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Abstract. In this article, we propose an (s + d, d)-abacus for (s, s + d, . . . , s + pd)-core
partitions and establish a bijection between (s, s + d, . . . , s + pd)-core partitions and
rational Motzkin paths of type (s + d,−d). This result not only gives a lattice path
interpretation of the (s, s + d, . . . , s + pd)-core partitions but also counts them with a
closed formula. Also we enumerate (s, s + 1, . . . , s + p)-core partitions with k corners
and self-conjugate (s, s + 1, . . . , s + p)-core partitions.
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1 Introduction

A partition λ = (λ1, λ2, . . . , λ`) of a positive integer n is a finite non-increasing sequence
of positive integer parts λi such that λ1 + λ2 + · · ·+ λ` = n. The Young diagram of λ is
a finite collection of n boxes arranged in left-justified rows, with the ith row having λi
boxes. For the Young diagram of λ, the partition λ′ = (λ′1, λ′2, . . . ) is called the conjugate
of λ, where λ′j denotes the number of boxes in the jth column. For each box of the Young
diagram in coordinates (i, j), the hook length h(i, j) is the number of boxes weakly below
and strictly to the right of the box. For a partition λ, the beta-set of λ, denoted β(λ), is
defined to be the set of first column hook lengths of λ. For example, the conjugate of
λ = (5, 4, 2, 1) is λ′ = (4, 3, 2, 2, 1) and the beta-set of λ is β(λ) = {8, 6, 3, 1}.

For a positive integer t, a partition λ is a t-core (partition) if it has no box of hook
length t. In the previous example, λ is a t-core for t = 5, 7, or t ≥ 9. For distinct positive
integers t1, t2, . . . , tp, we say that a partition λ is a (t1, t2, . . . , tp)-core if it is simultane-
ously a t1-core, a t2-core, . . . , and a tp-core. The study of core partitions arose from the
representation theory of the symmetric group Sn (see [12] for details). Researches on
simultaneous core partitions are motivated by the following result of Anderson [2].
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Theorem 1.1 ([2], Theorem 1). For relatively prime positive integers s and t, the number of
(s, t)-core partitions is

1
s + t

(
s + t

s

)
.

In particular, the number of (s, s + 1)-core partitions is the sth Catalan number Cs =
1

s+1(
2s
s ).

Since the work of Anderson, results on (s, t)-cores were published by many re-
searchers (see [3, 6, 8, 9, 10, 19, 23]). Also, some researchers concerned with simulta-
neous core partitions whose cores line up in arithmetic progression (see [1, 4, 7, 20, 21,
22]). Yang-Zhong-Zhou [22] showed that the number of (s, s + 1, s + 2)-core partitions
is equal to the sth Motzkin number Ms = ∑bs/2c

k=0 ( s
2k)Ck, where Ck is the kth Catalan

number. Amdeberhan-Leven [1] and Wang [20] extended this result as follows.
Let an (s, p)-generalized Dyck path be a lattice path from (0, 0) to (s, s) which stays

weakly above the line y = x and consists of vertical steps (0, p), horizontal steps (p, 0),
and diagonal steps (i, i) for i = 1, 2, . . . , p− 1.

Theorem 1.2 ([1], Theorem 4.2). For positive integers s and p, the number of (s, s + 1, . . . , s +
p)-core partitions is equal to the number C(p)

s of (s, p)-generalized Dyck paths, which satisfies
the following recurrence relation:

C(p)
s =

s

∑
k=1

C(p)
k−pC(p)

s−k ,

where C(p)
s = 1 for s < 0.

Theorem 1.3 ([20], Theorem 1.6). ] For relatively prime positive integers s and d, the number
of (s, s + d, s + 2d)-core partitions is

1
s + d

bs/2c

∑
k=0

(
s + d

k, k + d, s− 2k

)
.

Recently, Baek-Nam-Yu [4] obtained an alternative proof for Theorem 1.3 and found
a formula for the number of (s, s + d, s + 2d, s + 3d)-core partitions.

