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The feasible region for consecutive patterns of
permutations is a cycle polytope

Jacopo Borga∗1 and Raul Penaguiao† 1

1Department of Mathematics, University of Zurich, Switzerland

Abstract. We study proportions of consecutive occurrences of permutations of a given
size. Specifically, the feasible limits of such proportions on large permutations form
a region, called feasible region. We show that this feasible region is a polytope, more
precisely the cycle polytope of a specific graph called overlap graph. This allows us to
compute the dimension, vertices and faces of the polytope. Finally, we prove that the
limits of classical occurrences and consecutive occurrences are independent, in some
sense made precise in the extended abstract. As a consequence, the scaling limit of a
sequence of permutations induces no constraints on the local limit and vice versa.

Keywords: permutation patterns, cycle polytopes, overlap graphs.

This is a shorter version of the preprint [11] that is currently submitted to a journal.
Many proofs and details omitted here can be found in [11].

1 Introduction

1.1 Motivations

Despite not presenting any probabilistic result here, we give some motivations that come
from the study of random permutations. This is a classical topic at the interface of
combinatorics and discrete probability theory. There are two main approaches to it: the
first concerns the study of statistics on permutations, and the second, more recent, looks
for the limits of permutations themselves. The two approaches are not orthogonal and
many results relate them, for instance Theorems 1.1 and 1.2 below.

In order to study the limit of permutations, two main notions of convergence have
been defined: a global notion of convergence (called permuton convergence) and a local
notion of convergence (called Benjamini–Schramm convergence, or BS-convergence, for
short). A permuton is a probability measure on the unit square with uniform marginals.
The notion of permuton limit for permutations has been introduced in [18], and repre-
sents the scaling limit of a permutation seen as a permutation matrix, as the size grows
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Figure 1: Left: The overlap graph Ov(3) (see Definition 1.3 for a precise definition).
Right: The four-dimensional polytope P3 given by the six patterns of size three
(see (1.2) for a precise definition). We highlight in light-blue one of the six three-
dimensional faces of P3. This face is a pyramid with square base. The polytope itself
is a four-dimensional pyramid, whose base is the highlighted face. From Theorem 2.1
we have that P3 is the cycle polytope of Ov(3).

to infinity. The study of permuton limits is an active and exciting research field in combi-
natorics, see for instance [5, 6, 20] and references therein. On the other hand, the notion
of BS-limit for permutations is more recent, and it has been introduced in [9]. Informally,
in order to investigate BS-limits, we study the permutation in a neighborhood around
a randomly marked point in its one-line notation. Limiting objects for this framework
are called infinite rooted permutations and are in bijection with total orders on the set of
integer numbers. BS-limits have also been studied in some other works, see for instance
[8, 12, 10].

Let n ∈ N = Z>0. We denote by Sn the set of permutations of size n, and by S
the set of all permutations. We recall the definition of patterns for permutations. For
σ ∈ Sn, π ∈ Sk and a subsequence 1 ≤ i1 < . . . < ik ≤ n, we say that σ(i1) . . . σ(ik) is
an occurrence of π in σ, if σ(i1) . . . σ(ik) has the same relative order as π. If the indices
i1, . . . , ik form an interval, then we say that σ(i1) . . . σ(ik) is a consecutive occurrence of π

in σ. We denote by occ(π, σ) (resp. by c-occ(π, σ)) the number of occurrences (resp.
consecutive occurrences) of a pattern π in σ. For example, if π = 132 and σ = 72638145,
we have that occ(π, σ) = 7 and c-occ(π, σ) = 1. We also denote by õcc(π, σ) (resp.
c̃-occ(π, σ)) the proportion of classical occurrences (resp. consecutive occurrences) of a
permutation π ∈ Sk in σ ∈ Sn, that is

õcc(π, σ) :=
occ(π, σ)

(n
k)

∈ [0, 1], c̃-occ(π, σ) :=
c-occ(π, σ)

n
∈ [0, 1] .

The following theorems provide relevant combinatorial characterizations of the two
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aforementioned notions of convergence for permutations.

