The $(s, s+d, \ldots, s+p d)$-core partitions and rational Motzkin paths

Hyunsoo Cho ${ }^{1}$, JiSun Huh*2, and Jaebum Sohn ${ }^{3}$
${ }^{1}$ Institute of Mathematical Sciences, Ewha Womans University, Seoul, Republic of Korea
${ }^{2}$ Department of Mathematics, Ajou University, Suwon, Republic of Korea
${ }^{3}$ Department of Mathematics, Yonsei University, Seoul, Republic of Korea

Abstract

In this article, we propose an $(s+d, d)$-abacus for $(s, s+d, \ldots, s+p d)$-core partitions and establish a bijection between $(s, s+d, \ldots, s+p d)$-core partitions and rational Motzkin paths of type $(s+d,-d)$. This result not only gives a lattice path interpretation of the $(s, s+d, \ldots, s+p d)$-core partitions but also counts them with a closed formula. Also we enumerate $(s, s+1, \ldots, s+p)$-core partitions with k corners and self-conjugate $(s, s+1, \ldots, s+p)$-core partitions.

Keywords: simultaneous core partitions, self-conjugate, corners, rational Motzkin paths, generalized Dyck paths

1 Introduction

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ of a positive integer n is a finite non-increasing sequence of positive integer parts λ_{i} such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$. The Young diagram of λ is a finite collection of n boxes arranged in left-justified rows, with the i th row having λ_{i} boxes. For the Young diagram of λ, the partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$ is called the conjugate of λ, where λ_{j}^{\prime} denotes the number of boxes in the j th column. For each box of the Young diagram in coordinates (i, j), the hook length $h(i, j)$ is the number of boxes weakly below and strictly to the right of the box. For a partition λ, the beta-set of λ, denoted $\beta(\lambda)$, is defined to be the set of first column hook lengths of λ. For example, the conjugate of $\lambda=(5,4,2,1)$ is $\lambda^{\prime}=(4,3,2,2,1)$ and the beta-set of λ is $\beta(\lambda)=\{8,6,3,1\}$.

For a positive integer t, a partition λ is a t-core (partition) if it has no box of hook length t. In the previous example, λ is a t-core for $t=5,7$, or $t \geq 9$. For distinct positive integers $t_{1}, t_{2}, \ldots, t_{p}$, we say that a partition λ is a $\left(t_{1}, t_{2}, \ldots, t_{p}\right)$-core if it is simultaneously a t_{1}-core, a t_{2}-core, \ldots, and a t_{p}-core. The study of core partitions arose from the representation theory of the symmetric group S_{n} (see [12] for details). Researches on simultaneous core partitions are motivated by the following result of Anderson [2].

[^0]Theorem 1.1 ([2], Theorem 1). For relatively prime positive integers s and t, the number of (s, t)-core partitions is

$$
\frac{1}{s+t}\binom{s+t}{s}
$$

In particular, the number of $(s, s+1)$-core partitions is the sth Catalan number $C_{s}=\frac{1}{s+1}\binom{2 s}{s}$.
Since the work of Anderson, results on (s, t)-cores were published by many researchers (see $[3,6,8,9,10,19,23]$). Also, some researchers concerned with simultaneous core partitions whose cores line up in arithmetic progression (see [1, 4, 7, 20, 21, 22]). Yang-Zhong-Zhou [22] showed that the number of $(s, s+1, s+2)$-core partitions is equal to the s th Motzkin number $M_{s}=\sum_{k=0}^{\lfloor s / 2\rfloor}\binom{s}{2 k} C_{k}$, where C_{k} is the k th Catalan number. Amdeberhan-Leven [1] and Wang [20] extended this result as follows.

Let an (s, p)-generalized Dyck path be a lattice path from $(0,0)$ to (s, s) which stays weakly above the line $y=x$ and consists of vertical steps $(0, p)$, horizontal steps $(p, 0)$, and diagonal steps (i, i) for $i=1,2, \ldots, p-1$.

