. We strengthen this result by showing that the number of
channels gives a lower bound on the power of 2 dividing mG when G is planar. We
describe a number of local graph operations which preserve the number of channels.
We also establish a surprising connection between 2-divisibility of mG and dynamical
systems by showing an equivalency between channels and billiard paths. We exploit
this relationship to show that 2(gcd(m+1,n+1)−1)/2 divides the number of domino tilings
of the m× n rectangle.
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1 Introduction

Given a graph G, a perfect matching of G is a subset of edges µ such that each vertex of
G is contained in a unique edge in µ. We let mG denote the number of distinct perfect
matchings of G. The problem of determining mG arises in various mathematical contexts,
particularly in tiling problems. Exact formulas for mG over an infinite family of graphs
are quite rare. One notable exact formula is for G = Rm×n, the rectangular subgraph of
the square lattice with m rows of n vertices. In this case, the famous result of Kasteleyn
[3] gives

m4
G =

n

∏
j=1

m

∏
k=1

(
4 cos2 jπ

n + 1
+ 4 cos2 kπ

m + 1

)
.

From this product we may extract certain number theoretic information. In particular,
mG is always divisible by 2(gcd(n+1,m+1)−1)/2 [6]. Studying similar 2-divisibility patterns
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is a common theme in the literature on domino tilings, which are equivalent to perfect
matchings of subgraphs of the square lattice. It is often the case that the 2-component of
the prime factorization of mG follows a predictable pattern, even when an exact formula
for mG is elusive or unwieldy. In Propp’s perfect matching problem anthology [7], he
gives a number of conjectured and known power of 2 patterns for various graphs. Most
results along these lines rely on a theorem of Ciucu [2] that requires the graph have
reflective symmetry, which excludes most graphs from consideration. The results we
introduce here require only planarity and sometimes a degree condition, thus providing
a uniform (partial) explanation of power of 2 patterns in terms of the geometry of the
graph. Our foundational construction is based on the following result known to Lovász.

Proposition 1.1 ([5, Problem 5.18]). Let G be any graph. Then mG is even if and only if there
is a nonempty vertex set C ⊆ V such that every vertex in G is adjacent to an even number of
vertices in C.

Vertex sets C satisfying the hypothesis of Proposition 1.1 are called channels. (We also
count the empty set as a trivial channel.) Lovász’s result already shows the importance
of channels for determining the parity of mG. The main theorem of this extended abstract
shows that channels have even more to say for planar graphs.

Theorem 1.2 (Channeling twos). Let G be a planar graph. Then the number of distinct chan-
nels in G divides m2

G.

Since the number of channels will always be a power of 2, Theorem 1.2 gives a lower
bound on the power of 2 dividing mG for any planar graph. We show the strength of this
theorem in a number of examples throughout the abstract. In particular, we will show
that 2(gcd(n+1,m+1)−1)/2 divides mRm×n .

Many of our results are tailored for subgraphs of the square lattice, where perfect
matchings are equivalent to domino tilings of a region. When possible, however, we will
state results in greater generality. Our most fascinating result is a characterization of
channels in terms of dynamical systems. We state the result here for subgraphs of the
square lattice, and describe the general case in Section 3.

Let G be a full subgraph of the square lattice such that each internal (bounded) face
of G is a unit square. In the dual language of domino tilings, such graphs correspond to
simply connected regions of the plane. Since G is bipartite, we 2-color the vertices of G
black and white. An example of such a graph is shown in Figure 1.

Now we define a billiard path on G to be any collection of paths traced out by billiard
balls placed on black vertices of G and launched at 45 degree angles. When a billiard
ball reaches a wall, it reflects at a 90 degree angle and proceeds in its new direction,
continuing until it is caught by a corner or returns to its start position. (If the billiard
brushes past a corner or hits one head-on, the situation is more complicated—the path
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Figure 1: The three nonempty billiard paths in a full subgraph G of the square lattice
that is composed of unit squares.

splits into two paths continuing in different directions. See Section 3 for a more precise
definition.)

Remarkably, channels and billiard paths are intrinsically connected. Let G′ be the
inner subgraph of G, the subgraph formed by removing all vertices of G which are incident
to the unbounded face and all edges incident to those vertices.