Theorem 1.1 ([18]). For any n ∈ N, let σn ∈ S and assume that |σn| → ∞. The sequence
(σn)n∈N converges to some permuton P if and only if there exists a vector (∆π(P))π∈S of non-
negative real numbers (that depends on P) such that, for all π ∈ S ,

õcc(π, σn)→ ∆π(P).

Theorem 1.2 ([9]). For any n ∈ N, let σn ∈ S and assume that |σn| → ∞. The sequence
(σn)n∈N converges in the Benjamini–Schramm topology to some random infinite rooted permu-
tation σ∞ if and only if there exists a vector (Γπ(σ∞))π∈S of non-negative real numbers (that
depends on σ∞) such that, for all π ∈ S ,

c̃-occ(π, σn)→ Γπ(σ
∞).

A natural question, motivated by the theorems above, is the following: given a finite
family of patterns A ⊆ S and a vector (∆π)π∈A ∈ [0, 1]A, or (Γπ)π∈A ∈ [0, 1]A, does
there exist a sequence of permutations (σn)n∈N such that |σn| → ∞ and

õcc(π, σn)→ ∆π, for all π ∈ A,

or
c̃-occ(π, σn)→ Γπ, for all π ∈ A ?

We consider the classical pattern limiting sets, sometimes called the feasible region for
(classical) patterns, defined as

clPk :=
{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈N ∈ SN s.t. |σm| → ∞ and õcc(π, σm)→ ~vπ, ∀π ∈ Sk

}
(1.1)

=
{
(∆π(P))π∈Sk

∣∣P is a permuton
}

,

and we introduce the consecutive pattern limiting sets, called here the feasible region for
consecutive patterns,

Pk :=
{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈N ∈ SN s.t. |σm| → ∞ and c̃-occ(π, σm)→ ~vπ, ∀π ∈ Sk

}
(1.2)

=
{
(Γπ(σ

∞))π∈Sk

∣∣σ∞ is a random infinite rooted shift-invariant permutation
}

.

For the precise definition of shift-invariant permutations see [9, Defintion 2.41]. The
equalities in (1.1) and (1.2) follow from [18, Theorem 1.6] and [11, Proposition 3.4] re-
spectively.

The feasible region clPk was previously studied in several papers (see Section 1.3.1).
The main goal of this project is to analyze the feasible region Pk, that turns out to be
related to specific graphs called overlap graphs (see Section 1.3.2) and its corresponding
cycle polytope (see Section 1.3.3). In particular, the feasible region Pk is convex. This is
not in general true for the region clPk.
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Figure 2: The overlap graph Ov(4).
The six vertices are painted in red
and the edges are drawn as labeled
arrows. Note that in order to obtain a
clearer picture we did not draw mul-
tiple edges, but we use multiple la-
bels (for example the edge 231→ 312
is labeled with the permutations 3412
and 2413 and should be thought of as
two distinct edges labeled with 3412
and 2413 respectively).

1.2 Definitions and informal statement of the main results

To introduce our main results we need two key definitions.

Definition 1.3. The overlap graph Ov(k) is a directed multigraph with labeled edges, where
the vertices are elements of Sk−1 and for every π ∈ Sk there is an edge labeled by π from the
pattern induced by the first k− 1 indices of π to the pattern induced by the last k− 1 indices of
π.

The overlap graphs Ov(3) and Ov(4) are displayed in Figure 1 and Figure 2 respec-
tively.

We denote the convex hull of a family F of points by convF . A non-empty cycle C
in a directed multigraph is said to be a simple cycle if it does not repeat vertices.

Definition 1.4. Let G = (V, E) be a directed multigraph. For each non-empty cycle C in G,
define~eC ∈ RE so that

(~eC)e :=
number of occurrences of e in C

|C| , for all e ∈ E. (1.3)

We define the cycle polytope of G to be the polytope P(G) := conv{~eC | C is a simple cycle of G}.

The example of the cycle polytope P(Ov(3)) is given in Figure 1.

Our first result is a full description of the feasible region Pk as the cycle polytope of
the overlap graph Ov(k) (see Theorem 2.1).

