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Abstract. In 2008 Brändén proved a (p, q)-analogue of the γ-expansion formula for Eu-
lerian polynomials and conjectured the divisibility of the γ-coefficient γn,k(p, q) by (p+
q)k. As a follow-up, in 2012 Shin and Zeng showed that the fraction γn,k(p, q)/(p + q)k

is a polynomial in N[p, q]. The aim of this paper is to give a combinatorial interpre-
tation of the latter polynomial in terms of André permutations, a class of objects first
defined and studied by Foata, Schützenberger and Strehl in the 1970s. It turns out
that our result provides an answer to a recent open problem of Han, which was the
impetus of this paper.
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1 Introduction

The Euler number En, namely the coefficient of xn/n! in the expansion of sec(x) +
tan(x), is well studied and has many combinatorial interpretations and different re-
finements; see [4, 18, 7, 16, 9]. It was André who first proved that En is the number
of alternating permutations a1 . . . an of 12 . . . n, i.e., a1 > a2 < · · · . Among the many
remarkable identities for the Euler numbers there is the less known J-type continued
fraction

∞

∑
n=0

En+1xn =
1

1− x−
x2

1− 2x−
3x2

1− 3x−
6x2

1− 4x−
10x2

1− · · ·

. (1.1)

Recently, Han [8] considered a q-version of (1.1) and asked for a combinatorial inter-
pretation for the corresponding q-Euler numbers En(q) (see (1.3) below). Motivated by
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Han’s question, we shall study the more general polynomials Dn(p, q, t) defined by the
following continued fraction, which is a (p, q)-analogue of (1.1):

∞

∑
n=0

Dn+1(p, q, t)xn =
1

1− x−
(2

2)p,qt x2

1− [2]p,qx−
(3

2)p,qt x2

1− [3]p,qx−
(4

2)p,qt x2

1− [4]p,qx−
(5

2)p,qt x2

1− · · ·

, (1.2)

where the (p, q)-analogue of n is defined by

[n]p,q =
pn − qn

p− q
= ∑

i+j=n−1
piqj (n ∈N)

and the (p, q)-analogue of the binomial coefficient (n
k) is defined by(

n
k

)
p,q

=
[n]p,q . . . [n− k + 1]p,q

[1]p,q . . . [k]p,q
(0 ≤ k ≤ n).

Comparing (1.1) and (1.2) yields that

Dn(1, 1, 1) = En (n ≥ 1).

The q-Euler number En(q) of Han [8] can be expressed as

En(q) := Dn(1, q, 1) = Dn(q, 1, 1) (n ≥ 1). (1.3)

The first few values of Dn(p, q, t) are D1(p, q, t) = D2(p, q, t) = 1. It turns out that
the polynomials Dn(p, q, t) are related to the γ-coefficients of Brändén’s (p, q)-analogue
of Eulerian polynomials [2]. In this paper we shall interpret Dn(p, q, t) in terms of André
permutations, which were introduced and studied by Foata, Schützenberger and Strehl [4,
6, 5] in the 1970s. There are three ingredients in our proof: the connection of these poly-
nomials with the γ-coefficients of Brändén’s (p, q)-analogue of Eulerian polynomials [2],
Shin-Zeng’s continued fraction expansion of the γ-coefficients of generalized Eulerian
polynomials [16] and a new action on the permutations without double descents.

For a permutation σ := σ1σ2 . . . σn of [n], the descent number des σ is the number
of descent positions, i.e. i < n such that σi > σi+1, and the excedance number exc σ

is the number of excedance positions, i.e. i ∈ [n] such that σi > i. Let Sn be the
set of permutations of [n] := {1, . . . , n}. Thanks to the work of MacMahon [10] and
Riordan [14] we can define the Eulerian polynomials An(t) by

An(t) = ∑
σ∈Sn

tdes σ = ∑
σ∈Sn

texc σ.
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The following γ-decompositions for An(t) are well-known [4, Section 4].

Theorem 1.1 (Foata and Schützenberger).

An(t) =
bn/2c

∑
k=0

γn,ktk(1 + t)n−1−2k (1.4)

=
bn/2c

∑
k=0

2kdn,ktk(1 + t)n−1−2k, (1.5)

where γn,k = 2kdn,k and dn,k are positive integers satisfying the recurrence

and1,0 = 1 and for n ≥ 2, k ≥ 0,
dn,k = (k + 1)dn−1,k + (n− 2k)dn−1,k−1. (1.6)

Moreover, the sum ∑k dn,k is precisely the Euler number En.

