The γ-coefficients of Brändén's (p, q)-Eulerian polynomials and André permutations

Qiong Qiong Pan*1 and Jiang Zeng ${ }^{\dagger 1}$
${ }^{1}$ Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Camille Jordan, Villeurbanne, France

Abstract

In 2008 Brändén proved a (p, q)-analogue of the γ-expansion formula for Eulerian polynomials and conjectured the divisibility of the γ-coefficient $\gamma_{n, k}(p, q)$ by $(p+$ $q)^{k}$. As a follow-up, in 2012 Shin and Zeng showed that the fraction $\gamma_{n, k}(p, q) /(p+q)^{k}$ is a polynomial in $\mathbb{N}[p, q]$. The aim of this paper is to give a combinatorial interpretation of the latter polynomial in terms of André permutations, a class of objects first defined and studied by Foata, Schützenberger and Strehl in the 1970s. It turns out that our result provides an answer to a recent open problem of Han, which was the impetus of this paper.

Keywords: Eulerian polynomials, γ-coefficients, André permutations.

1 Introduction

The Euler number E_{n}, namely the coefficient of $x^{n} / n!$ in the expansion of $\sec (x)+$ $\tan (x)$, is well studied and has many combinatorial interpretations and different refinements; see $[4,18,7,16,9]$. It was André who first proved that E_{n} is the number of alternating permutations $a_{1} \ldots a_{n}$ of $12 \ldots n$, i.e., $a_{1}>a_{2}<\ldots$. Among the many remarkable identities for the Euler numbers there is the less known J-type continued fraction

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n+1} x^{n}=\frac{1}{1-x-\frac{x^{2}}{1-2 x-\frac{3 x^{2}}{1-3 x-\frac{6 x^{2}}{1-4 x-\frac{10 x^{2}}{1-\cdots}}}} .} \tag{1.1}
\end{equation*}
$$

Recently, Han [8] considered a q-version of (1.1) and asked for a combinatorial interpretation for the corresponding q-Euler numbers $E_{n}(q)$ (see (1.3) below). Motivated by

[^0]Han's question, we shall study the more general polynomials $D_{n}(p, q, t)$ defined by the following continued fraction, which is a (p, q)-analogue of (1.1):

$$
\begin{equation*}
\sum_{n=0}^{\infty} D_{n+1}(p, q, t) x^{n}=\frac{1}{1-x-\frac{\binom{2}{2}_{p, q} t x^{2}}{1-[2]_{p, q} x-\frac{\binom{3}{2}_{p, q} t x^{2}}{1-[3]_{p, q} x-\frac{\binom{4}{2}_{p, q} t x^{2}}{1-[4]_{p, q} x-\frac{\binom{5}{2}_{p, q} t x^{2}}{1-\cdots}}}},} \tag{1.2}
\end{equation*}
$$

where the (p, q)-analogue of n is defined by

$$
[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}=\sum_{i+j=n-1} p^{i} q^{j} \quad(n \in \mathbb{N})
$$

and the (p, q)-analogue of the binomial coefficient $\binom{n}{k}$ is defined by

$$
\binom{n}{k}_{p, q}=\frac{[n]_{p, q} \ldots[n-k+1]_{p, q}}{[1]_{p, q} \ldots[k]_{p, q}} \quad(0 \leq k \leq n)
$$

Comparing (1.1) and (1.2) yields that

$$
D_{n}(1,1,1)=E_{n} \quad(n \geq 1)
$$

The q-Euler number $E_{n}(q)$ of Han [8] can be expressed as

$$
\begin{equation*}
E_{n}(q):=D_{n}(1, q, 1)=D_{n}(q, 1,1) \quad(n \geq 1) \tag{1.3}
\end{equation*}
$$

The first few values of $D_{n}(p, q, t)$ are $D_{1}(p, q, t)=D_{2}(p, q, t)=1$. It turns out that the polynomials $D_{n}(p, q, t)$ are related to the γ-coefficients of Brändén's (p, q)-analogue of Eulerian polynomials [2]. In this paper we shall interpret $D_{n}(p, q, t)$ in terms of André permutations, which were introduced and studied by Foata, Schützenberger and Strehl [4, $6,5]$ in the 1970 s . There are three ingredients in our proof: the connection of these polynomials with the γ-coefficients of Brändén's (p, q)-analogue of Eulerian polynomials [2], Shin-Zeng's continued fraction expansion of the γ-coefficients of generalized Eulerian polynomials [16] and a new action on the permutations without double descents.

