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Abstract. It is well known that the permutation peak polynomials and descent polyno-
mials are connected via a quadratic transformation. By rephrasing the latter formula
with permutation cycle peaks and excedances we are able to prove a series of general
formulas expressing polynomials counting permutations by various excedance statis-
tics in terms of refined Eulerian polynomials.

Résumé. Il est bien connu que les polynômes de pic de permutations et les polynômes
de descente sont connectés via une transformation quadratic. En reformulant cette
dernière formule avec les pics de cycle et les excédances du cycle de permutation, nous
pouvons prouver une série de formules générales exprimant des polynômes énuméra-
tives des permutations par diverses statistiques d’excédance en termes de polynômes
eulériens raffinés.
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1 Introduction

The Eulerian polynomials An(t) can be defined through the continued fraction expan-
sion [16]

∑
n≥0

An(t)zn = 1/1− 1 · z/1− t · z/1− 2 · z/1− 2t · z/1− 3 · z/1− 3t · z/1− . . . (1.1)
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For an n-permutation σ := σ(1)σ(2) · · · σ(n) of the word 1 . . . n, an index i (1 ≤ i ≤ n− 1)
is a descent (resp. excedance) of σ if σ(i) > σ(i + 1) (resp. σ(i) > i). It is well-known [7,
13] that

An(t) = ∑
σ∈Sn

tdes σ = ∑
σ∈Sn

texc σ, (1.2)

where Sn is the set of n-permutations and des σ (resp. exc σ) denotes the number of
descents (resp. excedances) of σ. The value σ(i) (2 ≤ i ≤ n − 1) is a peak of σ if
σ(i− 1) < σ(i) > σ(i + 1) and the peak polynomials are defined by

Ppk
n (x) := ∑

σ∈Sn

xpk′ σ (1.3)

where pk′ σ denotes the number of peaks of σ. The peak polynomials are related to the
Eulerian polynomials by Stembridge’s identity, see [2, 18].

An(t) =
(

1 + t
2

)n−1

Ppk
n

(
4t

(1 + t)2

)
, (1.4)

which can be used to compute the peak polynomials. Obviously (1.4) is equivalent to
the so-called γ-expansion of Eulerian polynomials

An(t) =
b(n−1)/2c

∑
k=0

22k+1−nγn,ktk(1 + t)n−1−2k, (1.5)

where γn,k is the number of n-permutations with k peaks. In the form of (1.5) it is not
difficult to see that Stembridge’s formula (1.4) is actually equivalent to a formula of
Foata and Schüzenberger [7, Théorème 5.6] via Brändén’s modified Foata-Strehl action
(cf. [2]). In the last two decades, many people studied the refinements of Stembridge’s
identity, see Brändén [2], Shin and Zeng [14, 15], Zhuang [18], Athanasiadis [1] and the
references therein. In particular, Zhuang [18] has proved several identities expressing
polynomials counting permutations by various descent statistics in terms of Eulerian
polynomials, extending results of Stembridge, Petersen, and Brändén.

In this paper we shall prove generalizations of Stembridge’s formula using excedance
statistics by further exploiting the continued fraction technique in [14, 15]. Our main tool
is the combinatorial theory of continued fractions due to Flajolet [6] and bijections due
to Françon-Viennot, Foata–Zeilberger between permutations and Laguarre histories, see
[9, 8, 6, 4]. As in [14] this approach uses both linear and cycle statistics on permutations.

This extended abstract is a summary of the recent paper [11]. In Section 2 we intro-
duce the work in [14, 15], and construct a bijection ψ, which is an analogue of Foata–
Zeilberger’s bijection from Sn+1 to LHn. In Section 3 we present two analogues of (1.4)
using excedance statistics for permutations.
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2 Background and preliminaries

2.1 Permutation statistics and two bijections

For σ = σ(1)σ(2) · · · σ(n) ∈ Sn with convention 0–0, i.e., σ(0) = σ(n + 1) = 0, a value
σ(i) (1 ≤ i ≤ n) is called

• a peak if σ(i− 1) < σ(i) and σ(i) > σ(i + 1);

• a valley if σ(i− 1) > σ(i) and σ(i) < σ(i + 1);

• a double ascent if σ(i− 1) < σ(i) and σ(i) < σ(i + 1);

• a double descent if σ(i− 1) > σ(i) and σ(i) > σ(i + 1).