In the last two decades even though many refinements of (1.4) have been found in
combinatorics and geometry (see [13, 12, 1, 15]), similar extension of (1.5) does not seem
to be known. In this paper we will provide two refinements of (1.5) (see (1.11) and (1.15)).

Definition 1.2. For a permutation σ = σ1 . . . σn of [n] with σ0 = σn+1 = 0, the entry σi is

• a peak if σi−1 < σi and σi > σi+1;

• a valley if σi−1 > σi and σi < σi+1;

• a double ascent if σi−1 < σi and σi < σi+1;

• a double descent if σi−1 > σi and σi > σi+1.

Let pk σ (resp. val σ, da σ, dd σ) denote the number of peaks (resp. valleys, double
ascents, double descents) in σ. Note that des σ = val σ + dd σ and pk σ = val σ + 1. Let
Gn,k = {σ ∈ Sn : val σ = k, dd σ = 0}.

Definition 1.3. For a permutation σ of [n], let σ[k] be the subword of σ consisting of 1, . . . , k
in the order they appear in σ. Then, the permutation σ is an André permutation if σ[k]
has no double descents (and ends with an ascent) for all 1 ≤ k ≤ n.

Let Dn be the set of André permutations of [n] and let Dn,k be the set of André
permutations of [n] with k descents.

Proposition 1.4 ([4, 5]). The coefficients γn,k and dn,k equal the cardinalities of Gn,k and Dn,k,
respectively.
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For σ = σ1 . . . σn ∈ Sn, the statistic (31-2) σ is the number of pairs (i, j) such that
2 ≤ i < j ≤ n and σi−1 > σj > σi. Similarly, the statistic (2-13) σ is the number of pairs
(i, j) such that 1 ≤ i < j ≤ n − 1 and σj+1 > σi > σj. In 2008 Brändén [2] defined a
(p, q)-analogue of Eulerian polynomials and proved a (p, q)-analogue of (1.4). In this
paper we shall use the following variant of Brändén’s (p, q)-Eulerian polynomials in [16]

An(p, q, t) := ∑
σ∈Sn

p(2-13) σq(31-2) σtdes σ. (1.7)

For 0 ≤ k ≤ (n− 1)/2 define the (p, q)-analogue of γn,k and dn,k in (1.4) and (1.5) by

γn,k(p, q) = ∑
σ∈Gn,k

p(2-13) σq(31-2) σ, (1.8)

dn,k(p, q) = ∑
σ∈Dn,k

p(2-13) σq(31-2) σ−k. (1.9)

Our main results are the following two theorems.

Theorem 1.5. We have

An(p, q, t) =
b(n−1)/2c

∑
k=0

γn,k(p, q)tk(1 + t)n−1−2k (1.10)

=
b(n−1)/2c

∑
k=0

(p + q)kdn,k(p, q)tk(1 + t)n−1−2k. (1.11)

Remark 1.6. An equivalent γ-expansion of (1.10) was proved by Brändén [2] using the
modified Foata-Stehl action. The divisibility of γn,k(p, q) by (p + q)k was conjectured by
Brändén (op.cit.) and proved by Shin and Zeng [16] using the combinatorial theory of
continued fractions.

Theorem 1.7. We have

Dn(p, q, t) =
b(n−1)/2c

∑
k=0

dn,k(p, q)tk (1.12)

= ∑
σ∈Dn

p(2-13) σq(31-2) σ−des σtdes σ. (1.13)

Remark 1.8. It is not difficult to see that (31-2) σ ≥ des σ for any σ ∈ Dn, see (iii) of
Proposition 2.2.

Combining Theorem 1.5 with Theorem 1 in [17], which is (1.14) below, we derive a
q-analogue of (1.4) and (1.5).
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Corollary 1.9. We have

∑
σ∈Sn

q(inv− exc)σtexc σ =
b(n−1)/2c

∑
k=0

γn,k(q2, q)tk(1 + t)n−1−2k (1.14)

=
b(n−1)/2c

∑
k=0

(1 + q)kdn,k(q)tk(1 + t)n−1−2k, (1.15)

where
dn,k(q) = ∑

σ∈Dn,k

q2 (2-13) σ+(31-2) σ.

