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Abstract. In 2008 Briandén proved a (p, q)-analogue of the y-expansion formula for Eu-
lerian polynomials and conjectured the divisibility of the y-coefficient v, «(p, q) by (p +
q)¥. As a follow-up, in 2012 Shin and Zeng showed that the fraction v, x(p,q)/(p + q)*
is a polynomial in IN[p, g]. The aim of this paper is to give a combinatorial interpre-
tation of the latter polynomial in terms of André permutations, a class of objects first
defined and studied by Foata, Schiitzenberger and Strehl in the 1970s. It turns out
that our result provides an answer to a recent open problem of Han, which was the
impetus of this paper.

Keywords: Eulerian polynomials, y-coefficients, André permutations.

1 Introduction

The Euler number E,, namely the coefficient of x"/n! in the expansion of sec(x) +
tan(x), is well studied and has many combinatorial interpretations and different re-
finements; see [4, 18, 7, 16, 9]. It was André who first proved that E, is the number
of alternating permutations a;...a, of 12...n, ie, a; > ap < ---. Among the many
remarkable identities for the Euler numbers there is the less known J-type continued
fraction
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Recently, Han [8] considered a g-version of (1.1) and asked for a combinatorial inter-
pretation for the corresponding g-Euler numbers E,(q) (see (1.3) below). Motivated by
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Han’s question, we shall study the more general polynomials D,(p,q,t) defined by the
following continued fraction, which is a (p, g)-analogue of (1.1):

g 1
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where the (p, g)-analogue of n is defined by

Pt —q" ; i
(1]pq = — = Z r'qg (n € N)
p—q i+j=n—1

and the (p, q)-analogue of the binomial coefficient () is defined by

n C[mlpge =k A1y )
@)M_‘ g Klpg (0<k<n).

Comparing (1.1) and (1.2) yields that

Dn(1,1,1) =E, (n>1).
The g-Euler number E,(g) of Han [8] can be expressed as
E.(q) := Dn(1,9,1) = Dy(q,1,1) (n>1). (1.3)

The first few values of Dy(p,q,t) are D1(p,q,t) = Da2(p,q,t) = 1. It turns out that
the polynomials D,(p, g,t) are related to the y-coefficients of Brandén’s (p, q)-analogue
of Eulerian polynomials [2]. In this paper we shall interpret D, (p, g, t) in terms of André
permutations, which were introduced and studied by Foata, Schiitzenberger and Strehl [4,
6, 5] in the 1970s. There are three ingredients in our proof: the connection of these poly-
nomials with the y-coefficients of Brandén’s (p, g)-analogue of Eulerian polynomials [2],
Shin-Zeng’s continued fraction expansion of the 7y-coefficients of generalized Eulerian
polynomials [16] and a new action on the permutations without double descents.

For a permutation ¢ := 0103 ...0, of [n], the descent number desc is the number
of descent positions, i.e. i < n such that o; > 07,1, and the excedance number exco
is the number of excedance positions, i.e. i € [n] such that o; > i. Let &, be the
set of permutations of [n] := {1,...,n}. Thanks to the work of MacMahon [10] and
Riordan [14] we can define the Eulerian polynomials A, (t) by

An(t) _ Z tdesaz 2 pexco

TgeES, ce6y
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The following y-decompositions for A,(t) are well-known [4, Section 4].
Theorem 1.1 (Foata and Schiitzenberger).
[n/2]

An(t) = Y (1 ) (1.4)
k=0

[n/2]
= Y 2t 1+ 1), (1.5)
k=0
where vy, | = 2kdn,k and d,, . are positive integers satisfying the recurrence

andig =1 andforn>2,k >0,
dpp = (k+1)dy_1 4+ (n —2k)dy—1 41 (1.6)

Moreover, the sum )y d,  is precisely the Euler number E,.