The set of Peaks (resp. Valleys, double ascents, double descents) of σ is denoted by

Pkσ (resp. Valσ, Daσ, Ddσ).

Let pk σ (resp. val σ, da σ, dd σ) be the number of peaks (resp. valleys, double ascents,
double descents) of σ. For i ∈ [n] := {1, . . . , n}, we introduce the following statistics:

(31-2)i σ = #{j : 1 < j < i and σ(j) < σ(i) < σ(j− 1)}
(2-31)i σ = #{j : i < j < n and σ(j + 1) < σ(i) < σ(j)}
(2-13)i σ = #{j : i < j < n and σ(j) < σ(i) < σ(j + 1)}
(13-2)i σ = #{j : 1 < j < i and σ(j− 1) < σ(i) < σ(j)}

(2.1)

and define (see (2.33)):

(31-2) =
n

∑
i=1

(31-2)i, (2-31) =
n

∑
i=1

(2-31)i, (2-13) =
n

∑
i=1

(2-13)i, (13-2) =
n

∑
i=1

(13-2)i.

Now, we consider σ ∈ Sn as a bijection i 7→ σ(i) for i ∈ [n], a value x = σ(i) is
called a cyclic peak if i = σ−1(x) < x and x > σ(x); a cyclic valley if i = σ−1(x) > x
and x < σ(x); a double excedance if i = σ−1(x) < x and x < σ(x); a double drop if
i = σ−1(x) > x and x > σ(x); a fixed point if x = σ(x). We say that i ∈ [n− 1] is an ascent
of σ if σ(i) < σ(i + 1) and that i ∈ [n] is a drop of σ if σ(i) < i. Let Cpk (resp. Cval,
Cda, Cdd, Fix, Asc, Drop) be the set of cyclic peaks (resp. cyclic valleys, double excedances,
double drops, fixed points, ascents, drops) and denote the corresponding cardinality by cpk

(resp. cval, cda, cdd, fix, asc, drop). Moreover, define

crosi σ = #{j : j < i < σ(j) < σ(i) or σ(i) < σ(j) ≤ i < j}, (2.2)
nesti σ = #{j : j < i < σ(i) < σ(j) or σ(j) < σ(i) ≤ i < j}. (2.3)
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Let cros1 = ∑n
i=1 crosi and icr σ = cros σ−1. Define nest = ∑n

i=1 nesti. Note (cf. [10,
Remark 2.4]) that

nest σ−1 = nest σ for σ ∈ Sn. (2.4)

A pair of integers (i, j) is an inversion of σ ∈ Sn if i < j and σ(i) > σ(j), and σ(i) (resp.
σ(j)) is called inversion top (resp. bottom). Let inv σ be the inverion number of σ.

For σ ∈ Sn with convention 0–∞, i.e., σ(0) = 0 and σ(n + 1) = ∞, let Lpk (resp. Lval,
Lda, Ldd) be the set of peaks (resp. valleys, double ascents and double decents) and denote
the corresponding cardinality by lpk (resp. lval, lda and ldd). For i ∈ [n], the value σ(i)
is called a left-to-right maximum if σ(i) = max {σ(1), σ(2), . . . , σ(i)} A double ascent σ(i)
(i = 1, . . . , n) is called a foremaximum of σ if it is at the same time a left-to-right maximum
Denote the number of foremaxima of σ by fmax σ. Note that for the peak number pk′ in
(1.3) we have following identities :

pk′ = val = pk− 1 and lval = lpk. (2.5)

Now we recall two bijections Φ and Ψ due to Clarke et al. [4] and Shin–Zeng [14],
respectively.