By (1.3) and Theorem 1.7 we derive two interpretations for Han’s q-Euler numbers[8].

Corollary 1.10. We have

En(q) = ∑
σ∈Dn

q(2-13) σ (1.16)

= ∑
σ∈Dn

q(31-2) σ−des σ. (1.17)

In Section 3 we shall give a simple sum formula for Dn(1,−1, t) (cf. Theorem 3.6).

2 Proof outlines of main Theorems

2.1 Some basic definitions and results

The following definition was given as a lemma in [6, Lemma 1].

Definition 2.1. Let w = x1x2...xn (n > 0) be a permutation and x be one of the letters xi
(1 < i < n). Then w has a unique factorization (w1, w2, x, w4, w5) of length 5, called its
x-factorization, which is characterized by the three properties

(i) w1 is empty or its last letter is less than x;

(ii) w2 (resp. w4) is empty or all its letters are greater than x;

(iii) w5 is empty or its first letter is less than x.

We can charactrize André permutations in terms of x-factorization [4].

Proposition 2.2. A permutation σ ∈ Sn is an André permutation if it is empty or satisfies the
following:
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(i) σ has no double descents,

(ii) n− 1 is not a descent position, i.e. σn−1 < σn,

(iii) If σi is a valley of σ with σi-factorization (w1, w2, σi, w4, w5), then min(w2) > min(w4),
i.e., the minimum letter of w2 is larger than the minimum letter of w4.

The next theorem follows from the work of [2, 5].

Theorem 2.3. For any σ̃ ∈ Sn without double decent, we have

∑
σ∈Orb(σ̃)

p(2-13) σq(31-2) σtdes σ = p(2-13) σ̃q(31-2) σ̃tdes σ̃(1 + t)n−1−2 des σ̃.

Let An(p, q, t, u, v, w) be the generalized Eulerian polynomials defined by

An(p, q, t, u, v, w) := ∑
σ∈Sn

p(2-13) σq(31-2) σtdes σuda σvdd σwval σ. (2.1)

As des = val+dd we derive the following generalization of (1.10) from Theorem 2.3.
This was first proved in [16] by using combinatorial theory of continued fractions.

Corollary 2.4. For the γ-coefficients γn,k(p, q) in (1.8) we have

An(p, q, t, u, v, w) =
b(n−1)/2c

∑
k=0

γn,k(p, q)(tw)k(u + vt)n−1−2k. (2.2)

2.2 New action on permutations without double descent

Let DDn be the set of permutations of [n] without double descent. For any per-
mutation σ ∈ DDn and x ∈ [n] we shall identify σ with its x-factorization, i.e., σ =
(w1, w2, x, w4, w5) = w1 w2 x w4 w5, and let y1 := min(w2), y2 := min(w4). A valley x of
σ is said to be

• good (resp. bad) if y1 > y2 (resp. y1 < y2);

• of type I if min(y1, y2) is a peak or double ascent,

• of type II if min(y1, y2) is a valley.

We denote by Val σ the set of valleys of σ.

Proposition 2.5. Let σ ∈ DDn and x ∈ Val σ with y = min(y1, y2).

(i) If y is a peak, then w4 = y (resp. w2 = y) if y1 > y2 (resp. y1 < y2).
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(ii) If y is a double ascent, then w4 = yw′′4 (resp. w2 = yw′′2 ) with w′′2 , w′′4 6= ε if y1 > y2
(resp. y1 < y2).

(iii) If y is a valley, then w4 = w′4yw′′4 (resp. w2 = w′2yw′′2 ) with w′2, w′′2 , w′4, w′′4 6= ε if y1 > y2
(resp. y1 < y2).

Definition 2.6. For σ ∈ DDn and each x ∈ Val σ with y = min(y1, y2), we define its
transform ϕ(σ, x) as follows:

(i) If y is a peak, then

ϕ(σ, x) =

{
(w1, y, x, w2, w5) if y = y2,
(w1, w4, x, y, w5) if y = y1.

(ii) If y is a double ascent, then

ϕ(σ, x) =

{
(w1, yw2, x, w′′, w5) if y = y2 and w4 = yw′′,
(w1, w′′, x, yw4, w5) if y = y1 and w2 = yw′′.

(iii) If y is a valley, then

ϕ(σ, x) =

{
(w1, w2yw′, x, w′′, w5) if y = y2 and w4 = w′yw′′,
(w1, w′, x, w′′yw4, w5) if y = y1 and w2 = w′yw′′

with w′, w′′ 6= ε.

