Séminaire Lotharingien de Combinatoire **84B** (2020) Article #36, 12 pp.

The γ -coefficients of Brändén's (p, q)-Eulerian polynomials and André permutations

Qiong Qiong Pan^{*1} and Jiang $Zeng^{\dagger 1}$

¹*Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Camille Jordan, Villeurbanne, France*

Abstract. In 2008 Brändén proved a (p,q)-analogue of the γ -expansion formula for Eulerian polynomials and conjectured the divisibility of the γ -coefficient $\gamma_{n,k}(p,q)$ by $(p+q)^k$. As a follow-up, in 2012 Shin and Zeng showed that the fraction $\gamma_{n,k}(p,q)/(p+q)^k$ is a polynomial in $\mathbb{N}[p,q]$. The aim of this paper is to give a combinatorial interpretation of the latter polynomial in terms of André permutations, a class of objects first defined and studied by Foata, Schützenberger and Strehl in the 1970s. It turns out that our result provides an answer to a recent open problem of Han, which was the impetus of this paper.

Keywords: Eulerian polynomials, γ -coefficients, André permutations.

1 Introduction

The Euler number E_n , namely the coefficient of $x^n/n!$ in the expansion of $\sec(x) + \tan(x)$, is well studied and has many combinatorial interpretations and different refinements; see [4, 18, 7, 16, 9]. It was André who first proved that E_n is the number of alternating permutations $a_1 \dots a_n$ of $12 \dots n$, i.e., $a_1 > a_2 < \dots$. Among the many remarkable identities for the Euler numbers there is the less known J-type continued fraction

$$\sum_{n=0}^{\infty} E_{n+1} x^n = \frac{1}{1-x-\frac{x^2}{1-2x-\frac{3x^2}{1-3x-\frac{6x^2}{1-4x-\frac{10x^2}{1-\cdots}}}}}.$$
(1.1)

Recently, Han [8] considered a *q*-version of (1.1) and asked for a combinatorial interpretation for the corresponding *q*-Euler numbers $E_n(q)$ (see (1.3) below). Motivated by

^{*}qpan@math.univ-lyon1.fr.

[†]zeng@math.univ-lyon1.fr.

Han's question, we shall study the more general polynomials $D_n(p,q,t)$ defined by the following continued fraction, which is a (p,q)-analogue of (1.1):

$$\sum_{n=0}^{\infty} D_{n+1}(p,q,t)x^{n} = \frac{1}{1-x-\frac{\binom{2}{2}_{p,q}t x^{2}}{1-[2]_{p,q}x-\frac{\binom{3}{2}_{p,q}t x^{2}}{1-[3]_{p,q}x-\frac{\binom{4}{2}_{p,q}t x^{2}}{1-[4]_{p,q}x-\frac{\binom{5}{2}_{p,q}t x^{2}}{1-\cdots}}},$$
(1.2)

where the (p,q)-analogue of *n* is defined by

$$[n]_{p,q} = \frac{p^n - q^n}{p - q} = \sum_{i+j=n-1} p^i q^j \qquad (n \in \mathbb{N})$$

and the (p,q)-analogue of the binomial coefficient $\binom{n}{k}$ is defined by

$$\binom{n}{k}_{p,q} = \frac{[n]_{p,q} \dots [n-k+1]_{p,q}}{[1]_{p,q} \dots [k]_{p,q}} \qquad (0 \le k \le n).$$

Comparing (1.1) and (1.2) yields that

$$D_n(1,1,1) = E_n \qquad (n \ge 1).$$

The *q*-Euler number $E_n(q)$ of Han [8] can be expressed as

$$E_n(q) := D_n(1,q,1) = D_n(q,1,1) \qquad (n \ge 1).$$
(1.3)

The first few values of $D_n(p,q,t)$ are $D_1(p,q,t) = D_2(p,q,t) = 1$. It turns out that the polynomials $D_n(p,q,t)$ are related to the γ -coefficients of Brändén's (p,q)-analogue of Eulerian polynomials [2]. In this paper we shall interpret $D_n(p,q,t)$ in terms of *André permutations*, which were introduced and studied by Foata, Schützenberger and Strehl [4, 6, 5] in the 1970s. There are three ingredients in our proof: the connection of these polynomials with the γ -coefficients of Brändén's (p,q)-analogue of Eulerian polynomials [2], Shin-Zeng's continued fraction expansion of the γ -coefficients of generalized Eulerian polynomials [16] and a new action on the permutations without double descents.

