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The dual of the type B permutohedron as a
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Abstract. We show that the order complex of intervals of a poset, ordered by inclu-
sion, is a Tchebyshev triangulation of the order complex of the original poset. Besides
studying the properties of this transformation, we show that the dual of the type B
permutohedron is combinatorially equivalent to the order complex of the poset of in-
tervals of a Boolean algebra (with the minimum and maximum elements removed).

Résumé. Nous montrons que le complexe d’ordre des intervaux d’un ensemble par-
tiellement ordonné, ordonnés par inclusion, forment une triangulation de Tchebyshev
du complex d’ordre de l’ensemble partiellement ordonné original. À part d’étudier les
propriétés de cette transformation, nous montrons que le polytope dual du permuto-
hèdre du type B est combinatoirement équivalent au complex d’ordre des intervaux
d’un algèbre de Boole (sans l’élément minimal et maximal).
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Introduction

Inspired by Postnikov’s seminal work [10], we have seen a surge in the study of root
polytopes in recent years. A basic object in these investigations is the permutohedron.
This talk connects permutohedra with the Tchebyshev transform of a poset, introduced
by the present author [5, 6] and studied by Ehrenborg and Readdy [3], respectively the
(generalized) Tchebyshev triangulations of a simplicial complex, first introduced by the
present author in [7] and studied in collaboration with Nevo in [8]. The key idea of a
Tchebyshev triangulation may be summarized as follows: we add the midpoint to each
edge of a simplicial complex, and perform a sequence of stellar subdivisions, until we
obtain a triangulation containing all the newly added vertices. Regardless of the order
chosen, the face numbers of the triangulation will be the same, and may be obtained from
the face numbers f j of the original complex by replacing the powers of x with Tchebyshev
polynomials of the first kind if we work with the appropriate generating function. The
appropriate generating function in this setting is the polynomial ∑j f j−1((x− 1)/2)j.
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It is easy to verify that the face numbers of the type A and type B permutohedra
are connected by a similar formula. These permutohedra are simple polytopes and their
duals are simplicial polytopes, their boundary complexes are called the type A resp.
type B Coxeter complexes. The suspicion arises that the type B Coxeter complex is a
Tchebyshev triangulation of the type A Coxeter complex.

The present work contains the verification of this conjecture. The type A Coxeter
complex is known to be the order complex of the Boolean algebra, and the type B Cox-
eter complex turns out to be an order complex as well, namely of the partially ordered
set of intervals of the Boolean algebra, ordered by inclusion. We show that the operation
of associating the poset of intervals to a partially ordered sets always induces a Tcheby-
shev triangulation at the level of order complexes. This observation may be helpful in
constructing “type B analogues” of other polytopes and partially ordered sets.

This extended abstract is structured as follows. After the Preliminaries, we introduce
the poset of intervals in Section 2 and show that the order complex of the poset of
intervals is always a Tchebyshev transform of the order complex of the original poset. We
also introduce a graded variant of this operation that takes a graded poset into a graded
poset. In Section 3 we show that the type B Coxeter complex is the order complex of the
graded poset of intervals of the Boolean algebra. In Section 4 we show how to compute
the flag f -vector of graded a poset of intervals. The operation is recursive, unfortunately.
Finally, in Section 5 we make the first steps towards computing the effect of taking the
graded poset of intervals on the cd-index of an Eulerian poset.

1 Preliminaries

1.1 Graded Eulerian posets

A poset is graded if it contains a unique minimum element 0̂, a unique maximum element
1̂ and a rank function ρ satisfying ρ(0̂) = 0 and ρ(y) = ρ(x) + 1 for each x and y such
that y covers x. The number of chains containing elements of fixed sets of ranks in a
graded poset P of rank n + 1 is encoded by the flag f -vector ( fS(P) : S ⊆ {1, . . . , n}).
The entry fS in the flag f -vector is the number of chains x1 < x2 < · · · < x|S| such that
their set of ranks {ρ(xi) : i ∈ {1, . . . , |S|}} is S. Inspired by Stanley [12] we introduce
the upsilon invariant of a graded poset P of rank n + 1 by