For a permutation $\sigma:=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ of $[n]$, the descent number $\operatorname{des} \sigma$ is the number of descent positions, i.e. $i<n$ such that $\sigma_{i}>\sigma_{i+1}$, and the excedance number exc σ is the number of excedance positions, i.e. $i \in[n]$ such that $\sigma_{i}>i$. Let \mathfrak{S}_{n} be the set of permutations of $[n]:=\{1, \ldots, n\}$. Thanks to the work of MacMahon [10] and Riordan [14] we can define the Eulerian polynomials $A_{n}(t)$ by

$$
A_{n}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{des} \sigma}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{exc} \sigma}
$$

The following γ-decompositions for $A_{n}(t)$ are well-known [4, Section 4].
Theorem 1.1 (Foata and Schützenberger).

$$
\begin{align*}
A_{n}(t) & =\sum_{k=0}^{\lfloor n / 2\rfloor} \gamma_{n, k} t^{k}(1+t)^{n-1-2 k} \tag{1.4}\\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} 2^{k} d_{n, k} t^{k}(1+t)^{n-1-2 k} \tag{1.5}
\end{align*}
$$

where $\gamma_{n, k}=2^{k} d_{n, k}$ and $d_{n, k}$ are positive integers satisfying the recurrence

$$
\begin{align*}
\text { and }_{1,0} & =1 \quad \text { and for } n \geq 2, k \geq 0 \\
\mathrm{~d}_{n, k} & =(k+1) \mathrm{d}_{n-1, k}+(n-2 k) \mathrm{d}_{n-1, k-1} . \tag{1.6}
\end{align*}
$$

Moreover, the sum $\sum_{k} d_{n, k}$ is precisely the Euler number E_{n}.
In the last two decades even though many refinements of (1.4) have been found in combinatorics and geometry (see [13, 12, 1, 15]), similar extension of (1.5) does not seem to be known. In this paper we will provide two refinements of (1.5) (see (1.11) and (1.15)).

Definition 1.2. For a permutation $\sigma=\sigma_{1} \ldots \sigma_{n}$ of $[n]$ with $\sigma_{0}=\sigma_{n+1}=0$, the entry σ_{i} is

- a peak if $\sigma_{i-1}<\sigma_{i}$ and $\sigma_{i}>\sigma_{i+1}$;
- a valley if $\sigma_{i-1}>\sigma_{i}$ and $\sigma_{i}<\sigma_{i+1}$;
- a double ascent if $\sigma_{i-1}<\sigma_{i}$ and $\sigma_{i}<\sigma_{i+1}$;
- a double descent if $\sigma_{i-1}>\sigma_{i}$ and $\sigma_{i}>\sigma_{i+1}$.

Let $\operatorname{pk} \sigma$ (resp. val σ, da $\sigma, \operatorname{dd} \sigma$) denote the number of peaks (resp. valleys, double ascents, double descents) in σ. Note that $\operatorname{des} \sigma=\operatorname{val} \sigma+\operatorname{dd} \sigma$ and $\mathrm{pk} \sigma=\operatorname{val} \sigma+1$. Let $\mathcal{G}_{n, k}=\left\{\sigma \in \mathfrak{S}_{n}: \operatorname{val} \sigma=k, \operatorname{dd} \sigma=0\right\}$.

Definition 1.3. For a permutation σ of $[n]$, let $\sigma_{[k]}$ be the subword of σ consisting of $1, \ldots, k$ in the order they appear in σ. Then, the permutation σ is an André permutation if $\sigma_{[k]}$ has no double descents (and ends with an ascent) for all $1 \leq k \leq n$.

Let \mathfrak{D}_{n} be the set of André permutations of $[n]$ and let $\mathfrak{D}_{n, k}$ be the set of André permutations of $[n]$ with k descents.

Proposition $1.4([4,5])$. The coefficients $\gamma_{n, k}$ and $d_{n, k}$ equal the cardinalities of $\mathcal{G}_{n, k}$ and $\mathfrak{D}_{n, k}$ respectively.