2.2 The bijection Φ

Let σ = σ(1) . . . σ(n) ∈ Sn, an inversion top number (resp. inversion bottom number) of a
letter x := σ(i) in the word σ is the number of occurrences of inversions of form (i, j)
(resp (j, i)). A letter σ(i) is a descent top (resp. descent bottom) if σ(i) > σ(i+ 1) (resp. σ(i−
1) > σ(i)). Given a permutation σ, we first construct two biwords, ( f

f ′) and ( g
g′), where

f (resp. g) is the subword of descent bottoms (resp. nondescent bottoms) in σ ordered
increasingly, and f ′ (resp. g′) is the permutation of descent tops (resp. nondescent tops)
in σ such that the inversion bottom (resp. top) number of each letter x := σ(i) in f ′ (resp.
g′) is (2-31)xσ, and then form the biword w =

(
f
f ′

g
g′

)
by concatenating f and g, and f ′

and g′, respectively.
Rearranging the columns of w, so that the bottom row is in increasing order, we

obtain the permutation τ = Φ(σ) as the top row of the rearranged bi-word.

The following result can be found in [14, Theorem 12] and its proof.

Lemma 2.1 (Shin–Zeng). For σ ∈ Sn, we have

(2-31, 31-2, des, asc, lda− fmax, ldd, lval, lpk, fmax)σ

=(nest, icr, drop, exc + fix, cda, cdd, cval, cpk, fix)Φ(σ) (2.6)

=(nest, cros, exc, drop + fix, cdd, cda, cval, cpk, fix)(Φ(σ))−1,

1Our definition of cros corresponds to icr in [10].
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(Lval, Lpk, Lda, Ldd)σ = (Cval, Cpk, Cda∪ Fix, Cdd)Φ(σ), (2.7)

(2-31)iσ = nestiΦ(σ) ∀i = 1, . . . , n. (2.8)

2.3 The bijection Ψ

Given a permutation σ ∈ Sn, let

σ̂ =

(
1 2 . . . n n + 1

σ(1) + 1 σ(2) + 1 . . . σ(n) + 1 1

)
, (2.9)

and τ := Φ(σ̂) ∈ Sn+1. Since the last element of σ̂ is 1, the first element of τ should be
n + 1. Define the bijection Ψ : Sn → Sn by

Ψ(σ) := τ(2) . . . τ(n + 1) ∈ Sn. (2.10)

2.4 The star variation

For σ = σ(1) · · · σ(n) ∈ Sn, we define its star compagnon σ∗ as a permutation of {0, . . . , n}
by

σ∗ =

(
0 1 2 . . . n
n σ(1)− 1 σ(2)− 1 . . . σ(n)− 1

)
. (2.11)

We define the following sets of cyclic star statistics for σ:

Cpk∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) < i > σ∗(i)}, (2.12)

Cval∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) > i < σ∗(i)}, (2.13)

Cda∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) < i < σ∗(i)}, (2.14)

Cdd∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) > i > σ∗(i)}, (2.15)
Fix∗ σ = {i ∈ [n− 1] : i = σ∗(i)}, (2.16)

Wex∗σ = {i ∈ [n− 1] : i ≤ σ∗(i)}(= exc σ), (2.17)
Drop∗σ = {i ∈ [n] : i > σ∗(i)}. (2.18)

The corresponding cardinalties are denoted by cpk∗, cval∗, cda∗, cdd∗, fix∗, wex∗ and drop∗,
respectively.

By (2.12), (2.15) and (2.18), we have drop∗ − 1 = cdd∗ + cpk∗.

Theorem 2.2. For σ ∈ Sn, we have

(Val, Pk \ {n}, Da, Dd)σ = (Cval∗, Cpk∗, Cda∗ ∪ Fix∗, Cdd∗)Ψ(σ) (2.19)

and

((2-13)i, (31-2)i)σ = (nesti, crosi)Ψ(σ) for i ∈ [n]. (2.20)
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Since asc = val + da, des = pk + dd− 1, wex∗ = cval∗ + cda∗ + fix∗, drop∗ − 1 = cdd∗ +
cpk∗, we get the following result in [14, Theorem 12].