ΥP(a, b) = ∑
S⊆{1,...,n}

fSuS

where uS = u1 · · · un is a monomial in noncommuting variables a and b such that ui = b
for all i ∈ S and ui = a for all i 6∈ S. The term upsilon invariant is not used elsewhere
in the literature, most sources switch to the ab-index ΨP(a, b) defined to be equal to
ΥP(a− b, b). A graded poset P is Eulerian if every nontrivial interval of P has the same
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number of elements of even rank as of odd rank. All linear relations satisfied by the
flag f -vectors of Eulerian posets were found by Bayer and Billera [1]. A very useful and
compact rephrasing of the Bayer–Billera relations was given by Bayer and Klapper in [2]:
they proved that satisfying the Bayer–Billera relations is equivalent to stating that the
ab-index may be rewritten as a polynomial of c = a + b and d = ab + ba. The resulting
polynomial in noncommuting variables c and d is called the cd-index.

1.2 Tchebyshev triangulations and Tchebyshev transforms

A finite simplicial complex 4 is a family of subsets of a finite vertex set V. The elements
of4 are called faces, subject to the following rules: a subset of any face is a face and every
singleton is a face. The dimension of a face is one less than the number of its elements,
the dimension d − 1 of the complex 4 is the maximum of the dimension of its faces.
The number of j-dimensional faces is denoted by f j(4) and the vector ( f−1, f0, . . . , fd−1)
is the f -vector of the simplicial complex. We define the F-polynomial F4(x) of a finite
simplicial complex 4 as

F4(x) =
d

∑
j=0

f j−1(4) ·
(

x− 1
2

)j
. (1.1)

The join 41 ∗ 42 of two simplicial complexes 41 and 42 on disjoint vertex sets is the
simplicial complex 41 ∗ 42 = {σ ∪ τ : σ ∈ 41, τ ∈ 42}. It is easy to show that
the F-polynomials satisfy F41∗42(x) = F41(x) · F42(x). A special instance of the join
operation is the suspension operation: the suspension 4 ∗ ∂(41) of a simplicial complex
4 is the join of 4 with the boundary complex of the one dimensional simplex. (A
(d− 1)-dimensional simplex is the family of all subsets of a d-element set, its boundary
is obtained by removing its only facet from the list of faces.) The link of a face σ is the
subcomplex link4(σ) = {τ ∈ 4 : σ ∩ τ = ∅, σ ∪ τ ∈ K}. A special type of simplicial
complex we will focus on is the order complex 4(P) of a finite partially ordered set P: its
vertices are the elements of P and its faces are the increasing chains. The order complex
of a finite poset is a flag complex: its minimal non-faces are all two-element sets (these are
the pairs of incomparable elements). Every finite simplicial complex 4 has a standard
geometric realization in the vector space with a basis {ev : v ∈ V} indexed by the vertices,
where each face σ is realized by the convex hull of the basis vectors ev indexed by the
elements of σ.

Definition 1.1. We define a Tchebyshev triangulation T(4) of a finite simplicial complex4
as follows. We number the edges e1, e2, . . . , e f1(4) in some order, and we associate to each
edge ei = {ui, vi} a midpoint wi. We associate a sequence 40 := 4,41,42 . . . ,4 f1(4)

of simplicial complexes to this numbering of edges, as follows. For each i ≥ 1, the com-
plex 4i is obtained from 4i−1 by replacing the edge ei and the faces contained therein
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with the one-dimensional simplicial complex Li, consisting of the vertex set {ui, vi, wi}
and edge set {{ui, wi}, {wi, vi}}, and by replacing the family of faces {ei ∪ τ : τ ∈
link∆i−1(ei)} containing ei with the family of faces {σ′ ∪ τ : σ′ ∈ Li}. In other words,
we subdivide the edge ei into a path of length 2 by adding the midpoint wi and we also
subdivide all faces containing ei, by performing a stellar subdivision.

It has been shown in [8] in a more general setting that a Tchebyshev triangulation of
4 as defined above is indeed a triangulation of 4 in the following sense: if we consider
the standard geometric realization of 4 and associate to each midpoint w the midpoint
of the line segment realizing the corresponding edge {u, v} then the convex hulls of
the vertex sets representing the faces of T(4) represent a triangulation of the geometric
realization of 4. Furthermore, a direct consequence of [8, Theorem 3.3] is the following
theorem.

Theorem 1.2 (Hetyei and Nevo). All Tchebyshev triangulations of a simplicial complex have
the same f -vector.