For a permutation $\sigma := \sigma_1 \sigma_2 \dots \sigma_n$ of [n], the *descent number* des σ is the number of descent positions, i.e. i < n such that $\sigma_i > \sigma_{i+1}$, and the *excedance number* exc σ is the number of excedance positions, i.e. $i \in [n]$ such that $\sigma_i > i$. Let \mathfrak{S}_n be the set of permutations of $[n] := \{1, \dots, n\}$. Thanks to the work of MacMahon [10] and Riordan [14] we can define the Eulerian polynomials $A_n(t)$ by

$$A_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{des} \sigma} = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{exc} \sigma}.$$

The following γ -decompositions for $A_n(t)$ are well-known [4, Section 4]. **Theorem 1.1** (Foata and Schützenberger).

$$A_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} \gamma_{n,k} t^k (1+t)^{n-1-2k}$$
(1.4)

$$=\sum_{k=0}^{\lfloor n/2 \rfloor} 2^k d_{n,k} t^k (1+t)^{n-1-2k}, \qquad (1.5)$$

where $\gamma_{n,k} = 2^k d_{n,k}$ and $d_{n,k}$ are positive integers satisfying the recurrence

and
$$_{1,0} = 1$$
 and for $n \ge 2, k \ge 0$,
 $d_{n,k} = (k+1)d_{n-1,k} + (n-2k)d_{n-1,k-1}.$ (1.6)

Moreover, the sum $\sum_k d_{n,k}$ is precisely the Euler number E_n .

In the last two decades even though many refinements of (1.4) have been found in combinatorics and geometry (see [13, 12, 1, 15]), similar extension of (1.5) does not seem to be known. In this paper we will provide two refinements of (1.5) (see (1.11) and (1.15)).

Definition 1.2. For a permutation $\sigma = \sigma_1 \dots \sigma_n$ of [n] with $\sigma_0 = \sigma_{n+1} = 0$, the entry σ_i is

- a *peak* if $\sigma_{i-1} < \sigma_i$ and $\sigma_i > \sigma_{i+1}$;
- a valley if $\sigma_{i-1} > \sigma_i$ and $\sigma_i < \sigma_{i+1}$;
- a *double ascent* if $\sigma_{i-1} < \sigma_i$ and $\sigma_i < \sigma_{i+1}$;
- a *double descent* if $\sigma_{i-1} > \sigma_i$ and $\sigma_i > \sigma_{i+1}$.

Let $pk\sigma$ (resp. $val\sigma$, $da\sigma$, $dd\sigma$) denote the number of peaks (resp. valleys, double ascents, double descents) in σ . Note that $des\sigma = val\sigma + dd\sigma$ and $pk\sigma = val\sigma + 1$. Let $\mathcal{G}_{n,k} = \{\sigma \in \mathfrak{S}_n : val\sigma = k, dd\sigma = 0\}.$

Definition 1.3. For a permutation σ of [n], let $\sigma_{[k]}$ be the *subword* of σ consisting of $1, \ldots, k$ in the order they appear in σ . Then, the permutation σ is an André permutation if $\sigma_{[k]}$ has no double descents (and ends with an ascent) for all $1 \le k \le n$.

Let \mathfrak{D}_n be the set of André permutations of [n] and let $\mathfrak{D}_{n,k}$ be the set of André permutations of [n] with *k* descents.

Proposition 1.4 ([4, 5]). The coefficients $\gamma_{n,k}$ and $d_{n,k}$ equal the cardinalities of $\mathcal{G}_{n,k}$ and $\mathfrak{D}_{n,k}$, respectively.