Corollary 2.3 (Shin–Zeng). For σ ∈ Sn we have

(2-13, 31-2, des, asc, da, dd, val)σ

= (nest, cros, drop∗ − 1, wex∗, cda∗ + fix∗, cdd∗, cval∗)Ψ(σ). (2.21)

2.5 Laguerre histories as permutation encodings

A 2-Motzkin path of length n is a word s := s1 . . . sn on the alphabet {U, D, Lr, Lb} such
that |s1 . . . sn|U = [s1 . . . si|D and

hi := |s1 . . . si|U − [s1 . . . si|D ≥ 0 (i = 1, . . . , n), (2.22)

where |s1 . . . si|U is the number of letters U in the word s1 . . . si.
A Laguerre history (resp. restricted Laguerre history) of length n is a pair (s, p), where

s is a 2-Motzkin path s1 . . . sn and p = (p1, . . . , pn) with 0 ≤ pi ≤ hi−1 (resp. 0 ≤ pi ≤
hi−1− 1 if si = Lb or D) and h0 = 0. Let LHn (resp. LH∗n) be the set of Laguerre histories
(resp. restricted Laguerre histories) of length n. There are several well-known bijections
between Sn and LH∗n and LHn−1, see [12, 4] and references therein.

2.6 Françon–Viennot bijection

We recall a version of Françon and Viennot’s bijection ψFV : Sn+1 → LHn. Given
σ ∈ Sn+1, the Laguerre history (s, p) is defined as follows:

si = U (resp.D, Lr, Lb) if i ∈ Valσ (resp. i ∈ Pkσ, i ∈ Daσ, i ∈ Ddσ) (2.23)

and pi = (2-13)i σ for i = 1, . . . , n.

Theorem 2.4. The mapping ψ := ψFV ◦Ψ−1 is a bijection from Sn+1 to LHn. If ψ(σ) = (s, p)
with σ ∈ Sn+1, then, for i = 1, . . . , n,

si = U (resp.D, Lr, Lb) if i ∈ Cval∗ σ (resp. i ∈ Cpk∗ σ, i ∈ Cda∗ σ ∪ Fix∗ σ, i ∈ Cdd∗ σ)
(2.24)

with pi = nestiσ.

Proof. This follows from Theorem 2.2 by comparing (2.24) with (2.23), see the commuta-
tive diagram in Figure 1.

Corollary 2.5. The two sextuple statistics

(nest, cros, exc, cdd∗, cda∗ + fix∗, cpk∗) and (2-13, 31-2, des, da, dd, pk− 1)

are equidistributed on Sn.

We recall two bijections φFZ and φFV from Sn to LH∗n.
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2.7 Restricted Françon–Viennot bijection

We recall a restricted version of Françon and Viennot’s bijection φFV : Sn → LH∗n. Given
σ ∈ Sn, the Laguerre history (s, p) is defined as follows:

si = U (resp.D, Lr, Lb) if i ∈ Lvalσ (resp. i ∈ Lpkσ, i ∈ Ldaσ, i ∈ Lddσ) (2.25)

and pi = (2-31)i σ for i = 1, . . . , n.

2.8 Foata–Zeilberger bijection

This bijection φFZ encodes permutations using cyclic statistics. Given σ ∈ Sn, φFZ :
Sn → LH∗n is for i = 1, . . . , n,

si = U (resp.D, Lr, Lb) if i ∈ Cval σ (resp. i ∈ Cpk σ, i ∈ Cda σ ∪ Fix σ, i ∈ Cdd σ)
(2.26)

with pi = nestiσ. By (2.7) and (2.8), we can build a comutative diagram, see the right
diagram of Figure 1.