The second result deals with the dimension and the equations that define the cycle
polytope of a general directed multigraph (see Theorem 3.1) and a description of the
associated face poset (see Theorem 3.2). From this theorem, the dimension and the
equations of Pk can be directly computed.
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Our last result addresses a slightly different question. We intertwine the notions
of classical patterns and consecutive patterns, and discuss the shape of the resulting
feasible region. In Theorem 4.1, we reduce the description of this new feasible region to
the independent descriptions of the feasible regions for pattens and consecutive patterns
discussed in Section 1.1.

1.3 State-of-the-art and a conjecture

1.3.1 The feasible region for classical patterns

The feasible region clPk was first studied in [20] for some particular families of patterns
instead of the whole Sk. The authors specifically studied patterns of small size (2 or 3)
showing that, already in these cases, the problem of describing the associated feasible
region presents a lot of difficulties. They also showed that this region is not always
convex (see for instance [20, Section 9]).

The set clPk was also studied in [15], even though with a different objective. There, it
was shown that clPk contains an open ball B with dimension |Ik|, where Ik is the set of
permutations of size at most k that are ⊕-indecomposable. Specifically, for a particular
ball B ⊆ RIk , the authors constructed permutons P~x such that ∆π(P~x) = ~xπ, for each
point ~x ∈ B and each π ∈ Ik.

The work done in [15] opened the problem of finding the maximal dimension of an
open ball contained in clPk, and placed a lower bound on it. In [22] an upper bound
for this maximal dimension is indirectly given as the number of so-called Lyndon per-
mutations of size at most k, whose set we denote Lk. The author shows that for any
permutation π that is not a Lyndon permutation, õcc(π, σ) can be expressed as a poly-
nomial on the functions {õcc(τ, σ)|τ ∈ Lk} that does not depend on σ. It follows that
clPk sits inside an algebraic variety of dimension |Lk|. We expect that this bound is sharp
since this is the case for small values of k.

Conjecture 1.5. The feasible region clPk is full-dimensional inside a manifold of dimension
|Lk|.

1.3.2 Overlap graphs

Overlap graphs were already studied in previous works. We give here a brief summary
of the relevant literature. The overlap graph Ov(k) is the line graph of the de Bruijn graph
for permutations of size k − 1. The latter was introduced in [13] and further studied in
[21], where the authors studied universal cycles (sometime also called de Bruijn cycles)
of several combinatorial structures, including permutations. In this case, a universal
cycle of order n is a cyclic word of size n! on an ordered alphabet of N letters that
contains all the patterns of size n as consecutive patterns. In [13] it was conjectured (and
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then proved in [19]) that such universal cycles always exist when the alphabet is of size
N = n + 1. In [1] the authors enumerate some families of simple cycles of these graphs.
This starts the undertaking of describing all simple cycles of a explicit de Bruijn graph.
As a consequence, this also gives a description of the vertices of the corresponding cycle
polytope.

The existence of Eulerian and Hamiltonian cycles in classical de Bruijn graphs is
shown in [13]. We remark that applying the same ideas, we can prove the existence
of both Eulerian and Hamiltonian cycles in Ov(k). We further remark that with an
Eulerian path in Ov(k), we can construct a permutation σ of size k! + k − 1 such that
c-occ(π, σ) = 1 for any π ∈ Sk. This is a so-called “superpermutation” of minimal size
for consecutive patterns.

1.3.3 Polytopes and cycle polytopes

Polytopes associated to graphs have been objects of research for a long time in computer
science and graph theory. A striking example is the flow polytope, introduced in [4]. This
is a polytope that is associated to a root system and a flow vector. If we specifically
take a root system of type An, this can be described by an undirected graph on [n] :=
{1, . . . , n}: in this way, if we are given a graph G = ([n], E) and a flow vector~a ∈ Rn, its
corresponding flow polytope is in fact defined as

FG(~a) :=

~x ∈ RE

∣∣∣∣∣ ∑
{j<i}∈E

~x{j<i} − ∑
{i<j}∈E

~x{i<j} =~ai, i ∈ [n]

 .

Classical examples of polytopes that are flow polytopes are the Stanley–Pitman poly-
tope, also called the parking function polytope, and the Chan–Robbins–Yuen polytope, a poly-
tope on the space of doubly stochastic square matrices. In [4], the authors obtain for-
mulas for the volume and the number of integer points in its interior. In particular, they
recover a formula for the volume of the Chan–Robbins–Yuen polytope, due to Zeilberger,
in his very short paper [23].