For $\sigma = \sigma_1 \dots \sigma_n \in \mathfrak{S}_n$, the statistic (31-2) σ is the number of pairs (i, j) such that $2 \leq i < j \leq n$ and $\sigma_{i-1} > \sigma_j > \sigma_i$. Similarly, the statistic (2-13) σ is the number of pairs (i, j) such that $1 \leq i < j \leq n-1$ and $\sigma_{j+1} > \sigma_i > \sigma_j$. In 2008 Brändén [2] defined a (p, q)-analogue of Eulerian polynomials and proved a (p, q)-analogue of (1.4). In this paper we shall use the following variant of Brändén's (p, q)-Eulerian polynomials in [16]

$$A_n(p,q,t) := \sum_{\sigma \in \mathfrak{S}_n} p^{(2-13)\sigma} q^{(31-2)\sigma} t^{\operatorname{des}\sigma}.$$
(1.7)

For $0 \le k \le (n-1)/2$ define the (p,q)-analogue of $\gamma_{n,k}$ and $d_{n,k}$ in (1.4) and (1.5) by

$$\gamma_{n,k}(p,q) = \sum_{\sigma \in \mathcal{G}_{n,k}} p^{(2-13)\,\sigma} q^{(31-2)\,\sigma},\tag{1.8}$$

$$d_{n,k}(p,q) = \sum_{\sigma \in \mathfrak{D}_{n,k}} p^{(2-13)\,\sigma} q^{(31-2)\,\sigma-k}.$$
(1.9)

Our main results are the following two theorems.

Theorem 1.5. We have

$$A_n(p,q,t) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \gamma_{n,k}(p,q) t^k (1+t)^{n-1-2k}$$
(1.10)

$$=\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} (p+q)^k \mathbf{d}_{n,k}(p,q) t^k (1+t)^{n-1-2k}.$$
 (1.11)

Remark 1.6. An equivalent γ -expansion of (1.10) was proved by Brändén [2] using the *modified Foata-Stehl* action. The divisibility of $\gamma_{n,k}(p,q)$ by $(p+q)^k$ was conjectured by Brändén (*op.cit.*) and proved by Shin and Zeng [16] using the combinatorial theory of continued fractions.

Theorem 1.7. We have

$$D_n(p,q,t) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \mathbf{d}_{n,k}(p,q) t^k$$
(1.12)

$$=\sum_{\sigma\in\mathfrak{D}_n} p^{(2-13)\sigma} q^{(31-2)\sigma-\operatorname{des}\sigma} t^{\operatorname{des}\sigma}.$$
(1.13)

Remark 1.8. It is not difficult to see that $(31-2)\sigma \ge \text{des}\sigma$ for any $\sigma \in \mathfrak{D}_n$, see (iii) of Proposition 2.2.

Combining Theorem 1.5 with Theorem 1 in [17], which is (1.14) below, we derive a *q*-analogue of (1.4) and (1.5).

Corollary 1.9. We have

$$\sum_{\sigma \in \mathfrak{S}_n} q^{(\operatorname{inv} - \operatorname{exc})\sigma} t^{\operatorname{exc}\sigma} = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \gamma_{n,k}(q^2, q) t^k (1+t)^{n-1-2k}$$
(1.14)

$$=\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} (1+q)^k \mathbf{d}_{n,k}(q) t^k (1+t)^{n-1-2k},$$
(1.15)

where

$$\mathbf{d}_{n,k}(q) = \sum_{\sigma \in \mathfrak{D}_{n,k}} q^{2(2-13)\sigma + (31-2)\sigma}.$$

By (1.3) and Theorem 1.7 we derive two interpretations for Han's *q*-Euler numbers[8]. **Corollary 1.10.** *We have*

$$E_n(q) = \sum_{\sigma \in \mathfrak{D}_n} q^{(2-13)\sigma}$$
(1.16)

$$=\sum_{\sigma\in\mathfrak{D}_n}q^{(31-2)\,\sigma-\mathrm{des}\,\sigma}.\tag{1.17}$$

In Section 3 we shall give a simple sum formula for $D_n(1, -1, t)$ (cf. Theorem 3.6).

2 **Proof outlines of main Theorems**

2.1 Some basic definitions and results

The following definition was given as a lemma in [6, Lemma 1].