Theorem 1.2 ([1], Theorem 4.2). For positive integers s and p, the number of $(s, s+1, \ldots, s+$ p)-core partitions is equal to the number $C_{s}^{(p)}$ of (s, p)-generalized Dyck paths, which satisfies the following recurrence relation:

$$
C_{s}^{(p)}=\sum_{k=1}^{s} C_{k-p}^{(p)} C_{s-k}^{(p)}
$$

where $C_{s}^{(p)}=1$ for $s<0$.
Theorem 1.3 ([20], Theorem 1.6).] For relatively prime positive integers s and d, the number of $(s, s+d, s+2 d)$-core partitions is

$$
\frac{1}{s+d} \sum_{k=0}^{\lfloor s / 2\rfloor}\binom{s+d}{k, k+d, s-2 k}
$$

Recently, Baek-Nam-Yu [4] obtained an alternative proof for Theorem 1.3 and found a formula for the number of $(s, s+d, s+2 d, s+3 d)$-core partitions.

Theorem 1.4 ([4], Theorem 5.7). For relatively prime positive integers s and d, the number of $(s, s+d, s+2 d, s+3 d)$-core partitions is

$$
\frac{1}{s+d} \sum_{k=0}^{\lfloor s / 2\rfloor}\left\{\binom{s+d-k}{k}+\binom{s+d-k-1}{k-1}\right\}\binom{s+d-k}{s-2 k}
$$

The $(s, s+d, \ldots, s+p d)$-core partitions and rational Motzkin paths

An idea of counting paths was used in $[1,2,3,6,10,11]$ and counting the lattice points method was used in $[4,8,9,13,20]$. A poset structure is the main tool to get the formulae for counting simultaneous core partitions in [19, 22, 23].

In this article, we define the "rational Motzkin path", which generalizes the idea of the Motzkin path, and give a generalization of Theorems 1.2 to 1.4 by using rational Motzkin paths of type $(s+d,-d)$ with a specific restriction (see Definition 2.5). The following is the main result of this article.

Theorem 1.5. Let s and d be relatively prime positive integers. For a given integer $p \geq 2$, the number of $(s, s+d, \ldots, s+p d)$-core partitions is equal to the number of rational Motzkin paths of type $(s+d,-d)$ without UF ${ }^{i} U$ steps for $i=0,1, \ldots, p-3$ if $p \geq 3$, that is

$$
\frac{1}{s+d}\binom{s+d}{d}+\sum_{k=1}^{\lfloor s / 2\rfloor} \sum_{\ell=0}^{r} \frac{1}{k+d}\binom{k+d}{k-\ell}\binom{k-1}{\ell}\binom{s+d-\ell(p-2)-1}{2 k+d-1}
$$

where $r=\min (k-1,\lfloor(s-2 k) /(p-2)\rfloor)$.
As a corollary, by setting $d=1$, we obtain a closed formula for the number of $(s, s+$ $1, \ldots, s+p)$-core partitions. Also, we give a bijection between the set of (s, p)-generalized Dyck paths and that of Motzkin paths of length s with a restriction. Furthermore, we count the number of $(s, s+1, \ldots, s+p)$-core partitions with k corners. At the end of this article, we enumerate self-conjugate $(s, s+1, \ldots, s+p)$-core partitions.

2 Counting $(s, s+d, \ldots, s+p d)$-core partitions

2.1 The $(s+d, d)$-abacus diagram

James-Kerber [12] introduced the abacus diagram which has played important roles in the theory of core partitions (see $[3,8,14,16,17]$). The s-abacus diagram is a diagram with infinitely many rows labeled by nonnegative integers such that the smallest index is at the bottom, and s columns labeled by $0,1, \ldots, s-1$, whose position in (i, j) is labeled by $s i+j$, where $i \geq 0$ and $j=0,1, \ldots, s-1$. The s-abacus of a partition λ is obtained from the s-abacus diagram by placing a bead on each position which the number at this position belongs to $\beta(\lambda)$. Positions without beads are called spacers. It is well-known that λ is an s-core if and only if the s-abacus of λ has no spacer below a bead in any column. Equivalently, one can have the following.

Lemma 2.1 ([12], Lemma 2.7.13). For a partition λ, λ is an s-core if and only if $x \in \beta(\lambda)$ implies $x-s \in \beta(\lambda)$ whenever $x-s>0$.

We now introduce the $(s+d, d)$-abacus diagram, which generalizes the definition of the s-abacus diagram and the two-way abacus diagram suggested by Anderson [2].