Theorem 1.4 ([4], Theorem 5.7). For relatively prime positive integers s and d, the number of
(s, s + d, s + 2d, s + 3d)-core partitions is

1
s + d

bs/2c

∑
k=0

{(
s + d− k

k

)
+

(
s + d− k− 1

k− 1

)}(
s + d− k

s− 2k

)
.
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An idea of counting paths was used in [1, 2, 3, 6, 10, 11] and counting the lattice
points method was used in [4, 8, 9, 13, 20]. A poset structure is the main tool to get the
formulae for counting simultaneous core partitions in [19, 22, 23].

In this article, we define the “rational Motzkin path", which generalizes the idea of
the Motzkin path, and give a generalization of Theorems 1.2 to 1.4 by using rational
Motzkin paths of type (s + d,−d) with a specific restriction (see Definition 2.5). The
following is the main result of this article.

Theorem 1.5. Let s and d be relatively prime positive integers. For a given integer p ≥ 2, the
number of (s, s + d, . . . , s + pd)-core partitions is equal to the number of rational Motzkin paths
of type (s + d,−d) without UFiU steps for i = 0, 1, . . . , p− 3 if p ≥ 3, that is

1
s + d

(
s + d

d

)
+
bs/2c

∑
k=1

r

∑
`=0

1
k + d

(
k + d
k− `

)(
k− 1
`

)(
s + d− `(p− 2)− 1

2k + d− 1

)
,

where r = min(k− 1, b(s− 2k)/(p− 2)c).

As a corollary, by setting d = 1, we obtain a closed formula for the number of (s, s +
1, . . . , s+ p)-core partitions. Also, we give a bijection between the set of (s, p)-generalized
Dyck paths and that of Motzkin paths of length s with a restriction. Furthermore, we
count the number of (s, s + 1, . . . , s + p)-core partitions with k corners. At the end of this
article, we enumerate self-conjugate (s, s + 1, . . . , s + p)-core partitions.

2 Counting (s, s + d, . . . , s + pd)-core partitions

2.1 The (s + d, d)-abacus diagram

James-Kerber [12] introduced the abacus diagram which has played important roles in
the theory of core partitions (see [3, 8, 14, 16, 17]). The s-abacus diagram is a diagram with
infinitely many rows labeled by nonnegative integers such that the smallest index is at
the bottom, and s columns labeled by 0, 1, . . . , s − 1, whose position in (i, j) is labeled
by si + j, where i ≥ 0 and j = 0, 1, . . . , s − 1. The s-abacus of a partition λ is obtained
from the s-abacus diagram by placing a bead on each position which the number at this
position belongs to β(λ). Positions without beads are called spacers. It is well-known
that λ is an s-core if and only if the s-abacus of λ has no spacer below a bead in any
column. Equivalently, one can have the following.

Lemma 2.1 ([12], Lemma 2.7.13). For a partition λ, λ is an s-core if and only if x ∈ β(λ)
implies x− s ∈ β(λ) whenever x− s > 0.

We now introduce the (s + d, d)-abacus diagram, which generalizes the definition of
the s-abacus diagram and the two-way abacus diagram suggested by Anderson [2].
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Definition 2.2. Let s and d be relatively prime positive integers. The (s + d, d)-abacus
diagram is a diagram with infinitely many rows labeled by integers and s+ d+ 1 columns
labeled by 0, 1, . . . , s + d, whose position in (i, j) is labeled by (s + d)i + dj, where i ∈ Z

and j = 0, 1, . . . , s + d. For a partition λ, the (s + d, d)-abacus of λ is obtained from the
(s + d, d)-abacus diagram by placing a bead on each position which the number at this
position belongs to β(λ). Again, a position without a bead is called a spacer.

Example 2.3. If λ = (6, 4, 3, 1, 1, 1, 1), then λ is a (5, 8, 11, . . . )-core partition and its beta-
set is β(λ) = {12, 9, 7, 4, 3, 2, 1}. Figure 1 shows the Young diagram with the hook lengths
and the (8, 3)-abacus of λ.

12 7 6 4 2 1

9 4 3 1

7 2 1

4

3

2

1

i = 3
i = 2
i = 1
i = 0

i = −1
i = −2
i = −3

0 3 6 9 12 15 18 21 24
8 11 14 17 20 23 26 29 32
16 19 22 25 28 31 34 37 40
24 27 30 33 36 39 42 45 48

−8 −5 −2 1 4 7 10 13 16
−16 −13 −10 −7 −4 −1 2 5 8
−24 −21 −18 −15 −12 −9 −6 −3 0

...