For $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathfrak{S}_{n}$, the statistic (31-2) σ is the number of pairs (i, j) such that $2 \leq i<j \leq n$ and $\sigma_{i-1}>\sigma_{j}>\sigma_{i}$. Similarly, the statistic (2-13) σ is the number of pairs (i, j) such that $1 \leq i<j \leq n-1$ and $\sigma_{j+1}>\sigma_{i}>\sigma_{j}$. In 2008 Brändén [2] defined a (p, q)-analogue of Eulerian polynomials and proved a (p, q)-analogue of (1.4). In this paper we shall use the following variant of Brändén's (p, q)-Eulerian polynomials in [16]

$$
\begin{equation*}
A_{n}(p, q, t):=\sum_{\sigma \in \mathfrak{S}_{n}} p^{(2-13)} \sigma^{(31-2) \sigma} t^{\operatorname{des} \sigma} \tag{1.7}
\end{equation*}
$$

For $0 \leq k \leq(n-1) / 2$ define the (p, q)-analogue of $\gamma_{n, k}$ and $d_{n, k}$ in (1.4) and (1.5) by

$$
\begin{align*}
& \gamma_{n, k}(p, q)=\sum_{\sigma \in \mathcal{G}_{n, k}} p^{(2-13) \sigma} q^{(31-2) \sigma} \tag{1.8}\\
& d_{n, k}(p, q)=\sum_{\sigma \in \mathfrak{D}_{n, k}} p^{(2-13) \sigma} q^{(31-2) \sigma-k} \tag{1.9}
\end{align*}
$$

Our main results are the following two theorems.
Theorem 1.5. We have

$$
\begin{align*}
A_{n}(p, q, t) & =\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \gamma_{n, k}(p, q) t^{k}(1+t)^{n-1-2 k} \tag{1.10}\\
& =\sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(p+q)^{k} \mathrm{~d}_{n, k}(p, q) t^{k}(1+t)^{n-1-2 k} . \tag{1.11}
\end{align*}
$$

Remark 1.6. An equivalent γ-expansion of (1.10) was proved by Brändén [2] using the modified Foata-Stehl action. The divisibility of $\gamma_{n, k}(p, q)$ by $(p+q)^{k}$ was conjectured by Brändén (op.cit.) and proved by Shin and Zeng [16] using the combinatorial theory of continued fractions.

Theorem 1.7. We have

$$
\begin{align*}
D_{n}(p, q, t) & =\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \mathrm{d}_{n, k}(p, q) t^{k} \tag{1.12}\\
& =\sum_{\sigma \in \mathfrak{D}_{n}} p^{(2-13) \sigma} q^{(31-2) \sigma-\operatorname{des} \sigma} t^{\operatorname{des} \sigma} . \tag{1.13}
\end{align*}
$$

Remark 1.8. It is not difficult to see that (31-2) $\sigma \geq \operatorname{des} \sigma$ for any $\sigma \in \mathfrak{D}_{n}$, see (iii) of Proposition 2.2.

Combining Theorem 1.5 with Theorem 1 in [17], which is (1.14) below, we derive a q-analogue of (1.4) and (1.5).

Corollary 1.9. We have

$$
\begin{align*}
\sum_{\sigma \in \mathfrak{S}_{n}} q^{(\mathrm{inv}-\operatorname{exc}) \sigma} t^{\operatorname{exc} \sigma} & =\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \gamma_{n, k}\left(q^{2}, q\right) t^{k}(1+t)^{n-1-2 k} \tag{1.14}\\
& =\sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(1+q)^{k} \mathrm{~d}_{n, k}(q) t^{k}(1+t)^{n-1-2 k} \tag{1.15}
\end{align*}
$$

where

$$
\mathrm{d}_{n, k}(q)=\sum_{\sigma \in \mathfrak{D}_{n, k}} q^{2(2-13) \sigma+(31-2) \sigma}
$$

By (1.3) and Theorem 1.7 we derive two interpretations for Han's q-Euler numbers[8].
Corollary 1.10. We have

$$
\begin{align*}
E_{n}(q) & =\sum_{\sigma \in \mathfrak{D}_{n}} q^{(2-13) \sigma} \tag{1.16}\\
& =\sum_{\sigma \in \mathfrak{D}_{n}} q^{(31-2) \sigma-\operatorname{des} \sigma} . \tag{1.17}
\end{align*}
$$

In Section 3 we shall give a simple sum formula for $D_{n}(1,-1, t)$ (cf. Theorem 3.6).

2 Proof outlines of main Theorems

2.1 Some basic definitions and results

The following definition was given as a lemma in [6, Lemma 1].
Definition 2.1. Let $w=x_{1} x_{2} \ldots x_{n}(n>0)$ be a permutation and x be one of the letters x_{i} $(1<i<n)$. Then w has a unique factorization $\left(w_{1}, w_{2}, x, w_{4}, w_{5}\right)$ of length 5 , called its x-factorization, which is characterized by the three properties
(i) w_{1} is empty or its last letter is less than x;
(ii) w_{2} (resp. w_{4}) is empty or all its letters are greater than x;
(iii) w_{5} is empty or its first letter is less than x.