Definition 2.2. Let s and d be relatively prime positive integers. The $(s+d, d)$-abacus diagram is a diagram with infinitely many rows labeled by integers and $s+d+1$ columns labeled by $0,1, \ldots, s+d$, whose position in (i, j) is labeled by $(s+d) i+d j$, where $i \in \mathbb{Z}$ and $j=0,1, \ldots, s+d$. For a partition λ, the $(s+d, d)$-abacus of λ is obtained from the $(s+d, d)$-abacus diagram by placing a bead on each position which the number at this position belongs to $\beta(\lambda)$. Again, a position without a bead is called a spacer.

Example 2.3. If $\lambda=(6,4,3,1,1,1,1)$, then λ is a $(5,8,11, \ldots)$-core partition and its betaset is $\beta(\lambda)=\{12,9,7,4,3,2,1\}$. Figure 1 shows the Young diagram with the hook lengths and the (8,3)-abacus of λ.

12	7	6	4	2	1
9	4	3	1		
7	2	1			
4					
3					
2					
1					

				\vdots					
24	27	30	33	36	39	42	45	48	$i=3$
16	19	22	25	28	31	34	37	40	$i=2$
8	11	14	17	20	23	26	29	32	$i=1$
0	3	6	9	12	15	18	21	24	$i=0$
-8	-5	-2	1	4	7	10	13	16	$i=-1$
-16	-13	-10	-7	-4	-1	(2)	5	8	$i=-2$
-24	-21	-18	-15	-12	-9	-6	-3	0	$i=-3$

Figure 1: The Young diagram of the partition $(6,4,3,1,1,1,1)$ with the hook lengths and its $(8,3)$-abacus

This modified abacus diagram is useful when we consider $(s, s+d, \ldots, s+p d)$-core partitions with $p \geq 2$. For a given $(s, s+d, \ldots, s+p d)$-core partition λ, if we consider the $(s+d, d)$-abacus of λ, then a bead on the position in (i, j) implies that positions in $(i-1, j-p+1),(i-1, j-p+2), \ldots,(i-1, j+1)$ are also beads whenever these positions are labeled by positive integers as in Figure 1. We now have the following lemma.

Lemma 2.4. For a given $p \geq 2$ and the $(s+d, d)$-abacus of an $(s, s+d, \ldots, s+p d)$-core λ, we define a function $f:\{0,1, \ldots, s+d\} \rightarrow \mathbb{Z}$ as follows: For a column number $j, f(j)$ is defined to be the smallest row number i satisfying that the position in (i, j) is a spacer being labeled by a nonnegative integer. Then f satisfies that
(a) $f(0)=0$ and $f(s+d)=-d$,
(b) $f(j-1)$ is exactly one of the values $f(j)-1, f(j)$, and $f(j)+1$, for $1 \leq j \leq s+d$,
(c) $f(j-1)=f(j)-1$ implies that $f(j-p+1), f(j-p+2), \ldots, f(j-2) \geq f(j-1)$, for $p-1 \leq j \leq s+d$.

As depicted in Figure 1, for the $(8,3)$-abacus of $\lambda=(6,4,3,1,1,1,1)$, we have $f(0)=$ $0, f(1)=1, f(2)=0, f(3)=1, f(4)=1, f(5)=0, f(6)=-1, f(7)=-2$, and $f(8)=-3$. We see that f agrees with Lemma 2.4.

2.2 Rational Motzkin paths of type (s, t)

A Motzkin path of length s is a lattice path from $(0,0)$ to $(s, 0)$ which stays weakly above the x-axis and consists of up steps $(1,1)$, down steps $(1,-1)$, and flat steps $(1,0)$. We introduce a path which generalizes the idea of the Motzkin path.
Definition 2.5. Let free rational Motzkin path of type (s, t) be a lattice path from $(0,0)$ to (s, t) which consists of up steps $U=(1,1)$, down steps $D=(1,-1)$, and flat steps $F=(1,0)$. A rational Motzkin path of type (s, t) is a free rational Motzkin path which stays weakly above the line $y=t x / s$.

Figure 2 shows all rational Motzkin paths of type $(5,-2)$. We note that if $P=$ $P_{1} P_{2} \cdots P_{s+1}$ is a rational Motzkin path of type $(s+1,-1)$, then P_{s+1} must be a down step and the subpath $\bar{P}=P_{1} P_{2} \cdots P_{s}$ is a Motzkin path of length s.