In [2] and in [14], unrescaled cycle polytopes (U-cycle polytopes for short)1 were intro-
duced. The U-cycle polytopes for undirected graphs were considered to tackle the Sim-
ple Cycle Problem [17], that also goes by the name of Weighted Girth Problem [7]. Balas
& Oosten [2] and Balas & Stephan [3] compute the dimension of the U-cycle polytope of
the complete graph (that is, the complete directed graph without loops) and describe the

1The U-cycle polytopes and the cycle polytopes introduced in Definition 1.4 are intrinsically related
to one another, as the vertices of the U-cycle polytope of a directed multigraph G are defined as the
incidence vectors of simple cycles of G. In Definition 1.4, we additionally rescale each of the vertices so that
the coordinates sum up to one. The U-cycle polytopes were considered in the literature simply under the
name of cycle polytopes. However, here, we adopt the name of cycle polytopes to our family of polytopes for
the sake of simplifying the terminology in this extended abstract.



The feasible region for consecutive patterns of permutations is a cycle polytope 7

faces of co-dimension one of the corresponding polytope. In comparison, we study and
give a dimension theorem for cycle polytopes (instead of U-cycle polytopes) for general
directed multigraphs (not restricting to the case of complete graphs). Our results extend
some results of Gleiss, Leydold and Stadler [16].

2 First main result: Description of Pk

Our first main result is the following.

Theorem 2.1. Pk is the cycle polytope of the overlap graph Ov(k). Its dimension is k!− (k− 1)!
and its vertices are given by the simple cycles of Ov(k).

In addition, we can also determine the equations that describe the polytope Pk (for
that see [11, Theorem 3.12]).

To establish that Pk = P(Ov(k)), the first step is the following result.

Proposition 2.2. The feasible region Pk is convex.

Proof. Since Pk is closed (this is an easy consequence of the fact that Pk is a set of limit
points) it is enough to consider rational convex combinations of points in Pk, i.e. it is
enough to establish that for all ~v1,~v2 ∈ Pk and all s, t ∈N, we have that

s
s + t

~v1 +
t

s + t
~v2 ∈ Pk.

For σ ∈ S , we define the vector c̃-occk(σ) := (c̃-occ(π, σ))π∈Sk . Fix ~v1,~v2 ∈ Pk and
s, t ∈ N. Since ~v1,~v2 ∈ Pk, there exist two sequences (σm

1 )m∈N, (σm
2 )m∈N such that

|σm
i |

m→∞−→ ∞ and c̃-occk(σ
m
i )

m→∞−→ ~vi, for i = 1, 2.
Define tm := t · |σm

1 | and sm := s · |σm
2 | and set τm to be equal to the direct sum2 of sm

copies of σm
1 and tm copies of σm

2 .
We note that for every π ∈ Sk, we have

c-occ(π, τm) = sm · c-occ(π, σm
1 ) + tm · c-occ(π, σm

2 ) + Er,

where Er ≤ (sm + tm − 1) · |π|. This error term comes from the number of intervals of
size |π| that intersect the boundary of some copies of σm

1 or σm
2 . Hence

c̃-occ(π, τm) =
sm · |σm

1 | · c̃-occ(π, σm
1 ) + tm · |σm

2 | · c̃-occ(π, σm
2 ) + Er

sm · |σm
1 |+ tm · |σm

2 |

=
s

s + t
c̃-occ(π, σm

1 ) +
t

s + t
c̃-occ(π, σm

2 ) + O
(
|π|
(

1
|σm

1 |
+ 1
|σm

2 |

))
.

2For τ ∈ Sm and σ ∈ Sn, the direct sum of τ and σ is the permutation τ(1) . . . τ(m)(σ(1) +
m) . . . (σ(n) + m).
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As m tends to infinity, we have

c̃-occk(τ
m)→ s

s + t
~v1 +

t
s + t

~v2,

since |σm
i |

m→∞−→ ∞ and c̃-occk(σ
m
i )

m→∞−→ ~vi, for i = 1, 2. Noting also that

|τm| → ∞,

we can conclude that s
s+t~v1 +

t
s+t~v2 ∈ Pk. This ends the proof.