Theorem 1.3. Let G satisfy the assumptions described above, and let G′ be the inner subgraph
of G. Further assume that the dual graph of G is 2-connected. Then the number of billiard paths
in G is twice the number of channels which use only the black vertices of G′.

In particular, a bipartite version of channeling twos implies that the number of billiard
paths for G divides 2mG′ . For the graph G in Figure 1, the inner subgraph G′ is shown
in Figure 2. Since G has 4 billiard paths and satisfies the hypothesis of Theorem 1.3, it
follows that mG′ is divisible by 2. Indeed, there are 4 perfect matchings of G′.

Figure 2: The inner subgraph G′ of the graph G defined in Figure 1.

The connection between 2-divisibility, channels, and dynamical systems explains both
the sensitivity and the regularity of perfect matching 2-divisibility. Small changes to G
can result in entirely different billiard dynamics, with the effects visible in mG′ . The
dynamics can also induce a regularity in the 2-divisibility of mG. The well-known the-
ory of arithmetic billiards describes billiard paths for rectangles in terms of divisibility
properties of the rectangle side lengths. In Section 3.2, we exploit these results to explain
the factor of 2(gcd(m+1,n+1)−1)/2 dividing mG for the m× n grid graph.

Billiard paths give a global explanation of channel structure for many graphs. Some-
times we are instead interested in local behavior. For instance, we may have a family of
graphs which are globally similar, but differ locally. To relate these graphs, we introduce
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in Section 2.1 a set of channel-preserving graph operations and show that they may be
applied repeatedly to reduce many graphs to a set of independent vertices.

The paper is organized as follows. Section 2 gives definitions and context for Theo-
rem 1.2. In Section 2.1, we discuss certain graph moves that always preserve the number
of channels in a graph. Section 2.2 introduces a useful graph move called diagonal con-
traction. We describe an application of diagonal contraction and channels to the Aztec
diamond family of graphs. Section 3 describes billiard paths for a large class of graphs
called inner semi-Eulerian graphs. The results described in the introduction are applied
to the rectangle grid graph, connecting its 2-divisibility to the theory of arithmetic bil-
liards. In the full version [1] of this extended abstract, we also give a combinatorial proof
of Proposition 1.1, a fast algorithm using billiard paths for determining the 2-divisibility
of certain graphs, and a number of additional examples and theorems.

2 Channels

All graphs in this paper are undirected, finite, and contain no self-loops. If a graph
is bipartite, we will consider its vertices to be colored black and white. Additionally,
all matchings discussed will be perfect matchings, and thus the word “perfect” will be
omitted in the future for brevity. For a graph G = (V, E), V denotes the vertex set, E
denotes the edge set, and A denotes the adjacency matrix.

Sometimes we will be interested in planar graphs G. Such graphs admit a dual graph,
with vertices given by the faces of G and edges between faces separated by an edge in
G. If the same face is on both sides of an edge of G, then that edge corresponds to a
self-loop in the dual graph. The external face of G is the face which is unbounded, and
all other faces are internal faces of G. The reduced dual graph of G is the dual graph of G
with the vertex corresponding to the external face of G removed. We say a vertex of G is
external if it is incident to the external face, and we say it is internal otherwise.

Let G be a graph with adjacency matrix A. The 2-kernel ker2 A is the kernel of A
considered as a matrix over Z/2Z. Then a vector x in ker2 A has entries in Z/2Z and can
be lifted to a vector x̃ with entries 0, 1 ∈ Z. The condition Ax = 0 then becomes Ax̃ = 2y
for some integral vector y. Because each row of x corresponds to a vertex in G, we may
interpret x as the indicator function for a vertex set C, where a row with a 1 indicates
the vertex is in C and a row with a 0 indicates the vertex is not in C. This leads to the
following interpretation of 2-kernel elements.

Definition 2.1. Let G = (V, E) be any graph. A channel is a set C of vertices such that
every vertex in G is adjacent to an even number of vertices in C. In other words, a
channel satisfies

|{(v, v′) ∈ E | v′ ∈ C}| is even for all v ∈ V.
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Let the set of channels in G be denoted C(G). If G is bipartite, let CB(G) (resp. CW(G))
be the subspace of C(G) consisting of channels that use only black (resp. white) vertices.