Figure 2: All rational Motzkin paths of type (5, -2)

Proposition 2.6. Let sand d be relatively prime positive integers. For $p \geq 2$, there is a bijection between the set of $(s, s+d, \ldots, s+p d)$-core partitions and that of rational Motzkin paths of type $(s+d,-d)$ without $U F^{i} U$ steps for $i=0,1, \ldots, p-3$ if $p \geq 3$.

Example 2.7. If $\lambda=(9,5,3,2,2,1,1,1,1)$, then λ is a $(5,8,11,14)$-core partition and $\beta(\lambda)=\{17,12,9,7,6,4,3,2,1\}$. Figure 3 shows the corresponding path

$$
P=U F U D D D D D
$$

of λ, a rational Motzkin path of type $(8,-3)$ without $U U$ steps.
To count the number of rational Motzkin paths of type $(s+d,-d)$, we use the cyclic shifting of paths (see [5,15]). For a path $P=P_{1} P_{2} \cdots P_{s}$, the cyclic shift $\sigma(P)$ of P is $\sigma(P)=P_{2} P_{3} \cdots P_{s} P_{1}$. Iteratively, $\sigma^{i}(P)=P_{i+1} \cdots P_{s} P_{1} \cdots P_{i}$, for $i=1, \ldots, s-1$ and $\sigma^{0}(P)=P$.

Lemma 2.8. For relatively prime positive integers s and d, let $P=P_{1} P_{2} \cdots P_{s+d}$ be a free rational Motzkin path of type $(s+d,-d)$. Then there exists a unique cyclic shift $\sigma^{j}(P)$ of P such that $\sigma^{j}(P)$ is a rational Motzkin path of type $(s+d,-d)$ for $j=0,1,2, \ldots, s+d-1$.

24	27	30	33	36	39	42	45	48
16	19	22	25	28	31	34	37	40
8	11	14	17	20	23	26	29	32
0	(3)	6	9	12	15	18	21	24
-8	-5	-2	1	4	(7)	10	13	16
-16	-13	-10	-7	-4	-1	(2)	5	8
-24	-21	-18	-15	-12	-9	-6	-3	0
\vdots								

Figure 3: The corresponding rational Motzkin path of the partition (9, 5, 3, 2, 2, 1, 1, 1, 1)

Now we can enumerate the rational Motzkin paths of type $(s+d,-d)$.
Proposition 2.9. Let s and d be relatively prime positive integers. For a given integer $0 \leq k \leq$ $\lfloor s / 2\rfloor$, the number of rational Motzkin paths of type $(s+d,-d)$ having k up steps is

$$
\frac{1}{s+d}\binom{s+d}{k, k+d, s-2 k} .
$$

Consequently, the number of rational Motzkin paths of type $(s+d,-d)$ is

$$
\frac{1}{s+d} \sum_{k=0}^{\lfloor s / 2\rfloor}\binom{s+d}{k, k+d, s-2 k}
$$

By Propositions 2.6 and 2.9, we give an alternating proof of Theorem 1.3 using path enumeration. Also, we can use the cyclic shifting for rational Motzkin paths of type $(s+d,-d)$ without $U F^{i} U$ steps for $i=0,1, \ldots, p-3$. For a free rational Motzkin path P of type $(s+d,-d)$, we say that P is without cyclic $U F^{i} U$ steps if there is no $U F^{i} U$ steps for any cyclic shift of P.

Proposition 2.10. Let s and d be relatively prime positive integers. For integers $p \geq 3$ and $1 \leq k \leq\lfloor s / 2\rfloor$, the number of rational Motzkin paths of type $(s+d,-d)$ having k up steps and no UF $i U$ steps for all $i=0,1, \ldots, p-3$ is

$$
\frac{1}{k+d} \sum_{\ell=0}^{r}\binom{k+d}{k-\ell}\binom{k-1}{\ell}\binom{s+d-\ell(p-2)-1}{2 k+d-1}
$$

where $r=\min (k-1,\lfloor(s-2 k) /(p-2)\rfloor)$.
Proof. Let $\mathcal{M}_{D}(s+d,-d ; k, p)$ be the set of free rational Motzkin paths of type $(s+d,-d)$ consisting of $k U^{\prime} s, k+d D^{\prime} s$, and $s-2 k F^{\prime}$ s which starts with a down step and has no
cyclic $U F^{i} U$ steps for all $i=0,1, \ldots, p-3$. From Lemma 2.8 , there are $k+d$ cyclic shifts of a rational Motzkin path, which starts with a down step so that the number of rational Motzkin paths of type $(s+d,-d)$ with k up steps and without $U F^{i} U$ steps for all $i=0,1, \ldots, p-3$ is