We can charactrize André permutations in terms of x-factorization [4].
Proposition 2.2. A permutation $\sigma \in \mathfrak{S}_{n}$ is an André permutation if it is empty or satisfies the following:
(i) σ has no double descents,
(ii) $n-1$ is not a descent position, i.e. $\sigma_{n-1}<\sigma_{n}$,
(iii) If σ_{i} is a valley of σ with σ_{i}-factorization $\left(w_{1}, w_{2}, \sigma_{i}, w_{4}, w_{5}\right)$, then $\min \left(w_{2}\right)>\min \left(w_{4}\right)$, i.e., the minimum letter of w_{2} is larger than the minimum letter of w_{4}.

The next theorem follows from the work of $[2,5]$.
Theorem 2.3. For any $\tilde{\sigma} \in \mathfrak{S}_{n}$ without double decent, we have

$$
\sum_{\sigma \in \operatorname{Orb}(\tilde{\sigma})} p^{(2-13) \sigma} q^{(31-2) \sigma} t^{\operatorname{des} \sigma}=p^{(2-13) \tilde{\sigma}} q^{(31-2) \tilde{\sigma}} t^{\operatorname{des} \tilde{\sigma}}(1+t)^{n-1-2 \operatorname{des} \tilde{\sigma}} .
$$

Let $A_{n}(p, q, t, u, v, w)$ be the generalized Eulerian polynomials defined by

$$
\begin{equation*}
A_{n}(p, q, t, u, v, w):=\sum_{\sigma \in \mathfrak{S}_{n}} p^{(2-13) \sigma} q^{(31-2) \sigma} t^{\operatorname{des} \sigma} u^{\operatorname{da} \sigma} v^{\operatorname{dd} \sigma} w^{\mathrm{val} \sigma} \tag{2.1}
\end{equation*}
$$

As des $=$ val + dd we derive the following generalization of (1.10) from Theorem 2.3. This was first proved in [16] by using combinatorial theory of continued fractions.

Corollary 2.4. For the γ-coefficients $\gamma_{n, k}(p, q)$ in (1.8) we have

$$
\begin{equation*}
A_{n}(p, q, t, u, v, w)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \gamma_{n, k}(p, q)(t w)^{k}(u+v t)^{n-1-2 k} \tag{2.2}
\end{equation*}
$$

2.2 New action on permutations without double descent

Let DD_{n} be the set of permutations of $[n]$ without double descent. For any permutation $\sigma \in \mathrm{DD}_{n}$ and $x \in[n]$ we shall identify σ with its x-factorization, i.e., $\sigma=$ $\left(w_{1}, w_{2}, x, w_{4}, w_{5}\right)=w_{1} w_{2} x w_{4} w_{5}$, and let $y_{1}:=\min \left(w_{2}\right), y_{2}:=\min \left(w_{4}\right)$. A valley x of σ is said to be

- $\operatorname{good}\left(\right.$ resp. bad) if $y_{1}>y_{2}\left(\right.$ resp. $\left.y_{1}<y_{2}\right)$;
- of type I if $\min \left(y_{1}, y_{2}\right)$ is a peak or double ascent,
- of type II if $\min \left(y_{1}, y_{2}\right)$ is a valley.

We denote by $\mathrm{Val} \sigma$ the set of valleys of σ.
Proposition 2.5. Let $\sigma \in \mathrm{DD}_{n}$ and $x \in \operatorname{Val} \sigma$ with $y=\min \left(y_{1}, y_{2}\right)$.
(i) If y is a peak, then $w_{4}=y\left(\right.$ resp. $\left.w_{2}=y\right)$ if $y_{1}>y_{2}\left(\right.$ resp. $\left.y_{1}<y_{2}\right)$.
(ii) If y is a double ascent, then $w_{4}=y w_{4}^{\prime \prime}$ (resp. $w_{2}=y w_{2}^{\prime \prime}$) with $w_{2}^{\prime \prime}, w_{4}^{\prime \prime} \neq \epsilon$ if $y_{1}>y_{2}$ (resp. $y_{1}<y_{2}$).
(iii) If y is a valley, then $w_{4}=w_{4}^{\prime} y w_{4}^{\prime \prime}\left(\right.$ resp. $\left.w_{2}=w_{2}^{\prime} y w_{2}^{\prime \prime}\right)$ with $w_{2}^{\prime}, w_{2}^{\prime \prime}, w_{4}^{\prime}, w_{4}^{\prime \prime} \neq \epsilon$ if $y_{1}>y_{2}$ (resp. $y_{1}<y_{2}$).