In the last two decades even though many refinements of (1.4) have been found in
combinatorics and geometry (see [13, 12, 1, 15]), similar extension of (1.5) does not seem
to be known. In this paper we will provide two refinements of (1.5) (see (1.11) and (1.15)).

Definition 1.2. For a permutation ¢ = 07 ... 0y, of [n] with 0y = 0,11 = 0, the entry o; is
e apeak if 0;_1 < 0;and 0; > 0j1q;
e avalleyif 0;_1 > o; and 0; < 0j41;
e a double ascent if 0;_1 < 0; and 0; < 0j,1;
e a double descent if 0;_1 > 0; and 0; > 0j1.

Let pko (resp. valo, dao, dd o) denote the number of peaks (resp. valleys, double
ascents, double descents) in ¢. Note that desc = valo + dd o and pko = valo + 1. Let
Gux = {0 €&, :valeo =k ddo = 0}.

Definition 1.3. For a permutation o of [n], let o) be the subword of o consisting of 1,..., k
in the order they appear in 0. Then, the permutation ¢ is an André permutation if oy
has no double descents (and ends with an ascent) for all 1 < k < n.

Let ©, be the set of André permutations of [n] and let ©, ; be the set of André
permutations of [n] with k descents.

Proposition 1.4 ([4, 5]). The coefficients 7y, \ and d,, x equal the cardinalities of G, and D, ,
respectively.
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For o = 0q...04 € &y, the statistic (31-2) ¢ is the number of pairs (i,j) such that
2 <i<j<mnando;_y > 0; > 0; Similarly, the statistic (2-13) ¢ is the number of pairs
(i,j) such that 1 <i < j < n—1and gj;1 > 0; > ;. In 2008 Brandén [2] defined a
(p,q)-analogue of Eulerian polynomials and proved a (p,q)-analogue of (1.4). In this
paper we shall use the following variant of Brandén’s (p, )-Eulerian polynomials in [16]

An(Pr q, t) — Z P(2-13)0q(31-2)0tdes¢7' (1.7)

e,

For 0 < k < (n — 1) /2 define the (p, q)-analogue of v, and d,,  in (1.4) and (1.5) by

Tup(pq) = Y, pF17aB12) (1.8)
Ueg,,,k

dor(pg) = Y p(213) 0 (312) ok, (19)
Ue@n,k

Our main results are the following two theorems.

Theorem 1.5. We have

[(n—1)/2]

Aupat) = Y pux(pg)ti(1 )1 (1.10)
k=0

[(n—1)/2]

= Y (p+ofdulp gt a+o)" (1.11)
k=0

Remark 1.6. An equivalent y-expansion of (1.10) was proved by Brandén [2] using the
modified Foata-Stehl action. The divisibility of 7, x(p,q) by (p + q)* was conjectured by
Brandén (op.cit.) and proved by Shin and Zeng [16] using the combinatorial theory of
continued fractions.

Theorem 1.7. We have

[(n—1)/2]
Du(p,g,t) = Z dy i (p, )¢ (1.12)
— Z p213 (31-2)o— desatdesa (1.13)
cEDy,

Remark 1.8. It is not difficult to see that (31-2) ¢ > desoc for any o € D,, see (iii) of
Proposition 2.2.

Combining Theorem 1.5 with Theorem 1 in [17], which is (1.14) below, we derive a
g-analogue of (1.4) and (1.5).
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Corollary 1.9. We have

[(n—1)/2]

Z q(inv—exc)atexco — Z ')’n,k(qzl q)tk(l + t)n—1—2k (1.14)
oe6y, k=0
[(n=1)72] )
= Y Q+fdup(gta+nr, (1.15)
k=0

where
dk(q) = Z q2(2'13)(7+(31-2)0‘

0'6@,,,1(

By (1.3) and Theorem 1.7 we derive two interpretations for Han’s g-Euler numbers[8].

Corollary 1.10. We have

En(q) = Y, q#B)7 (1.16)
TED,

— Z q(31—2)0—deso. (117)
ceED,

In Section 3 we shall give a simple sum formula for D, (1, —1, ) (cf. Theorem 3.6).