Definition 2.1. Let $w = x_1x_2...x_n$ (n > 0) be a permutation and x be one of the letters x_i (1 < i < n). Then w has a unique factorization (w_1, w_2, x, w_4, w_5) of length 5, called its x-factorization, which is characterized by the three properties

- (i) w_1 is empty or its last letter is less than *x*;
- (ii) w_2 (resp. w_4) is empty or all its letters are greater than *x*;
- (iii) w_5 is empty or its first letter is less than *x*.

We can charactrize André permutations in terms of *x*-factorization [4].

Proposition 2.2. A permutation $\sigma \in \mathfrak{S}_n$ is an André permutation if it is empty or satisfies the following:

- (*i*) σ has no double descents,
- (ii) n-1 is not a descent position, i.e. $\sigma_{n-1} < \sigma_n$,
- (iii) If σ_i is a valley of σ with σ_i -factorization $(w_1, w_2, \sigma_i, w_4, w_5)$, then $\min(w_2) > \min(w_4)$, *i.e.*, the minimum letter of w_2 is larger than the minimum letter of w_4 .

The next theorem follows from the work of [2, 5].

Theorem 2.3. For any $\tilde{\sigma} \in \mathfrak{S}_n$ without double decent, we have

$$\sum_{\sigma \in \operatorname{Orb}(\tilde{\sigma})} p^{(2-13)\,\sigma} q^{(31-2)\,\sigma} t^{\operatorname{des}\sigma} = p^{(2-13)\,\tilde{\sigma}} q^{(31-2)\,\tilde{\sigma}} t^{\operatorname{des}\tilde{\sigma}} (1+t)^{n-1-2\operatorname{des}\tilde{\sigma}}.$$

Let $A_n(p,q,t,u,v,w)$ be the generalized Eulerian polynomials defined by

$$A_n(p,q,t,u,v,w) := \sum_{\sigma \in \mathfrak{S}_n} p^{(2-13)\,\sigma} q^{(31-2)\,\sigma} t^{\operatorname{des}\sigma} u^{\operatorname{da}\sigma} v^{\operatorname{dd}\sigma} w^{\operatorname{val}\sigma}.$$
(2.1)

As des = val + dd we derive the following generalization of (1.10) from Theorem 2.3. This was first proved in [16] by using combinatorial theory of continued fractions.

Corollary 2.4. For the γ -coefficients $\gamma_{n,k}(p,q)$ in (1.8) we have

$$A_n(p,q,t,u,v,w) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \gamma_{n,k}(p,q)(tw)^k (u+vt)^{n-1-2k}.$$
 (2.2)

2.2 New action on permutations without double descent

Let DD_n be the set of permutations of [n] without double descent. For any permutation $\sigma \in DD_n$ and $x \in [n]$ we shall identify σ with its *x*-factorization, i.e., $\sigma = (w_1, w_2, x, w_4, w_5) = w_1 w_2 x w_4 w_5$, and let $y_1 := \min(w_2)$, $y_2 := \min(w_4)$. A valley *x* of σ is said to be

- *good* (resp. *bad*) if $y_1 > y_2$ (resp. $y_1 < y_2$);
- of *type I* if $min(y_1, y_2)$ is a peak or double ascent,
- of *type II* if $min(y_1, y_2)$ is a valley.

We denote by Val σ the set of valleys of σ .

Proposition 2.5. Let $\sigma \in DD_n$ and $x \in Val \sigma$ with $y = min(y_1, y_2)$.

(*i*) If y is a peak, then $w_4 = y$ (resp. $w_2 = y$) if $y_1 > y_2$ (resp. $y_1 < y_2$).

- (ii) If y is a double ascent, then $w_4 = yw_4''$ (resp. $w_2 = yw_2''$) with $w_2'', w_4'' \neq \epsilon$ if $y_1 > y_2$ (resp. $y_1 < y_2$).
- (iii) If y is a valley, then $w_4 = w'_4 y w''_4$ (resp. $w_2 = w'_2 y w''_2$) with $w'_2, w''_2, w''_4, w''_4 \neq \epsilon$ if $y_1 > y_2$ (resp. $y_1 < y_2$).