Obviously this transformation switches y from left to right or right to left of x and
ϕ(ϕ(σ, x), x) = σ. We record the basic properties of this transformation in the following
proposition.

Proposition 2.7. If σ ∈ DDn,k and x ∈ Val σ, then ϕ(σ, x) ∈ DDn,k and

(2-13) ϕ(σ, x) =

{
(2-13) σ + 1 if x is good
(2-13) σ− 1 if x is bad;

(31-2) ϕ(σ, x) =

{
(31-2) σ− 1 if x is good
(31-2) σ + 1 if x is bad.

(2.3)

Next we define the transform ϕ(σ, S) for any subset S of Val(σ) with σ ∈ DDn.

Definition 2.8. Let σ ∈ DDn. For any S ⊆ Val σ, let {S1, S2} be the partition of S such
that
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(1) S1 is the subset of S consisting of valleys of type I, say i1, . . . , il;

(2) S2 is the subset of S consisting of valleys of type II, say jk < · · · < j2 < j1.

Define the transforms

ϕ(σ, S1) = ϕ(il, . . . , ϕ(i2, ϕ(i1, σ))),
ϕ(σ, S2) = ϕ(jk, . . . , ϕ(j2, ϕ(j1, σ))),
ϕ(σ, S) = ϕ(ϕ(σ, S1), S2).

Remark 2.9. The image ϕ(σ, S1) is independent of the order of i1, . . . , il while ϕ(σ, S2) is
defined for the elements of S2 in the decreasing order j1 > j2 > . . . > j1.

Proposition 2.10. If σ ∈ Dn,k and S ⊆ Val(σ), then τ := ϕ(σ, S) ∈ DDn,k is well defined and

S = {x ∈ Val(τ) | x is a bad guy}. (2.4)

For any set S we denote by 2S the set of all subsets of S. In what follows, for σ ∈ DDn,k
we will identify Val(σ) with [k] under the map ai 7→ i for i ∈ [k] if Val(σ) consists of
a1 < a2 < . . . < ak, and identify any subset S ∈ Val(σ) with its image S′ ∈ 2[k]. Thus we
will use 2[k] instead of 2Val(σ).

Proposition 2.11. The map ϕ : Dn,k × 2[k] → Gn,k is a bijection such that for (σ, S) ∈ Dn,k ×
2[k] we have

(2-13) σ + |S| = (2-13) ϕ(σ, S),
(31-2) σ− |S| = (31-2) ϕ(σ, S).

(2.5)

2.3 Proof of Theorem 1.5

Clearly (1.10) is a special case of Corollary 2.4, and (1.11) is equivalent to

(p + q)k ∑
σ∈Dn,k

p(2-13) σq(31-2) σ−k = ∑
σ∈DDn,k

p(2-13) σq(31-2) σ. (2.6)

As (p + q)k = ∑S∈2[k] p|S|qk−|S| we can rewrite the above identity as

∑
(σ,S)∈Dn,k×2[k]

p(2-13) σ+|S|q(31-2) σ−|S| = ∑
σ∈DDn,k

p(2-13) σq(31-2) σ.

The result follows from Proposition 2.11.
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2.4 Proof of Theorem 1.7

We shall use the J-type continued fraction as a formal power series defined by

∞

∑
n=0

µntn =
1

1− b0t−
λ1t2

1− b1t−
λ2t2

1− · · ·

,

where (bn) and (λn+1) (n ≥ 0) are two sequences in a commutative ring. When bn = 0
we obtain the S-type continued fraction:

∞

∑
n=0

µntn =
1

1−
λ1t

1−
λ2t

1− · · ·

.

Recall the following continued fraction expansion formula from [16, (28)]:

∑
n≥1

An(p, q, t, u, v, w)xn−1 =

1

1− (u + tv)[1]p,qx−
[1]p,q[2]p,qtwx2

1− (u + tv)[2]p,qx−
[2]p,q[3]p,qtwx2

· · ·

(2.7)

with bn = (u + tv)[n + 1]p,q and λn = [n]p,q[n + 1]p,qtw.
By Theorem 1.5 and substituting (t, u, v, w) with (p + q, 0, 1, t) in (2.2), we obtain

An(p, q, p + q, 0, 1, t) = (p + q)n−1
b(n−1)/2c

∑
k=0

dn,k(p, q)tk.