2 Proof outlines of main Theorems

2.1 Some basic definitions and results

The following definition was given as a lemma in [6, Lemma 1].

Definition 2.1. Let w = x1x3...x;, (n > 0) be a permutation and x be one of the letters x;
(1 < i < n). Then w has a unique factorization (w1, wy, x, wy, ws) of length 5, called its
x-factorization, which is characterized by the three properties

(i) w; is empty or its last letter is less than x;
(ii) wy (resp. wy) is empty or all its letters are greater than x;
(iii) ws is empty or its first letter is less than x.
We can charactrize André permutations in terms of x-factorization [4].

Proposition 2.2. A permutation o € &, is an André permutation if it is empty or satisfies the
following:



6 Qiong Qiong Pan and Jiang Zeng

(i) o has no double descents,
(ii) n — 1 is not a descent position, i.e. 0,1 < 0y,

(iii) If 0; is a valley of o with o;-factorization (w1, wy, 0;, W, Ws), then min(wy) > min(wy),
i.e., the minimum letter of wy is larger than the minimum letter of wy.

The next theorem follows from the work of [2, 5].
Theorem 2.3. For any & € &,, without double decent, we have

Z p(2—13) (Tq(31—2) oydeso _ p(2—13) (”Tq(31—2) 7 ydes [7(1 + t) n—1-2desd
c€0rb(7)

Let An(p,q,t,u,v,w) be the generalized Eulerian polynomials defined by

A, (p’ q,t,u,0, w) — 2 p(2—13) U'q(31—2) atdes Uuda (fvdd awvala' (2.1)
ce6,

As des = val +dd we derive the following generalization of (1.10) from Theorem 2.3.
This was first proved in [16] by using combinatorial theory of continued fractions.

Corollary 2.4. For the y-coefficients 7y, x(p, q) in (1.8) we have

[(n1)/2)
An(pgtuwow) =Y Yur(p ) (tw) (u+ot) 173 (2.2)
k=0

2.2 New action on permutations without double descent

Let DD, be the set of permutations of [n] without double descent. For any per-
mutation ¢ € DD, and x € [n] we shall identify ¢ with its x-factorization, i.e., ¢ =
(w1, wy, x, Wy, ws) = wy wy x wy ws, and let y1 := min(wy), y2 := min(wy). A valley x of
o is said to be

e good (resp. bad) if y1 > yo (resp. y1 < y2);
e of type I if min(y;,y2) is a peak or double ascent,
e of type II if min(y1,y2) is a valley.
We denote by Val o the set of valleys of ¢.
Proposition 2.5. Let 0 € DD, and x € Valo with y = min(y1, y2).

(i) If y is a peak, then wy = y (resp. wy = y) if y1 > y2 (resp. y1 < y2).
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(ii) If y is a double ascent, then wy = ywy (resp. w, = ywy) with wy,w) # € if y1 > y»
(resp. y1 < Y2).

(iii) If y is a valley, then wy = wyywy (resp. wy = whywy) with wh, wy, wy, w) # €if y1 > y»
(resp. y1 < Y2).

Definition 2.6. For ¢ € DD, and each x € Valo with y = min(yj,y>), we define its
transform ¢(o, x) as follows:

(i) If y is a peak, then

it y=uyo,

(P(O’x):{(ZUl,y,x,ZUz,ZUS) - B
it y=y.

(w1, wy, X, Y, ws)
(ii) If y is a double ascent, then

=y and wy = yw”,

o (0, %) = {(wl,ywz,x,w”,w5) if y

(wy, W, x,ywy, ws) if y =y and wp, = yw'".
(iii) If y is a valley, then

vy =ys and wy = w'yw”,

o(0,x) = {(wl,wzyw’, x,w’, ws) if

(wy, W', x, w'"ywy, ws) if y=y and wy, = w'yw”
with w’, w" # e.