Definition 2.6. For $\sigma \in DD_n$ and each $x \in Val \sigma$ with $y = min(y_1, y_2)$, we define its transform $\varphi(\sigma, x)$ as follows:

(i) If *y* is a peak, then

$$\varphi(\sigma, x) = \begin{cases} (w_1, y, x, w_2, w_5) & \text{if } y = y_2, \\ (w_1, w_4, x, y, w_5) & \text{if } y = y_1. \end{cases}$$

(ii) If *y* is a double ascent, then

$$\varphi(\sigma, x) = \begin{cases} (w_1, yw_2, x, w'', w_5) & \text{if } y = y_2 \text{ and } w_4 = yw'', \\ (w_1, w'', x, yw_4, w_5) & \text{if } y = y_1 \text{ and } w_2 = yw''. \end{cases}$$

(iii) If *y* is a valley, then

$$\varphi(\sigma, x) = \begin{cases} (w_1, w_2 y w', x, w'', w_5) & \text{if } y = y_2 \text{ and } w_4 = w' y w'', \\ (w_1, w', x, w'' y w_4, w_5) & \text{if } y = y_1 \text{ and } w_2 = w' y w'' \end{cases}$$

with $w', w'' \neq \epsilon$.

Obviously this transformation switches *y* from left to right or right to left of *x* and $\varphi(\varphi(\sigma, x), x) = \sigma$. We record the basic properties of this transformation in the following proposition.

Proposition 2.7. *If* $\sigma \in DD_{n,k}$ *and* $x \in Val \sigma$ *, then* $\varphi(\sigma, x) \in DD_{n,k}$ *and*

$$(2-13) \varphi(\sigma, x) = \begin{cases} (2-13) \sigma + 1 & \text{if } x \text{ is good} \\ (2-13) \sigma - 1 & \text{if } x \text{ is bad}; \end{cases}$$

$$(31-2) \varphi(\sigma, x) = \begin{cases} (31-2) \sigma - 1 & \text{if } x \text{ is good} \\ (31-2) \sigma + 1 & \text{if } x \text{ is bad}. \end{cases}$$

$$(2.3)$$

Next we define the transform $\varphi(\sigma, S)$ for any subset *S* of Val (σ) with $\sigma \in DD_n$.

Definition 2.8. Let $\sigma \in DD_n$. For any $S \subseteq Val \sigma$, let $\{S_1, S_2\}$ be the partition of S such that

- (1) S_1 is the subset of *S* consisting of valleys of type I, say i_1, \ldots, i_l ;
- (2) S_2 is the subset of *S* consisting of valleys of type II, say $j_k < \cdots < j_2 < j_1$.

Define the transforms

$$\varphi(\sigma, S_1) = \varphi(i_1, \dots, \varphi(i_2, \varphi(i_1, \sigma))),$$

$$\varphi(\sigma, S_2) = \varphi(j_k, \dots, \varphi(j_2, \varphi(j_1, \sigma))),$$

$$\varphi(\sigma, S) = \varphi(\varphi(\sigma, S_1), S_2).$$

Remark 2.9. The image $\varphi(\sigma, S_1)$ is independent of the order of i_1, \ldots, i_l while $\varphi(\sigma, S_2)$ is defined for the elements of S_2 in the decreasing order $j_1 > j_2 > \ldots > j_1$.

Proposition 2.10. *If* $\sigma \in \mathfrak{D}_{n,k}$ *and* $S \subseteq Val(\sigma)$ *, then* $\tau := \varphi(\sigma, S) \in DD_{n,k}$ *is well defined and*

$$S = \{ x \in \operatorname{Val}(\tau) \mid x \text{ is a bad guy} \}.$$

$$(2.4)$$

For any set *S* we denote by 2^S the set of all subsets of *S*. In what follows, for $\sigma \in DD_{n,k}$ we will identify $Val(\sigma)$ with [k] under the map $a_i \mapsto i$ for $i \in [k]$ if $Val(\sigma)$ consists of $a_1 < a_2 < \ldots < a_k$, and identify any subset $S \in Val(\sigma)$ with its image $S' \in 2^{[k]}$. Thus we will use $2^{[k]}$ instead of $2^{Val(\sigma)}$.