The 2-kernel also has an additive structure as a Z/2Z vector space. This transfers to
C(G) by defining the sum of C1, C2 ∈ C(G) to be the symmetric difference of C1 and C2.

Figure 3: A graph G with its three nonempty channels indicated by shading. Any two
of these form a basis for the space C(G).

For planar graphs G, there exists a matrix K (called a Kasteleyn matrix [4] of G )
obtained from A by adding signs to some entries such that det K = m2

G. We note that
K and A are equivalent modulo 2 and thus have the same 2-kernel. The next theorem
follows by analyzing the Smith normal form of K and identifying 2-kernels with channels
(see [1] for more details).

Theorem 2.2 (Channeling twos). If {C1, ..., Cn} is a linearly independent set of channels in a
graph G with a Kasteleyn matrix (in particular, for planar G), then

2n divides m2
G.

If additionally G is bipartite, and {C1, ..., Cn} ⊆ CB(G), then

2n divides mG.

Remark 2.3. Despite the fact that Proposition 1.1 holds for an arbitrary graph, Theo-
rem 2.2 does not. For example, the complete bipartite graph K3,3 has |CB(K3,3)| = 22, but
mK3,3 = 6 is not divisible by 22. Thus the assumption of a Kasteleyn matrix for G cannot
be weakened much further.

2.1 Channel-preserving moves

In this section, we describe a set of local graph moves which unconditionally preserve
channels and (for two of the moves) perfect matchings of our graph. In many cases we
can reduce the graph to a collection of vertices via these moves. We begin by introducing
our operations of interest.

A 2-valent vertex contraction may be applied to any vertex v of degree two that is
adjacent to distinct vertices v1, v2. The resulting graph is formed by contracting the
edges incident to v and deleting self-loops if they occur.
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vv1 v2
=⇒VC

A doubled edge deletion may be applied to any pair of edges e1, e2 that share the same
endpoints. This operation removes e1 and e2 from the graph.

e1

e2

=⇒ED

A forced vertex pair removal may be applied to distinct adjacent vertices v1, v2 such
that v1 has degree one. The resulting graph is formed by removing v1, v2 and all edges
incident to these vertices.

v1 v2
=⇒FV

We call these three moves channel-preserving moves. As the name suggests, applying
a channel-preserving move to a graph preserves the number of channels in that graph.
A graph is called reducible if it can be reduced to a set of degree 0 vertices using only
channel-preserving moves.

Theorem 2.4. Let G be a reducible graph. Then the number of degree 0 vertices remaining after
G has been fully reduced is the dimension of C(G). In particular, this number is independent of
the choice of channel-preserving moves used to reduce the graph.

Example 2.5. The graph G shown in Figure 3 is a reducible graph. Figure 4 shows a
possible sequence of channel-preserving moves. Because G reduces to two vertices of
degree 0, G must have 22 channels. This is indeed the case; Figure 3 shows the three
nonempty channels.

=⇒FV =⇒VC =⇒ED

Figure 4: Reducing a graph to independent vertices.

One structural property that implies reducibility is the following. We call a planar
graph called inner Eulerian if all internal vertices have even degree. (In particular, this
property holds for many subgraphs of the square lattice.)

Theorem 2.6. Let G be an inner Eulerian bipartite graph. Then G is reducible.
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v

w

=⇒

v

w

=⇒ =⇒

Figure 5: Contracting the highlighted diagonal by deleting the diagonal vertices and
merging the vertices immediately opposite.

2.2 Contracting diagonals

When our region is a subgraph of the square lattice, there is a useful sequence of channel-
preserving moves available called a diagonal contraction. Pick a degree 2 vertex v that is a
corner of the graph. Then v defines a unique diagonal passing through it, as in the first
step of Figure 5.

We say that the diagonal is contractible if each internal vertex and each internal face
it intersects have degree 4. In this case, diagonal contraction proceeds by selecting all
vertices on the diagonal between v and w, the last vertex on the diagonal before it reaches
the external face. For each selected vertex v1, delete v1 and combine each neighbor of
v1 with its mirror image across the diagonal, as shown in Figure 5. If a vertex combines
with a missing vertex (denoted by a red “x” in the figure), then that vertex is deleted.