Thus, substituting (t, u, v, w) with (p + q, 0, 1, t) in (2.7) and replacing x by x/(p + q) we
obtain the same continued fraction in (1.2). This proves (1.12).

3 An explicit formula for Dn(1,−1, t)

A Motzkin path of length n is a sequence of points η := (η0, . . . , ηn) in the integer
plane Z×Z such that

• η0 = (0, 0) and ηn = (n, 0),
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• ηi − ηi−1 ∈ {(1, 0), (1, 1), (1,−1)},

• ηi := (xi, yi) ∈N×N for i = 0, . . . , n.

In other words, a Motzkin path of length n is a lattice path starting at (0, 0), ending at
(n, 0), and never going below the x-axis, consisting of up-steps U = (1, 1), level-steps
L = (1, 0), and down-steps D = (1,−1). LetMPn be the set of Motzkin paths of length
n. Clearly we can identify Motzkin paths of length n with words w on {U, L,D} of length
n such that all prefixes of w contain no more D’s than U’s and the number of D’s equals
the number of D′s. The height of a step (ηi, ηi+1) is the coordinate of the starting point
ηi. Given a Motzkin path p ∈ MPn and two sequences (bi) and (λi) of a commutative
ring R, we weight each up-step by 1, and each level-step (resp. down-step) at height i
by bi (resp. λi) and define the weight w(p) of p by the product of the weights of all its
steps. The following result of Flajolet [3] is our starting point.

Lemma 3.1 (Flajolet). We have

∞

∑
n=0

(
∑

p∈MPn

w(p)

)
tn =

1

1− b0t−
λ1t2

1− b1t−
λ2t2

1− b2t− · · ·

.

A Motzkin path without level-steps is called a Dyck path, and a Motzkin path without
level-steps at odd height is called an André path. We denote by APn,k the set of André
paths of half-length n with k level-steps, and DPn the set of Dyck paths of half length n.

Lemma 3.2. Let bi = 0 (i ≥ 0) and λi = b i+1
2 c (i ≥ 1). Then

n! = ∑
p∈MPn

w(p).

In other words, the factorial n! is the generating polynomial of DPn.

Remark 3.3. A bijective proof of Euler’s formula (3.2) is known, see [11, (4.9)].

Lemma 3.4. Let b2i = 1, b2i+1 = 0 (i ≥ 0) and λk = b k+1
2 ct (i ≥ 1). Then

Dn+1(1,−1, t) = ∑
p∈APn

w(p).

In other words, the polynomial Dn+1(1,−1, t) is the generating polynomial of André paths of
length n.

Let
Yn,k := {(y1, . . . , yk+1) ∈Nk+1 : y1 + · · ·+ yk+1 = n− 2k}.
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Lemma 3.5. For 0 ≤ k ≤ bn/2c, there is an explicit bijection ψ : APn,n−2k → Yn,k ×DP k
such that if ψ(u) = (y, p) with for u ∈ APn,n−2k and (y, p) ∈ Yn,k×DP k then w(u) = w(p),
where the weight is associated to the sequences (bi) and (λi) with b2i = 1, b2i+1 = 0 (i ≥ 0),
and λk = b k+1

2 ct (i ≥ 1).

Proof. Since an André path (word) on {U,D, L} has only level-steps at even height and
starts from height 0, so the subword between two consecutive level-steps L’s must be of
even length and is a word on the alphabet {UU,DD,UD,DU}. Thus, any André word
u ∈ APn,n−2k can be written in a unique way as follows:

u = Ly1w1L
y2w2 . . . wkL

yk+1 with wi ∈ {UU,DD,UD,DU}.

Let y := (y1, . . . , yk+1) and p := w1 . . . wk. As the path p is obtained by removing out all
the level-steps L’s from the André path u, each step in p keeps the same height in u, and
(y, p) ∈ Yn,k ×DP k, Let ψ(u) = (y, p). It is clear that this is the desired bijection.

Theorem 3.6. For n ≥ 1 we have

Dn(1,−1, t) =
n−1

∑
k=0

(
n− 1− k

k

)
k!tk. (3.1)

Proof of Theorem 3.6. By Lemmas 3.4 and 3.5 we have

Dn+1(1,−1, t) = ∑
k≥0

∑
(y,p)∈Yn,k×DP k

w(p).