...

Figure 1: The Young diagram of the partition (6, 4, 3, 1, 1, 1, 1) with the hook lengths
and its (8, 3)-abacus

This modified abacus diagram is useful when we consider (s, s + d, . . . , s + pd)-core
partitions with p ≥ 2. For a given (s, s + d, . . . , s + pd)-core partition λ, if we consider
the (s + d, d)-abacus of λ, then a bead on the position in (i, j) implies that positions in
(i− 1, j− p+ 1), (i− 1, j− p+ 2), . . . , (i− 1, j+ 1) are also beads whenever these positions
are labeled by positive integers as in Figure 1. We now have the following lemma.

Lemma 2.4. For a given p ≥ 2 and the (s + d, d)-abacus of an (s, s + d, . . . , s + pd)-core λ, we
define a function f : {0, 1, . . . , s + d} → Z as follows: For a column number j, f (j) is defined
to be the smallest row number i satisfying that the position in (i, j) is a spacer being labeled by a
nonnegative integer. Then f satisfies that

(a) f (0) = 0 and f (s + d) = −d,

(b) f (j− 1) is exactly one of the values f (j)− 1, f (j), and f (j) + 1, for 1 ≤ j ≤ s + d,

(c) f (j− 1) = f (j)− 1 implies that f (j− p + 1), f (j− p + 2), . . . , f (j− 2) ≥ f (j− 1), for
p− 1 ≤ j ≤ s + d.
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As depicted in Figure 1, for the (8, 3)-abacus of λ = (6, 4, 3, 1, 1, 1, 1), we have f (0) =
0, f (1) = 1, f (2) = 0, f (3) = 1, f (4) = 1, f (5) = 0, f (6) = −1, f (7) = −2, and
f (8) = −3. We see that f agrees with Lemma 2.4.

2.2 Rational Motzkin paths of type (s, t)

A Motzkin path of length s is a lattice path from (0, 0) to (s, 0) which stays weakly above
the x-axis and consists of up steps (1, 1), down steps (1,−1), and flat steps (1, 0). We
introduce a path which generalizes the idea of the Motzkin path.

Definition 2.5. Let free rational Motzkin path of type (s, t) be a lattice path from (0, 0) to
(s, t) which consists of up steps U = (1, 1), down steps D = (1,−1), and flat steps
F = (1, 0). A rational Motzkin path of type (s, t) is a free rational Motzkin path which stays
weakly above the line y = tx/s.

Figure 2 shows all rational Motzkin paths of type (5,−2). We note that if P =
P1P2 · · · Ps+1 is a rational Motzkin path of type (s + 1,−1), then Ps+1 must be a down
step and the subpath P̄ = P1P2 · · · Ps is a Motzkin path of length s.

x

y

x

y

x

y

x

y

x

y

x

y

Figure 2: All rational Motzkin paths of type (5,−2)

Proposition 2.6. Let s and d be relatively prime positive integers. For p ≥ 2, there is a bijection
between the set of (s, s + d, . . . , s + pd)-core partitions and that of rational Motzkin paths of type
(s + d,−d) without UFiU steps for i = 0, 1, . . . , p− 3 if p ≥ 3.

Example 2.7. If λ = (9, 5, 3, 2, 2, 1, 1, 1, 1), then λ is a (5, 8, 11, 14)-core partition and
β(λ) = {17, 12, 9, 7, 6, 4, 3, 2, 1}. Figure 3 shows the corresponding path

P = UFUDDDDD

of λ, a rational Motzkin path of type (8,−3) without UU steps.

To count the number of rational Motzkin paths of type (s + d,−d), we use the cyclic
shifting of paths (see [5, 15]). For a path P = P1P2 · · · Ps, the cyclic shift σ(P) of P is
σ(P) = P2P3 · · · PsP1. Iteratively, σi(P) = Pi+1 · · · PsP1 · · · Pi, for i = 1, . . . , s − 1 and
σ0(P) = P.