The following result has been shown in [7, Proposition 3.3] for a specific Tchebyshev
triangulation. By the preceding theorem it holds for all Tchebyshev triangulations and
motivates the choice of the terminology. The Tchebyshev transform of the first kind of poly-
nomials used in the next result is the linear map T : R[x] −→ R[x] sending xn into the
Tchebyshev polynomial of the first kind Tn(x).

Theorem 1.3. For any finite simplicial complex 4, the F-polynomial of any Tchebyshev trian-
gulation T(4) is the Tchebyshev transform of the first kind of the F-polynomial of 4:

FT(4)(x) = T(F4(x)).

The notion of the Tchebyshev triangulation of a simplicial complex was motivated by
a poset operation, first considered in [5] and formally introduced in [6] .

Definition 1.4. Given a locally finite poset P, its Tchebyshev transform of the first kind T(P)
is the poset whose elements are the intervals [x, y] ⊂ P satisfying x 6= y, ordered by the
following relation: [x1, y1] ≤ [x2, y2] if either y1 ≤ x2 or both x1 = x2 and y1 ≤ y2 hold.

A geometric interpretation of this operation may be found in [6, Theorem 1.10]. The
graded variant of this poset operation is defined in [3]. Given a graded poset P with
minimum element 0̂ and maximum element 1̂, we introduce a new minimum element
−̂1 < 0̂ and a new maximum element 2̂. The graded Tchebyshev transform of the first kind
of a graded poset P is then the interval [(−̂1, 0̂), (1̂, 2̂)] in T(P ∪ {−̂1, 2̂}). By abuse of
notation we also denote the graded Tchebyshev transform of a graded poset P by T(P).
It is easy to show that T(P) is also a graded poset, whose rank is one more than that of
P. The following result may be found in [7, Theorem 1.5].
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Theorem 1.5. Let P be a graded poset and T(P) its graded Tchebyshev transform. Then the
order complex 4(T(P) \ {(−̂1, 0̂), (1̂, 2̂)}) is a Tchebyshev triangulation of the suspension of
4(P \ {0̂, 1̂}).

It has been shown by Ehrenborg and Readdy [3] that there is a linear transformation
assigning to the flag f -vectors of each graded poset P the flag f -vector of T(P). For Eu-
lerian posets, they also compute the effect on the cd-index of this Tchebyshev transform.

1.3 Permutohedra of type A and B

Permutohedra of type A and B have a vast literature, the results cited here may be
found in [4] and in [14]. The type A permutohedron Perm(An−1) is the convex hull of
the n! vertices (π(1), . . . , π(n)) ∈ Rn, where π is any permutation of the set [1, n] :=
{1, 2, . . . , n}. The type B permutohedron Perm(Bn) is the convex hull of all points of the
form (±π(1),±π(2) . . . ,±π(n)) ∈ Rn. Combinatorially equivalent polytopes may be
obtained by taking the An−1-orbit, respectively Bn orbit, of any sufficiently generic point
in an (n− 1)-dimensional (respectively n-dimensional) space, and the convex hull of the
points in the orbit. [4, Section 2].

The type A and B permutohedra are simple polytopes, their duals are simplicial
polytopes. The boundary complexes of these duals are order complexes of graded posets
(with their minimum and maximum elements removed): in the type A case we have the
order complex of P([1, n]) − {∅, [1, n]}, where P([1, n]) is the Boolean algebra of rank
n, in the type B case we have the face lattice of the n-dimensional crosspolytope [14,
Lecture 1]. The standard n-dimensional crosspolytope is the convex hull of the vertices
{±ei : i ∈ [1, n]}, where {e1, e2, . . . , en} is the standard basis of Rn. Each nontrivial face
of the crosspolytope is the convex hull of a set of vertices of the form {ei, i ∈ K+} ∪
{−ei, i ∈ K−}, where K+ and K− is are disjoint subsets of [1, n] and their union is not
empty.

Corollary 1.6. Each facet of Perm(Bn) is uniquely labeled with a pair of sets (K+, K−) where
K+ and K− is are subsets of [1, n], satisfying K+ ⊆ [1, n] − K− and K+ and K− cannot be
both empty. For a set of valid labels {(K+

1 , K−1 ), (K+
2 , K−2 ), . . . , (K+

m , K−m)} the intersection of the
corresponding set of facets is a nonempty face of Perm(Bn) if and only if

K+
1 ⊆ K+

2 ⊆ · · · ⊆ K+
m ⊆ [1, n]− K−m ⊆ [1, n]− K−m−1 ⊆ · · · ⊆ [1, n]− K−1 holds.