Since the cardinality of Yn,k is (n−k
k ), and the generating polynomial of DP k is equal to

k!tk by Lemma 3.2, summing over all 0 ≤ k ≤ bn/2c we obtain Equation (3.1).

Remark 3.7. The full-length paper for this extended abstract is available at [11].

References

[1] C. A. Athanasiadis. “Gamma-positivity in combinatorics and geometry”. Sém. Lothar. Com-
bin. 77 (2016-2018), Art. B77i, 64.

[2] P. Brändén. “Actions on permutations and unimodality of descent polynomials”. European
J. Combin. 29.2 (2008), pp. 514–531. Link.

[3] P. Flajolet. “Combinatorial aspects of continued fractions”. Discrete Math. 32.2 (1980), pp. 125–
161. Link.

[4] D. Foata and M.-P. Schützenberger. “Nombres d’Euler et permutations alternantes”. A
survey of Combinatorial Theory 1 (1973), pp. 173–188.

http://dx.doi.org/10.1016/j.ejc.2006.12.010
http://dx.doi.org/10.1016/0012-365X(80)90050-3


12 Qiong Qiong Pan and Jiang Zeng

[5] D. Foata and V. Strehl. “Euler numbers and variations of permutations”. Colloquio Inter-
nazionale sulle Teorie Combinatorie 1 (1973), pp. 119–131.

[6] D. Foata and V. Strehl. “Rearrangements of the symmetric group and enumerative proper-
ties of the tangent and secant numbers”. Math. Z. 137 (1974), pp. 257–264. Link.

[7] Y. Gelineau, H. Shin, and J. Zeng. “Bijections for Entringer families”. European J. Combin.
32.1 (2011), pp. 100–115.

[8] G.-N. Han. “Hankel continued fractions and Hankel determinants of the Euler numbers”.
Trans. Amer. Math. Soc. (2020). Link.

[9] M. Josuat-Vergès. “Enumeration of snakes and cycle-alternating permutations”. Australas.
J. Combin. 60 (2014), pp. 279–305.

[10] P. A. MacMahon. Combinatory Analysis, Volumes I and II. Vol. 137. American Mathematical
Soc., 2001.

[11] Q. Q. Pan and J. Zeng. “The γ-coefficients of Branden’s (p, q)-Eulerian polynomials and
André permutations”. 2019. arXiv:1910.01747.

[12] T. K. Petersen. Eulerian numbers. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser
Advanced Texts: Basel Textbooks. With a foreword by Richard Stanley. Birkhäuser/Springer,
New York, 2015, pp. xviii+456. Link.

[13] A. Postnikov, V. Reiner, and L. Williams. “Faces of generalized permutohedra”. Doc. Math
13.207-273 (2008), p. 51.

[14] J. Riordan. “Triangular permutation numbers”. Proc. Amer. Math. Soc. 2 (1951), pp. 429–432.
Link.

[15] J. Shareshian and M. L. Wachs. “Gamma-positivity of variations of Eulerian polynomials”.
J. Comb. 11.1 (2020). Link.

[16] H. Shin and J. Zeng. “The symmetric and unimodal expansion of Eulerian polynomials via
continued fractions”. European J. Combin. 33.2 (2012), pp. 111–127. Link.

[17] H. Shin and J. Zeng. “Symmetric unimodal expansions of excedances in colored permuta-
tions”. European J. Combin. 52.part A (2016), pp. 174–196. Link.

[18] G. Viennot. “Interprétations combinatoires des nombres d’Euler et de Genocchi”. Séminaire
de Théorie des Nombres de Bordeaux (1981), pp. 1–94.

http://dx.doi.org/10.1007/BF01237393
https://www.ams.org/journals/tran/0000-000-00/S0002-9947-2020-08031-3
https://arxiv.org/abs/1910.01747
http://dx.doi.org/10.1007/978-1-4939-3091-3
http://dx.doi.org/10.2307/2031771
http://dx.doi.org/10.4310/JOC.2020.v11.n1.a1
http://dx.doi.org/10.1016/j.ejc.2011.08.005
http://dx.doi.org/10.1016/j.ejc.2015.10.004

	Introduction
	Proof outlines of main Theorems
	Some basic definitions and results
	New action on permutations without double descent
	Proof of thm:main1
	Proof of thm:main2

	An explicit formula for Dn(1,-1,t)