Lemma 2.8. For relatively prime positive integers s and d, let P = P1P2 · · · Ps+d be a free
rational Motzkin path of type (s + d,−d). Then there exists a unique cyclic shift σj(P) of P such
that σj(P) is a rational Motzkin path of type (s + d,−d) for j = 0, 1, 2, . . . , s + d− 1.
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0 3 6 9 12 15 18 21 24
8 11 14 17 20 23 26 29 32

16 19 22 25 28 31 34 37 40
24 27 30 33 36 39 42 45 48

−8 −5 −2 1 4 7 10 13 16
−16 −13 −10 −7 −4 −1 2 5 8
−24 −21 −18 −15 −12 −9 −6 −3 0

...

...

x

y

Figure 3: The corresponding rational Motzkin path of the partition (9, 5, 3, 2, 2, 1, 1, 1, 1)

Now we can enumerate the rational Motzkin paths of type (s + d,−d).

Proposition 2.9. Let s and d be relatively prime positive integers. For a given integer 0 ≤ k ≤
bs/2c, the number of rational Motzkin paths of type (s + d,−d) having k up steps is

1
s + d

(
s + d

k, k + d, s− 2k

)
.

Consequently, the number of rational Motzkin paths of type (s + d,−d) is

1
s + d

bs/2c

∑
k=0

(
s + d

k, k + d, s− 2k

)
.

By Propositions 2.6 and 2.9, we give an alternating proof of Theorem 1.3 using path
enumeration. Also, we can use the cyclic shifting for rational Motzkin paths of type
(s + d,−d) without UFiU steps for i = 0, 1, . . . , p− 3. For a free rational Motzkin path
P of type (s + d,−d), we say that P is without cyclic UFiU steps if there is no UFiU steps
for any cyclic shift of P.

Proposition 2.10. Let s and d be relatively prime positive integers. For integers p ≥ 3 and
1 ≤ k ≤ bs/2c, the number of rational Motzkin paths of type (s + d,−d) having k up steps and
no UFiU steps for all i = 0, 1, . . . , p− 3 is

1
k + d

r

∑
`=0

(
k + d
k− `

)(
k− 1
`

)(
s + d− `(p− 2)− 1

2k + d− 1

)
,

where r = min(k− 1, b(s− 2k)/(p− 2)c).

Proof. LetMD(s+ d,−d; k, p) be the set of free rational Motzkin paths of type (s+ d,−d)
consisting of k U’s, k + d D’s, and s− 2k F’s which starts with a down step and has no
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cyclic UFiU steps for all i = 0, 1, . . . , p − 3. From Lemma 2.8, there are k + d cyclic
shifts of a rational Motzkin path, which starts with a down step so that the number of
rational Motzkin paths of type (s + d,−d) with k up steps and without UFiU steps for
all i = 0, 1, . . . , p− 3 is

1
k + d

|MD(s + d,−d; k, p)| .

For a path P ∈ MD(s + d,−d; k, p), let P̃ denote the subpath obtained from P by
deleting all flat steps. Then, P̃ = Q1Q2 · · ·Q2k+d is a path consisting of k U’s and k + d
D’s which starts with a down step. Now, we partition MD(s + d,−d; k, p) into k sets
according to the number of UU steps of P̃. For 0 ≤ ` ≤ k− 1, letM`

D(s + d,−d; k, p) be
the set of P ∈ MD(s + d,−d; k, p) for which P̃ has ` UU steps so that

|MD(s + d,−d; k, p)| =
k−1

∑
`=0
|M`

D(s + d,−d; k, p)| .

Hence, it is enough to show that

|M`
D(s + d,−d; k, p)| =

(
k + d
k− `

)(
k− 1
`

)(
s + d− `(p− 2)− 1

2k + d− 1

)
.

We note that if a path P belongs to M`
D(s + d,−d; k, p), then P̃ = Q1Q2 · · ·Q2k+d is a

path of the form
Da1Ub1 Da2Ub2 · · ·Dak−`Ubk−`Dak−`+1 ,

where ai and bi are integers satisfying ai, bi ≥ 1 for i = 1, 2, . . . , k− `, ak−`+1 ≥ 0,

a1 + a2 + · · ·+ ak−`+1 = k + d and b1 + b2 + · · ·+ bk−` = k .