The triangle of f -vectors of the type B Coxeter complexes is given in sequence
A145901 in [11].
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2 The poset of intervals as a Tchebyshev transform

Definition 2.1. An interval [u, v] in a partially ordered set P is the set of all elements
w ∈ P satisfying u ≤ w ≤ v. For a finite partially ordered set P we define the poset I(P)
of the intervals of P as the set of all intervals [u, v] ⊆ P, ordered by inclusion.

We may identify the singleton intervals [u, u] in I(P) with the elements of P. Figure 1
shows a partially ordered set and its order complex. The poset of its intervals and the
order complex thereof may be seen in Figure 2.

u3

u2

u1 u1

u4 u2

u3

u4

Figure 1: A partially ordered set P and its order complex 4(P)

[u2, u2]
[u1, u2]

[u2, u3]

[u1, u4]

[u1, u3]
[u4, u4]

[u3, u3]

[u1, u1]

[u1, u4]

[u1, u3]

[u3, u3][u4, u4][u2, u2][u1, u1]

[u2, u3][u1, u2]

Figure 2: The poset I(P) of intervals of P and its order complex

The following result is a generalization of [9, Remark 10], and an equivalent restate-
ment of [15, Theorem 4.1].

Theorem 2.2. For any finite partially ordered set P the order complex 4(I(P)) of its poset
of intervals is isomorphic to a Tchebyshev triangulation of 4(P) as follows. For each u ∈ P
we identify the vertex [u, u] ∈ 4(I(P)) with the vertex u ∈ 4(P) and for each nonsingleton
interval [u, v] ∈ I(P) we identify the vertex [u, v] ∈ 4(I(P)) with the midpoint of the edge
{[u, u], [v, v]}. We number the midpoints [u1, v1], [u2, v2], . . . in such an order that i < j holds
whenever the interval [ui, vi] contains the interval [uj, vj].

Definition 2.3. For a graded poset P we define its graded poset of intervals Î(P) as the
poset of all intervals of P, including the empty set, ordered by inclusion.
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∅

0̂

u1

u2

1̂
[0̂, 1̂]

[u1, u2]

[0̂, u2] [u1, 1̂]

[u2, 1̂]

[1̂, 1̂][0̂, 0̂] [u2, u2]

[0̂, u1]

[u1, u1]

Figure 3: The graded poset of intervals of a chain

Remark 2.4. Figure 3 represents the graded poset of intervals of a chain of rank 3. Comparing it
with [6, Figure 2] where the Tchebyshev transform of a chain of rank 3 is represented, we see the
two transforms are different.

Proposition 2.5. If P is a graded poset of rank n with rank function ρ then Î(P) is a graded
poset of rank n + 1, in which the rank of a nonempty interval [u, v] is ρ(v)− ρ(u) + 1.

In analogy to Theorem 1.5 we have the following result.

Proposition 2.6. Let P be a graded poset and Î(P) its graded poset of intervals. Then the order
complex4( Î(P)−{∅, [0̂, 1̂]}) is a Tchebyshev triangulation of the suspension of4(P−{0̂, 1̂}).

3 The type B Coxeter complex as a Tchebyshev triangula-
tion

After introducing X := K+ and Y := [1, n] − K−, we may rephrase Corollary 1.6 as
follows.

Corollary 3.1. We may label each facet of the type B permutohedron Perm(Bn) with a nonempty
interval [X, Y] of the Boolean algebra P([1, n]) that is different from P([1, n]) = [∅, [1, n]]. The
set {[X1, Y1], [X2, Y2], . . . , [Xm, Ym]} labels a collection of facets with a nonempty intersection if
and only if the intervals form an increasing chain in Î(P([1, n]))− {∅, [∅, [1, n]]}.

The representation of each face of Perm(Bn) as an intersection of facets is unique,
hence we obtain the following result.

Proposition 3.2. The dual of Perm(Bn) is a simplicial polytope whose boundary complex is
combinatorially equivalent to the order complex 4( Î(P([1, n]))− {∅, [∅, [1, n]]}).
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Corollary 3.3. The dual of Perm(Bn) is a simplicial polytope whose boundary complex is
combinatorially equivalent to a Tchebyshev triangulation of the suspension of 4(P([1, n]) −
{∅, [1, n]}), and hence to a Tchebyshev triangulation of the suspension of the boundary complex
of the dual of the permutohedron Perm(An−1).