$$
\frac{1}{k+d}\left|\mathcal{M}_{D}(s+d,-d ; k, p)\right|
$$

For a path $P \in \mathcal{M}_{D}(s+d,-d ; k, p)$, let \tilde{P} denote the subpath obtained from P by deleting all flat steps. Then, $\tilde{P}=Q_{1} Q_{2} \cdots Q_{2 k+d}$ is a path consisting of $k U^{\prime} s$ and $k+d$ D 's which starts with a down step. Now, we partition $\mathcal{M}_{D}(s+d,-d ; k, p)$ into k sets according to the number of $U U$ steps of \tilde{P}. For $0 \leq \ell \leq k-1$, let $\mathcal{M}_{D}^{\ell}(s+d,-d ; k, p)$ be the set of $P \in \mathcal{M}_{D}(s+d,-d ; k, p)$ for which \tilde{P} has $\ell U U$ steps so that

$$
\left|\mathcal{M}_{D}(s+d,-d ; k, p)\right|=\sum_{\ell=0}^{k-1}\left|\mathcal{M}_{D}^{\ell}(s+d,-d ; k, p)\right|
$$

Hence, it is enough to show that

$$
\left|\mathcal{M}_{D}^{\ell}(s+d,-d ; k, p)\right|=\binom{k+d}{k-\ell}\binom{k-1}{\ell}\binom{s+d-\ell(p-2)-1}{2 k+d-1} .
$$

We note that if a path P belongs to $\mathcal{M}_{D}^{\ell}(s+d,-d ; k, p)$, then $\tilde{P}=Q_{1} Q_{2} \cdots Q_{2 k+d}$ is a path of the form

$$
D^{a_{1}} U^{b_{1}} D^{a_{2}} U^{b_{2}} \cdots D^{a_{k-\ell}} U^{b_{k-\ell}} D^{a_{k-\ell+1}}
$$

where a_{i} and b_{i} are integers satisfying $a_{i}, b_{i} \geq 1$ for $i=1,2, \ldots, k-\ell, a_{k-\ell+1} \geq 0$,

$$
a_{1}+a_{2}+\cdots+a_{k-\ell+1}=k+d \quad \text { and } \quad b_{1}+b_{2}+\cdots+b_{k-\ell}=k
$$

Since P can be written as

$$
Q_{1} F^{c_{1}} Q_{2} F^{c_{2}} \cdots Q_{2 k+d} F^{c_{2 k+d}}
$$

where c_{i} 's are nonnegative integers satisfying $c_{1}+c_{2}+\cdots+c_{2 k+d}=s-2 k$ and $c_{i} \geq p-2$ if $Q_{i}=Q_{i+1}=U$, one can see that $\left|\mathcal{M}_{D}^{\ell}(s+d,-d ; k, p)\right|$ is equal to the number of solution tuples $\left(\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right)\right)$. It is easy to see that the number of solutions $\left(a_{i}\right)$ and $\left(b_{i}\right)$ are $\binom{k+d}{k-\ell}$ and $\binom{k-1}{k-\ell-1}=\binom{k-1}{\ell}$, respectively. If $\left(a_{i}\right)$ and $\left(b_{i}\right)$ are given, then they determine ℓ indices i such that $c_{i} \geq p-2$. Hence, the number of solutions $\left(c_{i}\right)$ is equal to the number of nonnegative integer solutions to $y_{1}+y_{2}+\cdots+y_{2 k+d}=s-2 k-\ell(p-2)$, that is $\binom{s+d-\ell(p-2)-1}{2 k+d-1}$, for ℓ satisfying that $s+d-\ell(p-2)-1 \geq 2 k+d-1$. This completes the proof.

Remark 2.11. The number of rational Motzkin paths of type $(s+d,-d)$ without up step and $U F^{i} U$ steps for all $i=0,1, \ldots, p-3$ is equal to the number of rational Motzkin paths of type $(s+d,-d)$ without up step, that is $\binom{s+d}{d} /(s+d)$ by Proposition 2.9. It follows from Propositions 2.6 and 2.10 that we have proven Theorem 1.5.