By contracting the continued fraction (1.1) we derive the two J-type continued fraction
formulae (cf. [6])

∑
n≥0

An+1(t)zn =
1

1− (1 + t) · z−
1 · 2 · t · z2

1− 2(1 + t) · z−
2 · 3 · t · z2

1− · · ·

(2.27)

and

∑
n≥0

An(t)zn =
1

1− (1 + 0 · t) · z−
12 · z2

1− (2 + 1 · t) · z−
22 · t · z2

1− · · ·

. (2.28)

In view of Flajolet’s combinatorial interpretation in terms of weighted Motzkin paths
for generic J-type continued fraction expansions [6], Françon–Viennot’s bijection ψFV
(resp. its restricted version φFV) between permutations and Laguerre histories provides a
bijective proof of (2.27) (resp. (2.28)), while Foata–Zeilberger’s bijection ψFZ [8] gives a
bijective proof of (2.28). More precisely, Françon–Viennot [9] set up a bijection (and its
restricted version) from permutations to Laguarre histories using linear statistics of permu-
tation, while Foata–Zeilberger’s bijection [8] uses cyclic statistics of permutations. Clarke-
Steingrímsson-Zeng [4] gave a direct bijection Φ on permutations converting statistic des

into exc on permutations, and linking the restricted Françon–Viennot’s bijection φFV to
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LH∗n

Sn Sn

φFV φFZ

Φ

LHn

Sn+1 Sn+1

ψFV ψ

Ψ

Figure 1: Bijections Φ = φ−1
FZ ◦ φFV and ψ = ψFV ◦Ψ−1.

Foata–Zeilberger bijection φFZ, see Figure 1. As a variation of Φ, Shin and Zeng [14]
constructed a bijection Ψ on permutations to derive a cycle version of linear statistics on
permutations, which are obtained via Françon–Viennot bijection ψFV . One of our main
results (cf. Theorem 2.4) shows that a direct description of the bijection ψ := ψFV ◦Ψ−1

from Sn+1 to LHn is straightforward.

2.9 Pattern avoidances and 2-Motzkin paths

A permutation σ is called 231-avoiding permutation if there is no triple of indices i < j < k
such that σ(k) < σ(i) < σ(j). The Narayana polynomials are defined by

Nn(t) = ∑
σ∈Sn(231)

tdes σ,

where Sn(231) is the set of 231-avoiding permutations in Sn. It is well known that
Narayana polynomial is γ-positive and have the expansion [13, Chapter 4]:

Nn(t) =
n/2

∑
k=0

γ̃n,jtj(1 + t)n−1−2j, (2.29)

where γ̃n,j = |{σ ∈ Sn(231) : des(σ) = pk(σ) = j}|. As for Eulerian polynomials, by
contraction, from

∑
n≥0

Nn(t)zn = 1/1− z/1− t · z/1− z/1− t · z/1− . . . (2.30)

we derive immediately the following continued fractions

∑
n≥0

Nn+1(t)zn =
1

1− (1 + t) · z−
t · z2

1− (1 + t) · z−
t · z2

1− · · ·

(2.31)
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and

∑
n≥0

Nn(t)zn =
1

1− z−
t · z2

1− (1 + t) · z−
t · z2

1− (1 + t) · z− · · ·

. (2.32)

Note that Nn(1) is the n-th Catalan number Cn = 1
n+1(

2n
n ), there are several well-known

q-Narayana polynomials in the literature, see [3] and [10].
Given two permutations σ ∈ Sn and τ ∈ Sk, we say that σ contains the pattern

τ if there exists a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that the subse-
quence σ(i1)σ(i2) · · · σ(ik) of σ is order-isomorphic to τ. Otherwise, σ is said to avoid
τ. For example, the permutation 15324 contains the pattern 321 and avoids the pattern
231. The set of permutations of length n that avoid patterns τ1, τ2, · · · , τm is denoted as
Sn(τ1, τ2, · · · , τm).

Moreover we shall consider the so-called vincular patterns. The number of occurrences
of vincular patterns 31-2, 2-31, 2-13 and 13-2 in π ∈ Sn are defined (cf. (2.1)) by

(31-2) π = #{(i, j) : i + 1 < j ≤ n and π(i + 1) < π(j) < π(i)},
(2-31) π = #{(i, j) : j < i < n and π(i + 1) < π(j) < π(i)},
(2-13) π = #{(i, j) : j < i < n and π(i) < π(j) < π(i + 1)},
(13-2) π = #{(i, j) : i + 1 < j ≤ n and π(i) < π(j) < π(i + 1)}.