Theorem 2.7. Let G be a subgraph of the square lattice. Let G′ be the result of applying a
diagonal contraction to a contractible diagonal from a black corner vertex v to a vertex w. If w
has degree 2, then

|CB(G)| = 2|CB(G′)| and |CW(G)| = |CW(G′)|.

Otherwise,
|CB(G)| = |CB(G′)| and |CW(G)| = |CW(G′)|.

Example 2.8. Let us apply diagonal contraction to the a well-known class of graphs. The
Aztec diamond of rank n is a diamond of side length n in the square lattice. The Aztec
diamonds of rank 1, 2, and 3 are shown in Figure 6.

Figure 6: The Aztec diamonds of rank 1, 2, and 3.
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Let Gn be the rank n Aztec diamond. Performing two diagonal contractions as shown
below reduces Gn to Gn−1.

=⇒ =⇒

Since both diagonal contractions end on a vertex of degree 2, |C(Gn)| = 22|C(Gn−1)|.
An easy induction argument then shows that

|C(Gn)| = 22n.

Since there are 22n channels in Gn, by channeling twos it follows that 2n divides the
number of matchings of Gn. Indeed, it is well-known that Gn has 2(

n+1
2 ) matchings.

3 Billiards and Channels

For an arbitrary graph, it is not clear how to identify all channels contained within
it. In this section we give a geometric approach to channel construction based on a
phenomenon that can be observed in the channels of a rectangle grid graph.

3.1 Billiard paths

In the rectangle, we note that channels tend to form along diagonal lines as in the fol-
lowing figure. This pattern was studied by Tomei and Vieira in [8], where they described
it in terms of polygonal tilings of the rectangle. We propose an alternative description.
By extending these diagonals, we find that these lines form a path which reflects off
the edges of a larger rectangle, as shown below. The channel vertices are vertices in the
interior of this larger rectangle which intersect exactly one line from this path.

⇐⇒

Notice that we may recover the path, given that it was a path through black vertices,
by remembering just the faces that it passes through. This viewpoint of the path will
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allow us to define a similar structure on a wide class of graphs called inner semi-Eulerian
graphs.

Definition 3.1. We say that a bipartite planar graph G is inner semi-Eulerian if every
internal black vertex of G has even degree. Let G be inner semi-Eulerian and let F
denote the set of internal faces in G. We say that a subset of faces B ⊆ F of G is a billiard
path if the following hold:

• if b is an internal black vertex, then either all faces incident to b are in B, no faces
incident to b are in B, or every second face incident to b is in B.

• if b is an external black vertex, then either all internal faces incident to b are in B
or no internal faces incident to b are in B.

Denote the set of billiard paths in G by B(G).

When G is a full subgraph of the square lattice with all internal faces being unit
squares, this agrees with the intuitive notion of billiard paths as the paths traced out by a
collection of billiard balls. Note that ∅ and F are trivially billiard paths for every graph.
As with channels, we may define the sum of two billiard paths to be their symmetric
difference, making B(G) a vector space over Z/2Z.

We have a canonical basis for B(G) such that the basis billiard paths are mutually
disjoint. Indeed, define a graph GB with vertex set F and edges between f and f ′ if they
satisfy one of the following:

• f and f ′ are incident to the same internal black vertex b and are separated by an
odd number of faces incident to b.

• f and f ′ are incident to the same external black vertex b.

Then the connected components of GB are independent billiard paths that span B(G).
This is called the path basis for G. This is particularly useful since as we shall soon see,
billiard paths in G are equivalent to channels in a subgraph of G.

Definition 3.2. Let G be inner semi-Eulerian. Then the inner subgraph of G, denoted G′,
is the induced subgraph on the internal vertices of G. Given any inner semi-Eulerian
graph H, an outer completion of H is an inner semi-Eulerian graph G such that G′ = H.