Proposition 2.11. The map $\varphi : \mathfrak{D}_{n,k} \times 2^{[k]} \to \mathcal{G}_{n,k}$ is a bijection such that for $(\sigma, S) \in \mathfrak{D}_{n,k} \times 2^{[k]}$ we have

$$(2-13) \sigma + |S| = (2-13) \varphi(\sigma, S), (31-2) \sigma - |S| = (31-2) \varphi(\sigma, S).$$

$$(2.5)$$

2.3 Proof of Theorem 1.5

Clearly (1.10) is a special case of Corollary 2.4, and (1.11) is equivalent to

$$(p+q)^k \sum_{\sigma \in \mathfrak{D}_{n,k}} p^{(2-13)\sigma} q^{(31-2)\sigma-k} = \sum_{\sigma \in \mathrm{DD}_{n,k}} p^{(2-13)\sigma} q^{(31-2)\sigma}.$$
 (2.6)

As $(p+q)^k = \sum_{S \in 2^{[k]}} p^{|S|} q^{k-|S|}$ we can rewrite the above identity as

$$\sum_{(\sigma,S)\in\mathfrak{D}_{n,k}\times 2^{[k]}} p^{(2-13)\,\sigma+|S|} q^{(31-2)\,\sigma-|S|} = \sum_{\sigma\in\mathrm{DD}_{n,k}} p^{(2-13)\,\sigma} q^{(31-2)\,\sigma}$$

The result follows from Proposition 2.11.

2.4 Proof of Theorem 1.7

We shall use the J-type continued fraction as a formal power series defined by

$$\sum_{n=0}^{\infty} \mu_n t^n = \frac{1}{1 - b_0 t - \frac{\lambda_1 t^2}{1 - b_1 t - \frac{\lambda_2 t^2}{1 - \cdots}}},$$

where (b_n) and (λ_{n+1}) $(n \ge 0)$ are two sequences in a commutative ring. When $b_n = 0$ we obtain the S-type continued fraction:

$$\sum_{n=0}^{\infty} \mu_n t^n = \frac{1}{1 - \frac{\lambda_1 t}{1 - \frac{\lambda_2 t}{1 - \cdots}}}$$

Recall the following continued fraction expansion formula from [16, (28)]:

$$\sum_{n\geq 1} A_n(p,q,t,u,v,w) x^{n-1} = \frac{1}{1 - (u+tv)[1]_{p,q}x - \frac{[1]_{p,q}[2]_{p,q}twx^2}{1 - (u+tv)[2]_{p,q}x - \frac{[2]_{p,q}[3]_{p,q}twx^2}{\cdots}}}$$
(2.7)

with $b_n = (u + tv)[n+1]_{p,q}$ and $\lambda_n = [n]_{p,q}[n+1]_{p,q}tw$.

By Theorem 1.5 and substituting (t, u, v, w) with (p + q, 0, 1, t) in (2.2), we obtain

$$A_n(p,q,p+q,0,1,t) = (p+q)^{n-1} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} d_{n,k}(p,q)t^k.$$

Thus, substituting (t, u, v, w) with (p + q, 0, 1, t) in (2.7) and replacing x by x/(p + q) we obtain the same continued fraction in (1.2). This proves (1.12).

3 An explicit formula for $D_n(1, -1, t)$

A *Motzkin path* of length *n* is a sequence of points $\eta := (\eta_0, ..., \eta_n)$ in the integer plane $\mathbb{Z} \times \mathbb{Z}$ such that

•
$$\eta_0 = (0,0)$$
 and $\eta_n = (n,0)$,

- $\eta_i \eta_{i-1} \in \{(1,0), (1,1), (1,-1)\},\$
- $\eta_i := (x_i, y_i) \in \mathbb{N} \times \mathbb{N}$ for $i = 0, \dots, n$.