(2.33)

Similarly, we use Sn(31-2) to denote the set of permutations of length n that avoid the
vincular pattern 31-2, etc. In order to apply Laguerre history to count pattern-avoiding
permutations, we will need the following results in [10, Lemmas 2.8 and 2.9].

Lemma 2.6 ([10, Lemma 2.8]). For any n ≥ 1, we have

Sn(2-13) = Sn(213), Sn(31-2) = Sn(312), (2.34)
Sn(13-2) = Sn(132), Sn(2-31) = Sn(231). (2.35)

Lemma 2.7 ([10, Lemma 2.9]). (i) A permutation π ∈ Sn belongs to Sn(321) if and only
if nestπ = 0

(ii) The mapping Φ has the property that Φ(Sn(231)) = Sn(321).

We use CMn to denote the set of 2-Motzkin paths of length n and CM∗
n to denote its

subset that is composed of 2-Motzkin paths without Lb-step at level zero, i.e., if hi−1 = 0,
then si 6= Lb. Noticing that the generating function ∑n≥0 |CM∗

n|zn has the continued
fraction expansion (2.32) with t = 1, we derive that |CM∗

n| = Cn. Similarly, by (2.31) we
see that |CMn| = Cn+1.

Let φ̃FV (resp. φ̃FZ, ψ̃FV , ψ̃, Ψ̃, Φ̃) be the restriction of φFV (resp. φFZ, ψFV , ψ, Ψ,
Φ) on the sets Sn(231) (resp. Sn(321), Sn+1(213), Sn+1(321), Sn+1(213), Sn(231)). By
Lemmas 2.6 and 2.7 and Figure 1, we obtain the diagrams in Figure 2.
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CMn

Sn+1(213) Sn+1(321)

ψ̃FV ψ̃

Ψ̃

CM∗
n

Sn(231) Sn(321)

φ̃FV φ̃FZ

Φ̃

Figure 2: Bijections Ψ̃ = ψ̃−1 ◦ ψ̃FV and Φ̃ = φ̃−1
FZ ◦ φ̃FV .

3 Main results

For a finite set of permutations Ω and m statistics stat1, . . . , statm on Ω, we define the
generating polynomial

P(stat1,...,statm)(Ω; t1, . . . , tm) := ∑
σ∈Ω

tstat1 σ
1 . . . tstatm σ

m . (3.1)

Theorem 3.1. For n ≥ 1,

P(nest,cros,exc,fix)(Sn; p, q, tq, r)

=

(
1 + xt
1 + x

)n
P(nest,cros,cpk,exc,fix)

(
Sn; p, q,

(1 + x)2t
(x + t)(1 + xt)

,
q(x + t)
1 + xt

,
(1 + x)r
1 + xt

)
, (3.2)

equivalently,

P(nest,cros,cpk,exc,fix)(Sn; p, q, x, qt, r)

=

(
1 + u

1 + uv

)n
P(nest,cros,exc,fix)

(
Sn; p, q, qv,

(1 + uv)r
1 + u

)
, (3.3)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Remark 3.2. Cooper et al. [5, Theorem 11] have recently proved the p = q = 1 case of
(3.2) by applying Sun and Wang’s CMFS action [17].

We define the polynomial

An(p, q, t) := ∑
σ∈Sn

pnest σqcros σtexc σ. (3.4)

The following is a generalization of Stembridge’s identity (1.4).
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Theorem 3.3. For n ≥ 1, we have

An(p, q, t) =
(

1 + xt
1 + x

)n−1

P(nest,cros,cpk∗,exc)

(
Sn; p, q,

(1 + x)2t
(x + t)(1 + xt)

,
x + t

1 + xt

)
, (3.5)

equivalently,

P(nest,cros,cpk∗,exc)(Sn; p, q, x, t) =
(

1 + u
1 + uv

)n−1

An(p, q, v), (3.6)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Remark 3.4. By Corollary 2.5 and (3.5), when x = 1 or p = q = 1 we recover two
special cases of (3.5) due to Brändén’s result [2, (5.1)] and Zhuang [18, Theorem 4.2],
respectively.
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