Definition 2.6. For $\sigma \in \mathrm{DD}_{n}$ and each $x \in \operatorname{Val} \sigma$ with $y=\min \left(y_{1}, y_{2}\right)$, we define its transform $\varphi(\sigma, x)$ as follows:
(i) If y is a peak, then

$$
\varphi(\sigma, x)=\left\{\begin{array}{lll}
\left(w_{1}, y, x, w_{2}, w_{5}\right) & \text { if } & y=y_{2} \\
\left(w_{1}, w_{4}, x, y, w_{5}\right) & \text { if } & y=y_{1}
\end{array}\right.
$$

(ii) If y is a double ascent, then

$$
\varphi(\sigma, x)=\left\{\begin{array}{lll}
\left(w_{1}, y w_{2}, x, w^{\prime \prime}, w_{5}\right) & \text { if } & y=y_{2} \text { and } w_{4}=y w^{\prime \prime} \\
\left(w_{1}, w^{\prime \prime}, x, y w_{4}, w_{5}\right) & \text { if } & y=y_{1} \text { and } w_{2}=y w^{\prime \prime}
\end{array}\right.
$$

(iii) If y is a valley, then

$$
\varphi(\sigma, x)=\left\{\begin{array}{lll}
\left(w_{1}, w_{2} y w^{\prime}, x, w^{\prime \prime}, w_{5}\right) & \text { if } & y=y_{2} \text { and } w_{4}=w^{\prime} y w^{\prime \prime} \\
\left(w_{1}, w^{\prime}, x, w^{\prime \prime} y w_{4}, w_{5}\right) & \text { if } & y=y_{1} \text { and } w_{2}=w^{\prime} y z w^{\prime \prime}
\end{array}\right.
$$

with $w^{\prime}, w^{\prime \prime} \neq \epsilon$.
Obviously this transformation switches y from left to right or right to left of x and $\varphi(\varphi(\sigma, x), x)=\sigma$. We record the basic properties of this transformation in the following proposition.

Proposition 2.7. If $\sigma \in \mathrm{DD}_{n, k}$ and $x \in \operatorname{Val} \sigma$, then $\varphi(\sigma, x) \in \mathrm{DD}_{n, k}$ and

$$
\begin{align*}
& (2-13) \varphi(\sigma, x)= \begin{cases}(2-13) \sigma+1 & \text { if } x \text { is good } \\
(2-13) \sigma-1 & \text { if } x \text { is bad }\end{cases} \tag{2.3}\\
& (31-2) \varphi(\sigma, x)= \begin{cases}(31-2) \sigma-1 & \text { if } x \text { is good } \\
(31-2) \sigma+1 & \text { if } x \text { is bad }\end{cases}
\end{align*}
$$

Next we define the transform $\varphi(\sigma, S)$ for any subset S of $\operatorname{Val}(\sigma)$ with $\sigma \in \mathrm{DD}_{n}$.
Definition 2.8. Let $\sigma \in \mathrm{DD}_{n}$. For any $S \subseteq \operatorname{Val} \sigma$, let $\left\{S_{1}, S_{2}\right\}$ be the partition of S such that
(1) S_{1} is the subset of S consisting of valleys of type I , say i_{1}, \ldots, i_{l};
(2) S_{2} is the subset of S consisting of valleys of type II, say $j_{k}<\cdots<j_{2}<j_{1}$.

Define the transforms

$$
\begin{aligned}
\varphi\left(\sigma, S_{1}\right) & =\varphi\left(i_{l}, \ldots, \varphi\left(i_{2}, \varphi\left(i_{1}, \sigma\right)\right)\right) \\
\varphi\left(\sigma, S_{2}\right) & =\varphi\left(j_{k}, \ldots, \varphi\left(j_{2}, \varphi\left(j_{1}, \sigma\right)\right)\right) \\
\varphi(\sigma, S) & =\varphi\left(\varphi\left(\sigma, S_{1}\right), S_{2}\right)
\end{aligned}
$$

Remark 2.9. The image $\varphi\left(\sigma, S_{1}\right)$ is independent of the order of i_{1}, \ldots, i_{l} while $\varphi\left(\sigma, S_{2}\right)$ is defined for the elements of S_{2} in the decreasing order $j_{1}>j_{2}>\ldots>j_{1}$.