In other words, a Motzkin path of length n is a lattice path starting at (0,0), ending at (n,0), and never going below the x-axis, consisting of up-steps U = (1,1), level-steps L = (1,0), and down-steps D = (1,-1). Let \mathcal{MP}_n be the set of Motzkin paths of length n. Clearly we can identify Motzkin paths of length n with words w on $\{U, L, D\}$ of length n such that all prefixes of w contain no more D's than U's and the number of D's equals the number of D's. The height of a step (η_i, η_{i+1}) is the coordinate of the starting point η_i . Given a Motzkin path $p \in \mathcal{MP}_n$ and two sequences (b_i) and (λ_i) of a commutative ring R, we weight each up-step by 1, and each level-step (resp. down-step) at height i by b_i (resp. λ_i) and define the weight w(p) of p by the product of the weights of all its steps. The following result of Flajolet [3] is our starting point.

Lemma 3.1 (Flajolet). We have

$$\sum_{n=0}^{\infty} \left(\sum_{p \in \mathcal{MP}_n} w(p) \right) t^n = \frac{1}{1 - b_0 t - \frac{\lambda_1 t^2}{1 - b_1 t - \frac{\lambda_2 t^2}{1 - b_2 t - \cdots}}}$$

A Motzkin path without level-steps is called a *Dyck path*, and a Motzkin path without level-steps at odd height is called an *André path*. We denote by $\mathcal{AP}_{n,k}$ the set of André paths of half-length *n* with *k* level-steps, and \mathcal{DP}_n the set of Dyck paths of half length *n*.

Lemma 3.2. Let $b_i = 0$ $(i \ge 0)$ and $\lambda_i = \lfloor \frac{i+1}{2} \rfloor$ $(i \ge 1)$. Then

$$n! = \sum_{p \in \mathcal{MP}_n} w(p).$$

In other words, the factorial n! is the generating polynomial of DP_n .

Remark 3.3. A bijective proof of Euler's formula (3.2) is known, see [11, (4.9)].

Lemma 3.4. Let $b_{2i} = 1$, $b_{2i+1} = 0$ $(i \ge 0)$ and $\lambda_k = \lfloor \frac{k+1}{2} \rfloor t$ $(i \ge 1)$. Then

$$D_{n+1}(1,-1,t) = \sum_{p \in \mathcal{AP}_n} w(p).$$

In other words, the polynomial $D_{n+1}(1, -1, t)$ is the generating polynomial of André paths of length n.

Let

$$\mathcal{Y}_{n,k} := \{(y_1, \ldots, y_{k+1}) \in \mathbb{N}^{k+1} : y_1 + \cdots + y_{k+1} = n - 2k\}.$$

Lemma 3.5. For $0 \le k \le \lfloor n/2 \rfloor$, there is an explicit bijection $\psi : \mathcal{AP}_{n,n-2k} \to \mathcal{Y}_{n,k} \times \mathcal{DP}_k$ such that if $\psi(u) = (y, p)$ with for $u \in \mathcal{AP}_{n,n-2k}$ and $(y, p) \in \mathcal{Y}_{n,k} \times \mathcal{DP}_k$ then w(u) = w(p), where the weight is associated to the sequences (b_i) and (λ_i) with $b_{2i} = 1$, $b_{2i+1} = 0$ $(i \ge 0)$, and $\lambda_k = \lfloor \frac{k+1}{2} \rfloor t$ $(i \ge 1)$.

Proof. Since an André path (word) on {U, D, L} has only level-steps at even height and starts from height 0, so the subword between two consecutive level-steps L's must be of even length and is a word on the alphabet {UU, DD, UD, DU}. Thus, any André word $u \in AP_{n,n-2k}$ can be written in a unique way as follows:

$$u = \mathsf{L}^{y_1} w_1 \mathsf{L}^{y_2} w_2 \dots w_k \mathsf{L}^{y_{k+1}}$$
 with $w_i \in \{\mathsf{UU}, \mathsf{DD}, \mathsf{UD}, \mathsf{DU}\}.$

Let $y := (y_1, \ldots, y_{k+1})$ and $p := w_1 \ldots w_k$. As the path p is obtained by removing out all the level-steps L's from the André path u, each step in p keeps the same height in u, and $(y, p) \in \mathcal{Y}_{n,k} \times \mathcal{DP}_k$, Let $\psi(u) = (y, p)$. It is clear that this is the desired bijection.