3 The $(s, s+1, \ldots, s+p)$-core partitions revisited

From Theorem 1.5, we obtain a closed formula for the number of $(s, s+1, \ldots, s+p)$-core partitions.
Corollary 3.1. For positive integers s and $p \geq 2$, the number of $(s, s+1, \ldots, s+p)$-core partitions is equal to the number of Motzkin paths of length s without UFiU steps for $i=$ $0,1, \ldots, p-3$ if $p \geq 3$, that is

$$
1+\sum_{k=1}^{\lfloor s / 2\rfloor} \sum_{\ell=0}^{r} N(k, \ell+1)\binom{s-\ell(p-2)}{2 k}
$$

where $N(k, \ell+1)=\frac{1}{k}\binom{k}{\ell+1}\binom{k}{\ell}=\frac{1}{k+1}\binom{k+1}{\ell+1}\binom{k-1}{\ell}$ is the Narayana number which counts the number of Dyck paths of order k having $\ell+1$ peaks and $r=\min (k-1,\lfloor(s-2 k) /(p-2)\rfloor)$.

From Theorem 1.2 and Corollary 3.1, we see that the (s, p)-generalized Dyck paths and the Motzkin paths of length s without $U F^{i} U$ steps for $i=0,1, \ldots, p-3$ if $p \geq 3$ are equinumerous. We now provide a bijection between sets of these paths.

3.1 A bijection between generalized Dyck paths and restricted Motzkin paths

For a given $p \geq 2$, let P be a Motzkin path of length s without $U F^{i} U$ steps for $i=$ $0,1, \ldots, p-3$ if $p \geq 3$. Then each U step of P is followed by either $F^{j} D$ for some $j \geq 0$ or $F^{k} U$ for some $k \geq p-2$. Hence, we can decompose P into the following $p+1$ units:

$$
\begin{array}{ll}
\bar{U}_{p}:=U F^{p-2} & \\
\bar{D}_{p}:=D & \text { (which is not following } \left.U F^{i} \text { for all } i=0,1, \ldots, p-3\right) \\
\bar{F}_{1}:=F & \left(\text { which is not following } U F^{i} \text { for all } i=0,1, \ldots, p-3\right) \\
\bar{F}_{i}:=U F^{i-2} D & \text { for } i=2,3, \ldots, p-1 .
\end{array}
$$

We now construct a simple bijection ϕ between (s, p)-generalized Dyck paths and Motzkin paths of length s without $U F^{i} U$ steps for $i=0,1, \ldots, p-3$ if $p \geq 3$, for fixed $p \geq 2$ as follows.

For a given Motzkin path P of length s without $U F^{i} U$ steps for $i=0,1, \ldots, p-3$ if $p \geq 3$, we define $\phi(P)$ to be the path obtained from P by replacing each unit \bar{A} with A for $A \in\left\{U_{p}, D_{p}, F_{i} \mid i=1,2, \ldots, p-1\right\}$, where $U_{p}=(0, p), D_{p}=(p, 0), F_{i}=(i, i)$ for $i=1,2, \ldots, p-1$.

We note that if P is decomposed into $k \bar{U}_{p}{ }^{\prime} \mathrm{s}, k \bar{D}_{p}{ }^{\prime} \mathrm{s}$, and $c_{i} \bar{F}_{i}$'s for $i=1,2, \ldots, p-1$, then $\phi(P)$ is a path from $(0,0)$ to (s, s) since

$$
k(p-1)+k+\sum_{i=1}^{p-1} i c_{i}=s=k p+\sum_{i=1}^{p-1} i c_{i} .
$$

Moreover, P never goes below the x-axis if and only if $\phi(P)$ never goes below the line $y=x$. Hence, $\phi(P)$ is an (s, p)-generalized Dyck path, and therefore ϕ is a bijection between (s, p)-generalized Dyck paths and Motzkin paths of length s without $U F^{i} U$ steps for $i=0,1, \ldots, p-3$ if $p \geq 3$.
Example 3.2. Let $p=4$ and $P=$ UFFUFFFUDDUFDUFFDD so that P is a Motzkin path of length 18 without $U U$ and $U F U$ steps. Hence, P can be written as

$$
P=\bar{U}_{4} \bar{U}_{4} \bar{F}_{1} \bar{F}_{2} \bar{D}_{4} \bar{F}_{3} \bar{U}_{4} \bar{D}_{4} \bar{D}_{4}
$$

and therefore $Q=\phi(P)=U_{4} U_{4} F_{1} F_{2} D_{4} F_{3} U_{4} D_{4} D_{4}$ which is an (18,4)-generalized Dyck path. See Figure 4.