Since P can be written as
Q1Fc1 Q2Fc2 · · ·Q2k+dFc2k+d ,

where ci’s are nonnegative integers satisfying c1 + c2 + · · ·+ c2k+d = s− 2k and ci ≥ p− 2
if Qi = Qi+1 = U, one can see that |M`

D(s + d,−d; k, p)| is equal to the number of
solution tuples ((ai), (bi), (ci)). It is easy to see that the number of solutions (ai) and (bi)

are (k+d
k−`) and ( k−1

k−`−1) = (k−1
` ), respectively. If (ai) and (bi) are given, then they determine

` indices i such that ci ≥ p − 2. Hence, the number of solutions (ci) is equal to the
number of nonnegative integer solutions to y1 + y2 + · · ·+ y2k+d = s− 2k− `(p− 2), that
is (s+d−`(p−2)−1

2k+d−1 ), for ` satisfying that s + d− `(p− 2)− 1 ≥ 2k + d− 1. This completes
the proof.

Remark 2.11. The number of rational Motzkin paths of type (s + d,−d) without up step
and UFiU steps for all i = 0, 1, . . . , p− 3 is equal to the number of rational Motzkin paths
of type (s + d,−d) without up step, that is (s+d

d )/(s + d) by Proposition 2.9. It follows
from Propositions 2.6 and 2.10 that we have proven Theorem 1.5.
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3 The (s, s + 1, . . . , s + p)-core partitions revisited

From Theorem 1.5, we obtain a closed formula for the number of (s, s+ 1, . . . , s+ p)-core
partitions.

Corollary 3.1. For positive integers s and p ≥ 2, the number of (s, s + 1, . . . , s + p)-core
partitions is equal to the number of Motzkin paths of length s without UFiU steps for i =
0, 1, . . . , p− 3 if p ≥ 3, that is

1 +
bs/2c

∑
k=1

r

∑
`=0

N(k, `+ 1)
(

s− `(p− 2)
2k

)
,

where N(k, ` + 1) = 1
k (

k
`+1)(

k
`) = 1

k+1(
k+1
`+1)(

k−1
` ) is the Narayana number which counts the

number of Dyck paths of order k having `+ 1 peaks and r = min(k− 1, b(s− 2k)/(p− 2)c).
From Theorem 1.2 and Corollary 3.1, we see that the (s, p)-generalized Dyck paths

and the Motzkin paths of length s without UFiU steps for i = 0, 1, . . . , p− 3 if p ≥ 3 are
equinumerous. We now provide a bijection between sets of these paths.

3.1 A bijection between generalized Dyck paths and restricted Motzkin
paths

For a given p ≥ 2, let P be a Motzkin path of length s without UFiU steps for i =
0, 1, . . . , p− 3 if p ≥ 3. Then each U step of P is followed by either FjD for some j ≥ 0 or
FkU for some k ≥ p− 2. Hence, we can decompose P into the following p + 1 units:

Ūp := UFp−2

D̄p := D (which is not following UFi for all i = 0, 1, . . . , p− 3)

F̄1 := F (which is not following UFi for all i = 0, 1, . . . , p− 3)
F̄i := UFi−2D for i = 2, 3, . . . , p− 1 .

We now construct a simple bijection φ between (s, p)-generalized Dyck paths and
Motzkin paths of length s without UFiU steps for i = 0, 1, . . . , p− 3 if p ≥ 3, for fixed
p ≥ 2 as follows.

For a given Motzkin path P of length s without UFiU steps for i = 0, 1, . . . , p− 3 if
p ≥ 3, we define φ(P) to be the path obtained from P by replacing each unit Ā with A
for A ∈ {Up, Dp, Fi | i = 1, 2, . . . , p − 1}, where Up = (0, p), Dp = (p, 0), Fi = (i, i) for
i = 1, 2, . . . , p− 1.