Obviously this transformation switches y from left to right or right to left of x and
¢(¢(0,x),x) = 0. We record the basic properties of this transformation in the following
proposition.

Proposition 2.7. If o € DD, ; and x € Valo, then ¢(c,x) € DD,y and

(2-13) ¢(0, x) = (2-13)o+1 if x is good
n (2-13)0 — 1 if x is bad; .
(31-2) ¢(0, x) = (31-2) 0 —1 if x is good :
PO T\ (312 041 ifxis bad.

Next we define the transform ¢(c, S) for any subset S of Val(c) with o € DD,,.

Definition 2.8. Let ¢ € DD,,. For any S C Valo, let {S1,S,} be the partition of S such

that
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(1) S; is the subset of S consisting of valleys of type I, say iy,...,i;
(2) Sy is the subset of S consisting of valleys of type II, say jx < -+ < j2 < ji.

Define the transforms

@(0,51) = @iy, ..., p(i2, (i1, 0))),
¢(0,52) = ¢k, - -, ¢(j2, 9(j1,0))),
¢(c0,S) = ¢(¢(c,51),52).

Remark 2.9. The image ¢(c, S1) is independent of the order of 7y, ..., i while ¢(c, Sy) is
defined for the elements of Sy in the decreasing order j; > jo > ... > j;.

Proposition 2.10. If o € ©,,; and S C Val(0¢), then T := ¢(0,S) € DD, is well defined and
S = {x € Val(7) | x is a bad guy}. (2.4)

For any set S we denote by 2° the set of all subsets of S. In what follows, for o € DD, ;
we will identify Val(c) with [k] under the map a; — i for i € [k] if Val(c) consists of
4y < ay < ... < a4, and identify any subset S € Val(c) with its image 5" € 2. Thus we
will use 2/¥! instead of 2V2!(7),

Proposition 2.11. The map ¢ : D, X 2k Gk is a bijection such that for (0,S) € D,k X

2K e have
(2-13) o + |S| = (2-13) ¢(0, S), 2.5)
(31-2) o — |S| = (31-2) (7, S). '
2.3 Proof of Theorem 1.5
Clearly (1.10) is a special case of Corollary 2.4, and (1.11) is equivalent to
(p + q)k Z p(2—13) Uq(31-2) o—k _ Z p(2—13) Uq(31-2)0'. (2.6)

TED, k ceDD,, i
As (p+ ) = Tgoi p1°1515] we can rewrite the above identity as

y pERITHSIEEI2 0l — § (1306120
(0,5)€D,, 5 x 2 oce€DD,,

The result follows from Proposition 2.11. ]
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2.4 Proof of Theorem 1.7

We shall use the J-type continued fraction as a formal power series defined by

s 1
]/l tn = y
n;o ! Mt
1— bot — 5
Aot

1— ...

1— byt —

where (b,) and (A1) (n > 0) are two sequences in a commutative ring. When b, = 0
we obtain the S-type continued fraction:

°° 1
pat" =
n;o ! [ Mt

1 —

Aot
1—...

Recall the following continued fraction expansion formula from [16, (28)]:

Y Au(pg.tu,ow)x" ! =

n>1

[1]p,q[2]p,qtwx? 2.7)

2] ,413] p qtwx?

1— (u+to)[1]pex —

1— (u+to)[2]pgx —

with b, = (u +tv)[n + 1], and A, = [n],4[n + 1] gtw.
By Theorem 1.5 and substituting (¢, u, v, w) with (p 4+ 4,0,1, ) in (2.2), we obtain
. [(n=1)/2] .
An(pq,p+q,01L8) =(p+q)"" Y. du(p gt
k=0

Thus, substituting (¢, u, v, w) with (p+¢,0,1,t) in (2.7) and replacing x by x/(p + q) we
obtain the same continued fraction in (1.2). This proves (1.12). O

3 An explicit formula for D, (1, —1,t)

A Motzkin path of length n is a sequence of points # := (1,...,%,) in the integer
plane Z x Z such that

e 770 =(0,0) and 1, = (n,0),
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o 1i—ni-1 € {(1,0),(1,1),(1,-1)},
o 17;:= (x;,y;)) ENxNfori=0,...,n.