Figure 4: A Motzkin path and the corresponding generalized Dyck path

3.2 The $(s, s+1, \ldots, s+p)$-core partitions with k corners

For a partition λ, the number of distinct parts in λ is equal to the number of corners in the Young diagram of λ. Many researchers were interested in corners of a partition, and Huang-Wang [11] found formulae for the number of some simultaneous core partitions with specified number of corners.

Theorem 3.3 ([11], Theorems 3.1 and 3.8). For positive integers s and k, the number of $(s, s+1)$-core partitions with k corners is the Narayana number $N(s, k+1)=\frac{1}{s}\binom{s}{k+1}\binom{s}{k}$, and
the number of $(s, s+1, s+2)$-core partitions with k corners is $\binom{s}{2 k} C_{k}$, where C_{k} is the k th Catalan number.

Huang-Wang also suggested an open problem for enumerating $(s, s+1, \ldots, s+p)$ cores with k corners, and we give an answer to this problem.

Theorem 3.4. For positive integers $s, p \geq 2$, and $1 \leq k \leq\lfloor s / 2\rfloor$, the number of $(s, s+$ $1, \ldots, s+p)$-core partitions with k corners is

$$
\sum_{\ell=0}^{r} N(k, \ell+1)\binom{s-\ell(p-2)}{2 k}
$$

where $r=\min (k-1,\lfloor(s-2 k) /(p-2)\rfloor)$.

3.3 Self-conjugate $(s, s+1, \ldots, s+p)$-core partitions

A partition whose conjugate is equal to itself is called self-conjugate. From now on, we focus on self-conjugate partitions. Ford-Mai-Sze [10] found the number of self-conjugate (s, t)-core partitions.

Theorem 3.5 ([10], Theorem 1). For relatively prime integers s and t, the number of selfconjugate (s, t)-core partitions is

$$
\binom{\left\lfloor\frac{s}{2}\right\rfloor+\left\lfloor\frac{t}{2}\right\rfloor}{\left\lfloor\frac{s}{2}\right\rfloor} .
$$

In particular, the number of self-conjugate $(s, s+1)$-core partitions is equal to the number of symmetric Dyck paths of order s, that is $\binom{s}{\lfloor s / 2\rfloor}$.

Motivated by Theorem 3.5, in a previous work [7], the authors showed that the number of self-conjugate ($s, s+1, s+2$)-core partitions is equal to the number of symmetric Motzkin paths of length s, and then gave a conjecture for the number of self-conjugate $(s, s+1, \ldots, s+p)$-cores. Recently, this was proved by Yan-Yu-Zhou.

Theorem 3.6 ([21], Theorems 2.14, 2.19, and 2.22). For positive integers s and p, the number of self-conjugate ($s, s+1, \ldots, s+p$)-core partitions is equal to the number of symmetric (s, p) generalized Dyck paths.

Now, we give a closed formula for the number of self-conjugate $(s, s+1, \ldots, s+p)$ core partitions. Here, we give a useful lemma from the OEIS.

Lemma 3.7 ([18], Sequence A088855). For nonnegative integers k and ℓ such that $\ell<k$, the number of symmetric Dyck paths of order k having ℓ UU steps is

$$
\binom{\left\lfloor\frac{k-1}{2}\right\rfloor}{\left\lfloor\frac{\ell}{2}\right\rfloor}\binom{\left\lfloor\frac{k}{2}\right\rfloor}{\left\lfloor\frac{\ell+1}{2}\right\rfloor} .
$$

Theorem 3.8. For positive integers $s, p \geq 2$, the number of self-conjugate $(s, s+1, \ldots, s+p)$ core partitions is

$$
1+\sum_{k=1}^{\lfloor s / 2\rfloor} \sum_{\ell=0}^{r}\binom{\left\lfloor\frac{k-1}{2}\right\rfloor}{\left\lfloor\frac{\ell}{2}\right\rfloor}\binom{\left\lfloor\frac{k}{2}\right\rfloor}{\left.\frac{\ell+1}{2}\right\rfloor}\binom{\left\lfloor\frac{s-\ell(p-2)}{2}\right\rfloor}{ k}
$$

where $r=\min (k-1,\lfloor(s-2 k) /(p-2)\rfloor)$.