Proposition 2.10. If $\sigma \in \mathfrak{D}_{n, k}$ and $S \subseteq \operatorname{Val}(\sigma)$, then $\tau:=\varphi(\sigma, S) \in \mathrm{DD}_{n, k}$ is well defined and

$$
\begin{equation*}
S=\{x \in \operatorname{Val}(\tau) \mid x \text { is a bad guy }\} . \tag{2.4}
\end{equation*}
$$

For any set S we denote by 2^{S} the set of all subsets of S. In what follows, for $\sigma \in \mathrm{DD}_{n, k}$ we will identify $\operatorname{Val}(\sigma)$ with $[k]$ under the map $a_{i} \mapsto i$ for $i \in[k]$ if $\operatorname{Val}(\sigma)$ consists of $a_{1}<a_{2}<\ldots<a_{k}$, and identify any subset $S \in \operatorname{Val}(\sigma)$ with its image $S^{\prime} \in 2^{[k]}$. Thus we will use $2^{[k]}$ instead of $2^{\operatorname{Val}(\sigma)}$.

Proposition 2.11. The map $\varphi: \mathfrak{D}_{n, k} \times 2^{[k]} \rightarrow \mathcal{G}_{n, k}$ is a bijection such that for $(\sigma, S) \in \mathfrak{D}_{n, k} \times$ $2^{[k]}$ we have

$$
\begin{align*}
& (2-13) \sigma+|S|=(2-13) \varphi(\sigma, S) \tag{2.5}\\
& (31-2) \sigma-|S|=(31-2) \varphi(\sigma, S)
\end{align*}
$$

2.3 Proof of Theorem 1.5

Clearly (1.10) is a special case of Corollary 2.4, and (1.11) is equivalent to

$$
\begin{equation*}
(p+q)^{k} \sum_{\sigma \in \mathfrak{D}_{n, k}} p^{(2-13)} \sigma q^{(31-2) \sigma-k}=\sum_{\sigma \in \mathrm{DD}_{n, k}} p^{(2-13)} \sigma q^{(31-2) \sigma} . \tag{2.6}
\end{equation*}
$$

As $(p+q)^{k}=\sum_{S \in 2^{[k]}} p^{|S|} q^{k-|S|}$ we can rewrite the above identity as

$$
\sum_{(\sigma, S) \in \mathfrak{D}_{n, k} \times 2^{[k]}} p^{(2-13) \sigma+|S|} q^{(31-2) \sigma-|S|}=\sum_{\sigma \in \mathrm{DD}_{n, k}} p^{(2-13) \sigma} q^{(31-2) \sigma} .
$$

The result follows from Proposition 2.11.

2.4 Proof of Theorem 1.7

We shall use the J-type continued fraction as a formal power series defined by

$$
\sum_{n=0}^{\infty} \mu_{n} t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{1-\cdots}}}
$$

where $\left(b_{n}\right)$ and $\left(\lambda_{n+1}\right)(n \geq 0)$ are two sequences in a commutative ring. When $b_{n}=0$ we obtain the S-type continued fraction:

$$
\sum_{n=0}^{\infty} \mu_{n} t^{n}=\frac{1}{1-\frac{\lambda_{1} t}{1-\frac{\lambda_{2} t}{1-\cdots}}}
$$

Recall the following continued fraction expansion formula from [16, (28)]:

$$
\begin{align*}
& \sum_{n \geq 1} A_{n}(p, q, t, u, v, w) x^{n-1}= \\
& \frac{1}{1-(u+t v)[1]_{p, q} x-\frac{[1]_{p, q}[2]_{p, q} t w x^{2}}{1-(u+t v)[2]_{p, q} x-\frac{[2]_{p, q}[3]_{p, q} t w x^{2}}{}}} \tag{2.7}
\end{align*}
$$

with $b_{n}=(u+t v)[n+1]_{p, q}$ and $\lambda_{n}=[n]_{p, q}[n+1]_{p, q} t w$.
By Theorem 1.5 and substituting (t, u, v, w) with $(p+q, 0,1, t)$ in (2.2), we obtain

$$
A_{n}(p, q, p+q, 0,1, t)=(p+q)^{n-1} \sum_{k=0}^{\lfloor(n-1) / 2\rfloor} d_{n, k}(p, q) t^{k} .
$$

Thus, substituting (t, u, v, w) with $(p+q, 0,1, t)$ in (2.7) and replacing x by $x /(p+q)$ we obtain the same continued fraction in (1.2). This proves (1.12).

3 An explicit formula for $D_{n}(1,-1, t)$

A Motzkin path of length n is a sequence of points $\eta:=\left(\eta_{0}, \ldots, \eta_{n}\right)$ in the integer plane $\mathbb{Z} \times \mathbb{Z}$ such that

- $\eta_{0}=(0,0)$ and $\eta_{n}=(n, 0)$,
- $\eta_{i}-\eta_{i-1} \in\{(1,0),(1,1),(1,-1)\}$,
- $\eta_{i}:=\left(x_{i}, y_{i}\right) \in \mathbb{N} \times \mathbb{N}$ for $i=0, \ldots, n$.