Using Proposition 2.2 we can show that Pk = P(Ov(k)) using a surjective correspon-
dence between permutations of size m + k − 1 and walks of length m in the overlap
graph Ov(k). This correspondence is built in such a way that the vertices on the walk
are in bijection with the consecutive patterns of size k appearing in the corresponding
permutation (for that we refer to [11, Sections 3.3 and 3.4]).

We use this correspondence as follows. First we show that P(Ov(k)) ⊆ Pk: Thanks
to Proposition 2.2 it is enough to show that for each simple cycle C ∈ Ov(k), the vector
~eC belongs to Pk. For that we consider the sequence of walks (wm)m∈N obtained con-
catenating m copies of C, and we show that a corresponding sequence of permutations
(σm)m≥1 satisfies c̃-occk(σ

m)→ ~eC . Second we show that Pk ⊆ P(Ov(k)): For any vector
~v ∈ Pk, we consider a sequence of permutations (σm)m∈N such that c̃-occk(σ

m)→ ~v. This
sequence of permutations corresponds to a sequence of walks in Ov(k). By decompos-
ing each of these walks into simple cycles (plus a small tail) we show that the original
vector ~v is arbitrarily close to P(Ov(k)).

Finally, the result on the dimension, the description of the vertices and the equations
describing Pk are a consequence of general results for cycle polytopes (see details for the
computation of the dimension in Section 3, and for the remaining features in [11]).

3 Second main result: Dimension and faces of cycle poly-
topes

In [11], we establish a full description of the cycle polytope of a general directed multi-
graph (see Theorem 3.1 below) and of its face poset (see Theorem 3.2 below). We give
here these descriptions omitting the proofs.

We say that a directed multigraph is full if every edge is contained in a cycle.

Theorem 3.1. If G is a directed multigraph and H ⊆ G is its largest full subgraph, then the
dimension of the polytope P(G) is

dim P(G) = |E(H)| − |V(H)|+ |{ connected components of H}| − 1 .

In particular, if G is a strongly connected graph, then dim P(G) = |E(G)| − |V(G)|.
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Figure 3: Left: Inside the dashed
black ball, a graph G with two ver-
tices and five oriented edges, includ-
ing a loop. Right: The associated cy-
cle polytope P(G), that is a pyramid
with squared base. The blue dashed
balls indicate the five vertices of the
polytope, and correspond to the sim-
ple cycles. We also underline two
edges of the polytope (in purple and
orange respectively) and a face (in
green), as well as their correspond-
ing full subgraphs.

Additionally, we are able to describe the equations that define P(G) (for a precise
statement see [11, Proposition 2.6]). We highlight that Theorem 3.1, together with Pk =
P(Ov(k)), yields the dimension of the feasible region Pk stated in Theorem 2.1.

The proof of Theorem 3.1 follows from a generalization of some previous results of
Gleiss, Leydold and Stadler [16]. We refer the reader to [11, Section 2.2] for further
details.

We also give an order-preserving bijection between faces of P(G) and full subgraphs
of G (ordered by inclusion of edge sets), giving a description of the face poset of P(G).

Theorem 3.2. The face poset of P(G) is isomorphic to the poset of full subgraphs of G according
to the following identification:

H 7→ P(G)H := {~x ∈ P(G)|xe = 0 for e 6∈ E(H)} .

Further, if we identify P(H) with its image under the canonical injection RE(H) ↪→ RE(G), we
have that P(H) = P(G)H.

In particular, dim P(G)H = |E(H)| − |V(H)|+ |{ connected components of H}| − 1.

The above result is proved in [11, Theorem 2.7] and illustrated in Figure 3.

4 Third main result: Mixing classical and consecutive pat-
terns

We saw in Section 1.3.1 that the feasible region clPk for classical pattern occurrences
has been studied in several papers. In this extended abstract, the feasible region Pk of
limiting points for consecutive pattern occurrences was described. A natural question is
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the following: what is the feasible region if we mix classical and consecutive patterns?
We reduce this question to the description of the original feasible regions separately in
the following result.