Acknowledgements

The authors are grateful to the referees for their careful reading and helpful comments.

References

[1] T. Amdeberhan and E. Leven. "Multi-cores, posets, and lattice paths". Adv. in Appl. Math. 71 (2015), pp. 1-13. Link.
[2] J. Anderson. "Partitions which are simultaneously t_{1} - and t_{2}-core". Discrete Math. 248.1-3 (2002), pp. 237-243. Link.
[3] D. Armstrong, C. Hanusa, and B. Jones. "Results and conjectures on simultaneous core partitions". European J. Combin. 41 (2014), pp. 205-220. Link.
[4] J. Baek, H. Nam, and M. Yu. "Johnson's bijections and their application to counting simultaneous core partitions". European J. Combin. 75 (2019), pp. 43-54. Link.
[5] M. Bizley. "Derivation of a new formula for the number of minimal lattice paths from $(0,0)$ to $(k m, k n)$ having just t contacts with the line $m y=n x$ and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line". J. Inst. Actuar. 80 (1954), pp. 55-62. Link.
[6] W. Chen, H. Huang, and L. Wang. "Average size of a self-conjugate ($s, t)$-core partition". Proc. Amer. Math. Soc. 144.4 (2016), pp. 1391-1399. Link.
[7] H. Cho, J. Huh, and J. Sohn. "Counting self-conjugate ($s, s+1, s+2$)-core partitions". 2019. arXiv:1904.02313.
[8] M. Fayers. "The t-core of an s-core". J. Combin. Theory Ser. A 118.5 (2011), pp. 1525-1539. Link.
[9] S. Fishel and M. Vazirani. "A bijection between dominant Shi regions and core partitions". European J. Combin. 31.8 (2010), pp. 2087-2101. Link.
[10] B. Ford, H. Mai, and L. Sze. "Self-conjugate simultaneous p - and q-core partitions and blocks of $A_{n}{ }^{\prime \prime}$. J. Number Theory 129.4 (2009), pp. 858-865. Link.
[11] H. Huang and L. Wang. "The corners of core partitions". SIAM J. Discrete Math. 32.3 (2018), pp. 1887-1902. Link.
[12] G. James and A. Kerber. The representation theory of the symmetric group. Vol. 16. Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981, pp. xxviii+510. Link.
[13] P. Johnson. "Lattice points and simultaneous core partitions". Electron. J. Combin. 25.3 (2018), Paper 3.47, 19. Link.
[14] P. Johnson. "Simultaneous cores with restrictions and a question of Zaleski and Zeilberger" (2018). arXiv:1802.09621.
[15] N. Loehr. Bijective combinatorics. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2011, pp. xxii+590.
[16] R. Nath and J. Sellers. "A combinatorial proof of a relationship between maximal ($2 k-$ $1,2 k+1)$-cores and ($2 k-1,2 k, 2 k+1$)-cores". Electron. J. Combin. 23.1 (2016), Paper 1.13, 11. Link.
[17] J. Olsson. "A theorem on the cores of partitions". J. Combin. Theory Ser. A 116.3 (2009), pp. 733-740. Link.
[18] N. Sloane. "The on-line encyclopedia of integer sequences". https://oeis.org.
[19] A. Straub. "Core partitions into distinct parts and an analog of Euler's theorem". European J. Combin. 57 (2016), pp. 40-49. Link.
[20] V. Wang. "Simultaneous core partitions: parameterizations and sums". Electron. J. Combin. 23.1 (2016), Paper 1.4, 34. Link.
[21] S. Yan, Y. Yu, and H. Zhou. "On self-conjugate $(s, s+1, \ldots, s+k)$-core partitions". 2019. arXiv:1905.00570.
[22] J. Yang, M. Zhong, and R. D. Zhou. "On the enumeration of $(s, s+1, s+2)$-core partitions". European J. Combin. 49 (2015), pp. 203-217. Link.
[23] R. Zhou and S. Yan. "The Raney numbers and $(s, s+1)$-core partitions". European J. Combin. 59 (2017), pp. 114-121. Link.

[^0]: *hyunyjia@ajou.ac.kr.