In other words, a Motzkin path of length # is a lattice path starting at (0,0), ending at
(n,0), and never going below the x-axis, consisting of up-steps U = (1,1), level-steps
L = (1,0), and down-steps D = (1, —1). Let MP,, be the set of Motzkin paths of length
n. Clearly we can identify Motzkin paths of length n with words w on {U, L, D} of length
n such that all prefixes of w contain no more D’s than U’s and the number of D’s equals
the number of D’s. The height of a step (7;,1;+1) is the coordinate of the starting point
1;. Given a Motzkin path p € MP,, and two sequences (b;) and (A;) of a commutative
ring R, we weight each up-step by 1, and each level-step (resp. down-step) at height i
by b; (resp. A;) and define the weight w(p) of p by the product of the weights of all its
steps. The following result of Flajolet [3] is our starting point.

Lemma 3.1 (Flajolet). We have

(o) " 1
Z Z ZU(p) £ = A t2

1— byt —

Apt?
1— byt — -

A Motzkin path without level-steps is called a Dyck path, and a Motzkin path without
level-steps at odd height is called an André path. We denote by AP, the set of André
paths of half-length n with k level-steps, and DP,, the set of Dyck paths of half length 7.

Lemma 3.2. Let b; = 0 (i > 0) and A; = | 5L] (i > 1). Then

pEMP,,
In other words, the factorial n! is the generating polynomial of DP,.
Remark 3.3. A bijective proof of Euler’s formula (3.2) is known, see [11, (4.9)].
Lemma 3.4. Let by; =1, by; 1 =0(i > 0) and A = L’%ljt (i >1). Then

Dani(L-1,6) = Y w(p).
peAP,

In other words, the polynomial D, 1(1, —1,t) is the generating polynomial of André paths of
length n.

Let
yn,k = {(yl,. . 'lyk—i-l) € Nk+1 Y1+t Yk =0 — Zk}.
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Lemma 3.5. For 0 < k < |n/2], there is an explicit bijection ¢ : AP, ,_ox — Vur X DPy
such that if Y(u) = (y, p) with foru € AP, ok and (y, p) € Vyx x DPy then w(u) = w(p),
where the weight is associated to the sequences (b;) and (A;) with by; = 1, byj 1 = 0 (i > 0),
and A = |51t (i > 1).

Proof. Since an André path (word) on {U,D, L} has only level-steps at even height and
starts from height 0, so the subword between two consecutive level-steps L’s must be of
even length and is a word on the alphabet {UU,DD,UD,DU}. Thus, any André word
u € AP, ,_o can be written in a unique way as follows:

u = NwLR2w, .. w1 with w; € {UU,DD,UD,DU}.

Lety:= (y1,...,Yks1) and p := wy ... wi. As the path p is obtained by removing out all
the level-steps L’s from the André path u, each step in p keeps the same height in u, and
(v, p) € Vui X DPy, Let p(u) = (y, p). It is clear that this is the desired bijection. O

Theorem 3.6. For n > 1 we have

Dy(1,—1,t) = nzl (” _]1 N k) Ktk (3.1)

k=0
Proof of Theorem 3.6. By Lemmas 3.4 and 3.5 we have

Dn+l(1r -1, t) = Z Z ZU(p)

k>0 (y,p) €V, kX DPy

Since the cardinality of V), x is (”;k), and the generating polynomial of DPj is equal to
k!t* by Lemma 3.2, summing over all 0 < k < |[n/2| we obtain Equation (3.1). O

Remark 3.7. The full-length paper for this extended abstract is available at [11].
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