Given an inner semi-Eulerian graph H, we may always construct an outer completion
G such that G′ = H by taking a copy of the boundary of H, expanding it so that H lies
within it, and adding edges between the two copies of the boundary as needed to make
the graph inner semi-Eulerian. Given a billiard path in G, we may construct an associated
channel in G′ as follows. Let B ∈ B(G) be a billiard path. Define

ch : B(G) −→ CB(G′)
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Figure 7: A graph with its two path basis elements (shown formally as the set of
shaded faces and informally as the path drawn above it). To the right we show the
corresponding channel on the inner subgraph.

by setting the vertices in ch(B) to be the internal black vertices b of G for which exactly
half of the faces incident to b are in B.

Lemma 3.3. The map ch is a group homomorphism from B(G) to CB(G′).

We can now state our main result on billiard paths. Recall that the reduced dual
graph of G is the dual graph with the vertex corresponding to the external face of G
removed.

Theorem 3.4. Let G be inner semi-Eulerian and let G′ be the inner subgraph of G. Let c be the
number of connected components of the reduced dual graph of G. Then

|B(G)| = 2c|CB(G′)|.

In particular, 2−c|B(G)| divides the number of matchings of G′.

Thus our study of channels in appropriate graphs H (in particular, all inner semi-
Eulerian graphs) reduces to the study of billiard paths in an outer completion G. Billiard
paths are considerably easier to work with since every face of G is contained in a unique
element of the path basis of G. In general there is no such basis for the channels of H;
vertices of H may be contained in no channel and there may be no channel basis for
H with pairwise disjoint elements. However, any path basis element can be found by
starting with a face of G and adding additional faces as required by the definition of
billiard paths. In [1], we use this to give an algorithm for constructing the path basis for
certain grid graphs which is almost linear in the perimeter of the graph.

3.2 Arithmetic billiards

Let us find the billiard paths for the rectangle grid graphRm+1×n+1, an outer completion
ofRm−1×n−1. For this graph, we may use our interpretation of billiard paths as the paths
traced out by billiard balls travelling at 45 degree angles. We begin by straightening out
the billiard paths; to do so, we tile the plane with copies of our rectangle.
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⇐⇒

Figure 8: A rectangle used to tile the plane. The coloring is provided as a visual
indicator of the rectangle’s orientation in the tessellation. Any billiard path on the left
corresponds to a line of slope 1 on the right and vice versa.

We can then lift the billiard path to a straight line of slope 1 in the tessellation. A
billiard path between two corners of Rm+1×n+1 will lift to the diagonal of a square in the
tessellation. Since Rm+1×n+1 has side lengths m and n, this square will have side length
lcm(m, n), so the path will pass through lcm(m, n) faces.

Suppose at least one of m + 1 and n + 1 is even so that exactly two corners of
Rm+1×n+1 are black. Of the billiard paths on black vertices, one passes through both
of the black corners of the rectangle and passes through lcm(m, n) faces. The others lift
to a diagonal of a square of side length 2 lcm(m, n) (twice as long since they must return
to their starting point) and hence pass through 2 lcm(m, n) squares. Since every internal
face is part of a unique path basis element, we may now count the billiard paths for
Rm+1×n+1.

Theorem 3.5. The rectangle grid graph Rm+1×n+1 with (m + 1)(n + 1) even has a path basis
of size

gcd(m, n) + 1
2

.

Proof. There are mn total internal faces in Rm+1×n+1. From the above, mn− lcm(m, n)
of these are part of a path basis element not passing through a corner. Each such basis
element uses 2 lcm(m, n) internal faces. Thus there are

mn− lcm(m, n)
2 lcm(m, n)

=
gcd(m, n)− 1

2

non-corner path basis elements. Adding back the last path basis element gives the claim.

Corollary 3.6. The rectangle grid graph Rm−1×n−1 with (m− 1)(n− 1) even has

|CB(Rm−1×n−1)| = 2
gcd(m,n)−1

2 .

Proof. The inner subgraph of Rm+1×n+1 is Rm−1×n−1, and the reduced dual graph of
Rm×n is connected. Thus the result follows by Theorem 3.4.
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Corollary 3.7. The number of matchings of Rm−1×n−1 is divisible by

2
gcd(m,n)−1

2 .

Proof. If m− 1 and n− 1 are both odd, then mG = 0 and the claim follows. Otherwise,
the hypothesis of the previous corollary holds, and we may channel twos to arrive at the
result.
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