In other words, a Motzkin path of length n is a lattice path starting at $(0,0)$, ending at $(n, 0)$, and never going below the x-axis, consisting of up-steps $U=(1,1)$, level-steps $\mathrm{L}=(1,0)$, and down-steps $\mathrm{D}=(1,-1)$. Let $\mathcal{M} \mathcal{P}_{n}$ be the set of Motzkin paths of length n. Clearly we can identify Motzkin paths of length n with words w on $\{\mathrm{U}, \mathrm{L}, \mathrm{D}\}$ of length n such that all prefixes of w contain no more D's than U's and the number of D's equals the number of D^{\prime} s. The height of a step $\left(\eta_{i}, \eta_{i+1}\right)$ is the coordinate of the starting point η_{i}. Given a Motzkin path $p \in \mathcal{M} \mathcal{P}_{n}$ and two sequences $\left(b_{i}\right)$ and $\left(\lambda_{i}\right)$ of a commutative ring R, we weight each up-step by 1 , and each level-step (resp. down-step) at height i by b_{i} (resp. λ_{i}) and define the weight $w(p)$ of p by the product of the weights of all its steps. The following result of Flajolet [3] is our starting point.

Lemma 3.1 (Flajolet). We have

$$
\sum_{n=0}^{\infty}\left(\sum_{p \in \mathcal{M} \mathcal{P}_{n}} w(p)\right) t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{1-b_{2} t-\cdots}}}
$$

A Motzkin path without level-steps is called a Dyck path, and a Motzkin path without level-steps at odd height is called an André path. We denote by $\mathcal{A} \mathcal{P}_{n, k}$ the set of André paths of half-length n with k level-steps, and $\mathcal{D} \mathcal{P}_{n}$ the set of Dyck paths of half length n.
Lemma 3.2. Let $b_{i}=0(i \geq 0)$ and $\lambda_{i}=\left\lfloor\frac{i+1}{2}\right\rfloor(i \geq 1)$. Then

$$
n!=\sum_{p \in \mathcal{M} \mathcal{P}_{n}} w(p)
$$

In other words, the factorial n ! is the generating polynomial of $\mathcal{D} \mathcal{P}_{n}$.
Remark 3.3. A bijective proof of Euler's formula (3.2) is known, see [11, (4.9)].
Lemma 3.4. Let $b_{2 i}=1, b_{2 i+1}=0(i \geq 0)$ and $\lambda_{k}=\left\lfloor\frac{k+1}{2}\right\rfloor t(i \geq 1)$. Then

$$
D_{n+1}(1,-1, t)=\sum_{p \in \mathcal{A} \mathcal{P}_{n}} w(p)
$$

In other words, the polynomial $D_{n+1}(1,-1, t)$ is the generating polynomial of André paths of length n.

Let

$$
\mathcal{Y}_{n, k}:=\left\{\left(y_{1}, \ldots, y_{k+1}\right) \in \mathbb{N}^{k+1}: y_{1}+\cdots+y_{k+1}=n-2 k\right\} .
$$

Lemma 3.5. For $0 \leq k \leq\lfloor n / 2\rfloor$, there is an explicit bijection $\psi: \mathcal{A} \mathcal{P}_{n, n-2 k} \rightarrow \mathcal{Y}_{n, k} \times \mathcal{D} \mathcal{P}_{k}$ such that if $\psi(u)=(y, p)$ with for $u \in \mathcal{A} \mathcal{P}_{n, n-2 k}$ and $(y, p) \in \mathcal{Y}_{n, k} \times \mathcal{D} \mathcal{P}_{k}$ then $w(u)=w(p)$, where the weight is associated to the sequences $\left(b_{i}\right)$ and $\left(\lambda_{i}\right)$ with $b_{2 i}=1, b_{2 i+1}=0(i \geq 0)$, and $\lambda_{k}=\left\lfloor\frac{k+1}{2}\right\rfloor t(i \geq 1)$.