We note that if P is decomposed into k Ūp’s, k D̄p’s, and ci F̄i’s for i = 1, 2, . . . , p− 1,
then φ(P) is a path from (0, 0) to (s, s) since

k(p− 1) + k +
p−1

∑
i=1

ici = s = kp +
p−1

∑
i=1

ici .
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Moreover, P never goes below the x-axis if and only if φ(P) never goes below the line
y = x. Hence, φ(P) is an (s, p)-generalized Dyck path, and therefore φ is a bijection
between (s, p)-generalized Dyck paths and Motzkin paths of length s without UFiU
steps for i = 0, 1, . . . , p− 3 if p ≥ 3.

Example 3.2. Let p = 4 and P = UFFUFFFUDDUFDUFFDD so that P is a Motzkin
path of length 18 without UU and UFU steps. Hence, P can be written as

P = Ū4Ū4F̄1F̄2D̄4F̄3Ū4D̄4D̄4,

and therefore Q = φ(P) = U4U4F1F2D4F3U4D4D4 which is an (18, 4)-generalized Dyck
path. See Figure 4.

P

x

y

Q

x

y

Figure 4: A Motzkin path and the corresponding generalized Dyck path

3.2 The (s, s + 1, . . . , s + p)-core partitions with k corners

For a partition λ, the number of distinct parts in λ is equal to the number of corners in
the Young diagram of λ. Many researchers were interested in corners of a partition, and
Huang-Wang [11] found formulae for the number of some simultaneous core partitions
with specified number of corners.

Theorem 3.3 ([11], Theorems 3.1 and 3.8). For positive integers s and k, the number of
(s, s + 1)-core partitions with k corners is the Narayana number N(s, k + 1) = 1

s (
s

k+1)(
s
k), and
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the number of (s, s+ 1, s+ 2)-core partitions with k corners is ( s
2k)Ck, where Ck is the kth Catalan

number.

Huang-Wang also suggested an open problem for enumerating (s, s + 1, . . . , s + p)-
cores with k corners, and we give an answer to this problem.

Theorem 3.4. For positive integers s, p ≥ 2, and 1 ≤ k ≤ bs/2c, the number of (s, s +
1, . . . , s + p)-core partitions with k corners is

r

∑
`=0

N(k, `+ 1)
(

s− `(p− 2)
2k

)
,

where r = min(k− 1, b(s− 2k)/(p− 2)c).

3.3 Self-conjugate (s, s + 1, . . . , s + p)-core partitions

A partition whose conjugate is equal to itself is called self-conjugate. From now on, we
focus on self-conjugate partitions. Ford–Mai–Sze [10] found the number of self-conjugate
(s, t)-core partitions.

Theorem 3.5 ([10], Theorem 1). For relatively prime integers s and t, the number of self-
conjugate (s, t)-core partitions is (b s

2c+ b
t
2c

b s
2c

)
.

In particular, the number of self-conjugate (s, s + 1)-core partitions is equal to the number of
symmetric Dyck paths of order s, that is ( s

bs/2c).

Motivated by Theorem 3.5, in a previous work [7], the authors showed that the num-
ber of self-conjugate (s, s + 1, s + 2)-core partitions is equal to the number of symmetric
Motzkin paths of length s, and then gave a conjecture for the number of self-conjugate
(s, s + 1, . . . , s + p)-cores. Recently, this was proved by Yan-Yu-Zhou.

Theorem 3.6 ([21], Theorems 2.14, 2.19, and 2.22). For positive integers s and p, the number
of self-conjugate (s, s + 1, . . . , s + p)-core partitions is equal to the number of symmetric (s, p)-
generalized Dyck paths.

Now, we give a closed formula for the number of self-conjugate (s, s + 1, . . . , s + p)-
core partitions. Here, we give a useful lemma from the OEIS.

Lemma 3.7 ([18], Sequence A088855). For nonnegative integers k and ` such that ` < k, the
number of symmetric Dyck paths of order k having ` UU steps is(b k−1

2 c
b `2c

)( b k
2c

b `+1
2 c

)
.
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Theorem 3.8. For positive integers s, p ≥ 2, the number of self-conjugate (s, s + 1, . . . , s + p)-
core partitions is

1 +
bs/2c

∑
k=1

r

∑
`=0

(b k−1
2 c
b `2c

)( b k
2c

b `+1
2 c

)(
b s−`(p−2)

2 c
k

)
,

where r = min(k− 1, b(s− 2k)/(p− 2)c).
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