Theorem 4.1 ([11, Theorem 4.1]). For any two points ~v1 ∈ Pk, ~v2 ∈ clPk, consider two
sequences (σm

1 )m∈N ∈ SN and (σm
2 )m∈N ∈ SN such that

|σm
1 | → ∞,

(
c̃-occ(π, σm

1 )
)

π∈Sk
→ ~v1, and |σm

2 | → ∞, (õcc(π, σm
2 ))π∈Sk

→ ~v2.

Then the sequence (σm
3 )m∈N defined3 by σm

3 := σm
2 [σm

1 , . . . , σm
1 ], for all m ∈N, satisfies

|σm
3 | → ∞,

(
c̃-occ(π, σm

3 )
)

π∈Sk
→ ~v1 and (õcc(π, σm

3 ))π∈Sk
→ ~v2. (4.1)

This result shows a sort of independence between classical and consecutive patterns,
in the sense that knowing the limiting proportion of classical patterns of a certain se-
quence of permutations imposes no constraints for the limiting proportion of consecutive
patterns and vice versa.

Observation 4.2. In Theorems 1.1 and 1.2 we saw that the proportion of occurrences (resp.
consecutive occurrences) in a sequence of permutations (σm)m∈N characterizes the per-
muton limit (resp. Benjamini–Schramm limit) of the sequence. From Theorem 4.1, we
can construct a sequence of permutations where the permuton limit is the decreasing
diagonal and the Benjamini–Schramm limit is the classical increasing total order on the
integer numbers.

We remark that a particular instance of this “independence phenomenon” for lo-
cal/scaling limits of permutations was recently observed by Bevan, who pointed out in
[8] that “the knowledge of the local structure of uniformly random permutations with a
specific fixed proportion of inversions reveals nothing about their global form”. Here, we
prove that this is a universal phenomenon which is not specific to the framework studied
by Bevan.

Proof of Theorem 4.1. The size of σm
3 trivially tends to infinity. We skip the proof of the

limit
(
c̃-occ(π, σm

3 )
)

π∈Sk
→ ~v1 since it involves similar techniques as the ones used in the

proof of Proposition 2.2. Finally, for the limit (õcc(π, σm
3 ))π∈Sk

→ ~v2, note that setting
n = |σm

3 | and k = |π|,

õcc(π, σm
3 ) =

occ(π, σm
3 )

(n
k)

= P (patI(σ
m
3 ) = π) , (4.2)

3An interval in a permutation σ = σ(1) . . . σ(n) is a factor σ(i)σ(i + 1) . . . σ(j), for j ≥ i, such that
the set {σ(i), σ(i + 1), . . . , σ(j)} forms an interval of N. If σ is a permutation of size n and τ1, . . . , τn are
permutations, then the inflation of σ by τ1, . . . , τn (denoted by σ[τ1, . . . , τn]) is the permutation with disjoint
intervals τ′1, . . . , τ′n, each respectively isomorphic to τ1, . . . , τn, from left to right, whose relative order is
given by σ.
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where I is a random set, uniformly chosen among the (n
k) subsets of [n] with k elements

(we denote random quantities in bold). Let Em be the event that the random set I
contains two indices i, j of [|σm

3 |] that belong to the same copy of σm
1 in σm

3 . We have that
P (patI(σ

m
3 ) = π) rewrites as

P (patI(σ
m
3 ) = π|Em) ·P (Em) + P

(
patI(σ

m
3 ) = π|(Em)C

)
·P
(
(Em)C

)
, (4.3)

where (Em)C denotes the complement of the event Em. We claim that

P (Em) ≤ k(k− 1)/(2 · |σm
2 |)→ 0. (4.4)

Indeed, the factor k(k− 1)/2 counts the number of pairs i, j in a set of cardinality k and
the factor 1

|σm
2 |

is an upper bound for the probability that given a uniform two-element
set {i, j} then i, j belong to the same copy of σm

1 in σm
3 (recall that there are |σm

2 | copies
of σm

1 in σm
3 ). Note also that

P
(

patI(σ
m
3 ) = π|(Em)C

)
= õcc(π, σm

2 )→ ~v2. (4.5)

Using Equations (4.2) to (4.5), we obtain that (õcc(π, σm
3 ))π∈Sk

→ ~v2.
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