Proof. Since an André path (word) on $\{\mathrm{U}, \mathrm{D}, \mathrm{L}\}$ has only level-steps at even height and starts from height 0 , so the subword between two consecutive level-steps L's must be of even length and is a word on the alphabet $\{U U, D D, U D, D U\}$. Thus, any André word $u \in \mathcal{A} \mathcal{P}_{n, n-2 k}$ can be written in a unique way as follows:

$$
u=\mathrm{L}^{y_{1}} w_{1} \mathrm{~L}^{y_{2}} w_{2} \ldots w_{k} \mathrm{~L}^{y_{k+1}} \quad \text { with } \quad w_{i} \in\{\mathrm{UU}, \mathrm{DD}, \mathrm{UD}, \mathrm{DU}\} .
$$

Let $y:=\left(y_{1}, \ldots, y_{k+1}\right)$ and $p:=w_{1} \ldots w_{k}$. As the path p is obtained by removing out all the level-steps L's from the André path u, each step in p keeps the same height in u, and $(y, p) \in \mathcal{Y}_{n, k} \times \mathcal{D} \mathcal{P}_{k}$, Let $\psi(u)=(y, p)$. It is clear that this is the desired bijection.

Theorem 3.6. For $n \geq 1$ we have

$$
\begin{equation*}
D_{n}(1,-1, t)=\sum_{k=0}^{n-1}\binom{n-1-k}{k} k!t^{k} \tag{3.1}
\end{equation*}
$$

Proof of Theorem 3.6. By Lemmas 3.4 and 3.5 we have

$$
D_{n+1}(1,-1, t)=\sum_{k \geq 0} \sum_{(y, p) \in \mathcal{Y}_{n, k} \times \mathcal{D} \mathcal{P}_{k}} w(p) .
$$

Since the cardinality of $\mathcal{Y}_{n, k}$ is $\binom{n-k}{k}$, and the generating polynomial of $\mathcal{D} \mathcal{P}_{k}$ is equal to $k!t^{k}$ by Lemma 3.2, summing over all $0 \leq k \leq\lfloor n / 2\rfloor$ we obtain Equation (3.1).

Remark 3.7. The full-length paper for this extended abstract is available at [11].

References

[1] C. A. Athanasiadis. "Gamma-positivity in combinatorics and geometry". Sém. Lothar. Combin. 77 (2016-2018), Art. B77i, 64.
[2] P. Brändén. "Actions on permutations and unimodality of descent polynomials". European J. Combin. 29.2 (2008), pp. 514-531. Link.
[3] P. Flajolet. "Combinatorial aspects of continued fractions". Discrete Math. 32.2 (1980), pp. 125161. Link.
[4] D. Foata and M.-P. Schützenberger. "Nombres d'Euler et permutations alternantes". A survey of Combinatorial Theory 1 (1973), pp. 173-188.
[5] D. Foata and V. Strehl. "Euler numbers and variations of permutations". Colloquio Internazionale sulle Teorie Combinatorie 1 (1973), pp. 119-131.
[6] D. Foata and V. Strehl. "Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers". Math. Z. 137 (1974), pp. 257-264. Link.
[7] Y. Gelineau, H. Shin, and J. Zeng. "Bijections for Entringer families". European J. Combin. 32.1 (2011), pp. 100-115.
[8] G.-N. Han. "Hankel continued fractions and Hankel determinants of the Euler numbers". Trans. Amer. Math. Soc. (2020). Link.
[9] M. Josuat-Vergès. "Enumeration of snakes and cycle-alternating permutations". Australas. J. Combin. 60 (2014), pp. 279-305.
[10] P. A. MacMahon. Combinatory Analysis, Volumes I and II. Vol. 137. American Mathematical Soc., 2001.
[11] Q. Q. Pan and J. Zeng. "The γ-coefficients of Branden's (p, q)-Eulerian polynomials and André permutations". 2019. arXiv:1910.01747.
[12] T. K. Petersen. Eulerian numbers. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. With a foreword by Richard Stanley. Birkhäuser/Springer, New York, 2015, pp. xviii+456. Link.
[13] A. Postnikov, V. Reiner, and L. Williams. "Faces of generalized permutohedra". Doc. Math 13.207-273 (2008), p. 51.
[14] J. Riordan. "Triangular permutation numbers". Proc. Amer. Math. Soc. 2 (1951), pp. 429-432. Link.
[15] J. Shareshian and M. L. Wachs. "Gamma-positivity of variations of Eulerian polynomials". J. Comb. 11.1 (2020). Link.
[16] H. Shin and J. Zeng. "The symmetric and unimodal expansion of Eulerian polynomials via continued fractions". European J. Combin. 33.2 (2012), pp. 111-127. Link.
[17] H. Shin and J. Zeng. "Symmetric unimodal expansions of excedances in colored permutations". European J. Combin. 52.part A (2016), pp. 174-196. Link.
[18] G. Viennot. "Interprétations combinatoires des nombres d'Euler et de Genocchi". Séminaire de Théorie des Nombres de Bordeaux (1981), pp. 1-94.

[^0]: *qpan@math.univ-lyon1.fr.
 †zeng@math.univ-lyon1.fr.