Theorem 3.6. For $n \ge 1$ we have

$$D_n(1,-1,t) = \sum_{k=0}^{n-1} \binom{n-1-k}{k} k! t^k.$$
(3.1)

Proof of Theorem 3.6. By Lemmas 3.4 and 3.5 we have

$$D_{n+1}(1,-1,t) = \sum_{k\geq 0} \sum_{(y,p)\in \mathcal{Y}_{n,k}\times \mathcal{DP}_k} w(p).$$

Since the cardinality of $\mathcal{Y}_{n,k}$ is $\binom{n-k}{k}$, and the generating polynomial of \mathcal{DP}_k is equal to $k!t^k$ by Lemma 3.2, summing over all $0 \le k \le \lfloor n/2 \rfloor$ we obtain Equation (3.1).

Remark 3.7. The full-length paper for this extended abstract is available at [11].

References

- C. A. Athanasiadis. "Gamma-positivity in combinatorics and geometry". Sém. Lothar. Combin. 77 (2016-2018), Art. B77i, 64.
- [2] P. Brändén. "Actions on permutations and unimodality of descent polynomials". *European J. Combin.* 29.2 (2008), pp. 514–531. Link.
- [3] P. Flajolet. "Combinatorial aspects of continued fractions". *Discrete Math.* 32.2 (1980), pp. 125–161. Link.
- [4] D. Foata and M.-P. Schützenberger. "Nombres d'Euler et permutations alternantes". A survey of Combinatorial Theory 1 (1973), pp. 173–188.

- [5] D. Foata and V. Strehl. "Euler numbers and variations of permutations". *Colloquio Internazionale sulle Teorie Combinatorie* **1** (1973), pp. 119–131.
- [6] D. Foata and V. Strehl. "Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers". *Math. Z.* **137** (1974), pp. 257–264. Link.
- Y. Gelineau, H. Shin, and J. Zeng. "Bijections for Entringer families". *European J. Combin.* 32.1 (2011), pp. 100–115.
- [8] G.-N. Han. "Hankel continued fractions and Hankel determinants of the Euler numbers". *Trans. Amer. Math. Soc.* (2020). Link.
- [9] M. Josuat-Vergès. "Enumeration of snakes and cycle-alternating permutations". *Australas. J. Combin.* **60** (2014), pp. 279–305.
- [10] P. A. MacMahon. Combinatory Analysis, Volumes I and II. Vol. 137. American Mathematical Soc., 2001.
- [11] Q. Q. Pan and J. Zeng. "The γ -coefficients of Branden's (p,q)-Eulerian polynomials and André permutations". 2019. arXiv:1910.01747.
- [12] T. K. Petersen. Eulerian numbers. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. With a foreword by Richard Stanley. Birkhäuser/Springer, New York, 2015, pp. xviii+456. Link.
- [13] A. Postnikov, V. Reiner, and L. Williams. "Faces of generalized permutohedra". *Doc. Math* 13.207-273 (2008), p. 51.
- [14] J. Riordan. "Triangular permutation numbers". Proc. Amer. Math. Soc. 2 (1951), pp. 429–432. Link.
- [15] J. Shareshian and M. L. Wachs. "Gamma-positivity of variations of Eulerian polynomials". J. Comb. 11.1 (2020). Link.
- [16] H. Shin and J. Zeng. "The symmetric and unimodal expansion of Eulerian polynomials via continued fractions". *European J. Combin.* 33.2 (2012), pp. 111–127. Link.
- [17] H. Shin and J. Zeng. "Symmetric unimodal expansions of excedances in colored permutations". *European J. Combin.* 52.part A (2016), pp. 174–196. Link.
- [18] G. Viennot. "Interprétations combinatoires des nombres d'Euler et de Genocchi". Séminaire de Théorie des Nombres de Bordeaux (1981), pp. 1–94.