[{3}, {3}]

[{2, 3}, {2, 3}][{1, 3}, {1, 3}]

[{1}, {1}] [{2}, {2}]

[∅, {1, 2}]

[{1, 2}, {1, 2}][{1}, {1, 2}] [{2}, {1, 2}]

∅

Figure 4: Half of the dual of Perm(B3)

Figure 4 represents “half” of the dual of Perm(B3). The boundary of the triangle
whose vertices are labeled with singleton intervals [{i}, {i}] is shown in bold. The ver-
tices of the barycentric subdivision of the boundary are marked with black circles. These
correspond to singleton intervals of the form [X, X], where X is a subset of [1, 3]. (In gen-
eral, X is a subset of [1, n].) The suspending vertex ∅ is marked with a black square. The
other suspending vertex [1, 3] (in general: [1, n]) is not shown in the picture. One would
need to make another picture showing the boundary of the triangle with the suspending
vertex, and “glue” the two pictures along the boundary of the triangle. The midpoints of
the edges are marked with white circles. These are labeled with intervals [X, Y] such that
X is properly contained in Y. The edges arising when we take the appropriate Tcheby-
shev triangulation are indicated with dashed lines. This part of the picture is different
on the “other side” of the dual of Perm(B3).

4 Computing the flag f -vector of the graded poset of inter-
vals

In this section we show that for any graded poset P, the flag f -vector of its graded poset
of intervals Î(P) may be obtained from the flag f -vector of P by a linear transformation.
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By “chain” in this section we always mean a chain containing the unique minimum
element and the unique maximum element.

Definition 4.1. Given a chain ∅ ⊂ [u1, v1] ⊂ [u2, v2] ⊂ · · · ⊂ [uk, vk] ⊂ [uk+1, vk+1] =
[0̂, 1̂] in the graded poset of intervals Î(P) of a graded poset P, we call the set

{u1, v1, u2, v2, . . . , uk+1, vk+1}

the support of the chain.

Obviously the support of a chain in Î(P) is a chain in P containing the minimum
element 0̂ and the maximum element 1̂.

The next statement expresses the number of chains in Î(P) having the same support
in terms of the Pell numbers P(n). These numbers are given by the initial conditions
P(1) = 1 and P(2) = 2 and by the recurrence P(n) = 2 · P(n− 1) + P(n− 2) for n ≥ 3.
A detailed bibliography on the Pell numbers may be found at sequence A000129 of [11].

Proposition 4.2. Let P be a graded poset and let c : 0̂ = z0 < z1 < · · · < zm−1 < zm = 1̂
be a chain in it. Then the number of chains ∅ ⊂ [u1, v1] ⊂ [u2, v2] ⊂ · · · ⊂ [uk, vk] ⊂
[uk+1, vk+1] = [0̂, 1̂] whose support is c is the sum P(m) + P(m + 1) of two adjacent Pell
numbers.

The proof is by induction on m. The numbers P(m) + P(m + 1) are listed as se-
quence A001333 in [11]. It is transparent in the (omitted) proof of Proposition 4.2 that
the contributions of chains of Î(P) with a fixed support to Υ Î(P)(a, b) depends only on
the contribution of their support to ΥP(a, b). This observation motivates the following
definition.

Definition 4.3. Given an ab-word w of degree n, we define ι(w) as the contribution of all
chains of Î(P) with a fixed support to Υ Î(P)(a, b), whose support is the same chain of P,
contributing the word w to ΥP(a, b).

Theorem 4.4. The operator ι may be recursively computed using the following formulas.

1. ι(an) = (a + 2b)an holds for n ≥ 0. In particular, for the empty word ε we have ι(ε) =
(a + 2b).

2. ι(aibaj) = (a + 2b)(aibaj + ajbai) + bai+j+1 holds for i, j ≥ 0.
3. ι(aibwbaj) = ι(aibw)baj + ι(wbaj)bai + ι(w)bai+j+1 holds for i, j ≥ 0 and any ab-word

w.

Proof. We only show the third statement, to save space. Consider a chain c : 0̂ < z1 <
z2 < · · · < zk < zk+1 = 1̂ that contributes aibwbaj to the ab-index of a graded poset P
of rank n + 1. In such a chain the rank of z1 is i + 1 and the rank of of zk is n− j. The
largest element below [0̂, 1̂] of any chain in Î(P) with support c is either [0̂, zk] (of rank
n− j + 1) or [z1, 1̂] (of rank n + 1− i) or [z1, zk] (of rank n− i− j + 1). The three terms
correspond to the contributions of the chains of these three types.
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Corollary 4.5. There is a linear map In : R2n → R2n+1
sending the flag f -vector of each graded

poset P of rank n + 1 into the flag f -vector of its graded poset of intervals Î(P). This linear
map may be obtained by encoding flag f -vectors with the corresponding upsilon invariants, and
extending the map ι by linearity.

Example 4.6. Using Theorem 4.4 we obtain ι(a) = a2 + 2ba, ι(b) = 4b2 + 2ab + ba, ι(a2) =
a3 + 2ba2, ι(ab) = ι(ba) = a2b + aba + 2bab + 2b2a + ba2 and ι(b2) = 8b3 + 4ab2 + 2bab +
aba + 2b2a.

5 The graded poset of intervals of an Eulerian poset

Theorem 5.1. If a graded poset P is Eulerian then the same holds for the graded poset of its
intervals Î(P).

Proof. It is well known consequence of Phillip Hall’s theorem (see [13, Propositition
3.8.5]) that a graded poset is Eulerian if and only if the reduced characteristic of the order
complex of each open interval (u, v) is (−1)ρ(v)−ρ(u) where ρ is the rank function. Since
taking the graded poset of intervals results in taking a triangulation of the suspension
of each such order complex, the reduced Euler characteristic remains unchanged.

As a consequence of Theorem 5.1, the linear map In takes the flag f -vector of any
graded Eulerian poset of rank n + 1 into the flag f -vector of a graded Eulerian poset of
rank n + 2. It has been shown by Bayer and Billera [1] that for each n, one may make
a list of Fn+1 graded Eulerian partially ordered sets of rank n + 1 whose flag f vectors
are linearly independent, where Fn+1 is the (n + 1)st Fibonacci number (F1 = 1, F2 = 2).
The upsilon invariants of such a basis span the vector space of upsilon invariants of all
Eulerian posets of rank n + 1, and the images under ι of these basis vectors have the
property that the resulting upsilon invariants are also polynomials of c = a + 2b and
d = ab + ba + 2b2. The same observation also holds for all linear combinations, hence
we obtain the following result.

Theorem 5.2. Extending the operator ι to linear combinations of ab-words by linearity, results
in a linear operator that takes each polynomial of c = a + 2b and d = ab + ba + 2b2 into a
polynomial of c = a+ 2b and d = ab+ ba+ 2b2. This operator takes the cd-index of an Eulerian
poset P into the cd-index of its graded poset of intervals Î(P).

By abuse of notation, we will use the same symbol ι to denote the induced operator
on cd words.

Example 5.3. Using the formulas listed in Example 4.6 we obtain ι(c) = c2 + 2d, ι(d) =
2(cd + dc) and ι(c2) = c3 + 2cd + 4dc.
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We conclude this section with explicitly computing ι(cn) for all n. Note that cn is the
cd-index of the “ladder” poset Ln of rank n + 1. This poset has exactly 2 elements: −i
and i for each rank i satisfying 0 < i < n + 1, and any pair of elements at different ranks
are comparable. This formula was first found by Jojić [9].

Theorem 5.4. Assume that the finite vector (k0, . . . , kr) of nonnegative integers satisfies 2r +
k0 + k2 + · · ·+ kr = n. Then the coefficient of ck0dck1d · · · ckr dckr in ι(cn) is 2r(k1 + 1)(k2 +
1) · · · (kr + 1).

The proof uses an R-labeling on the dual Î(Ln)∗ of the graded poset of intervals Î(Ln)
of the ladder poset Ln and proceeds by induction.

Remark 5.5. Surprisingly this formula is the dual of the one obtained for the other Tchebyshev
transform see [5, Theorem 7.1] and [3, Corollary 6.6] (see also [5, Table 1] and compare it with
Example 5.3), although the two poset operations are very different.

6 Concluding remarks

Taking the graded poset of intervals seems to be a fairly straightforward operation, wor-
thy of further study. Some explicit but cumbersome formulas for cd-indices were found
by Jojić [9], in the talk we will see simplified proofs of his formulas and results on the
analogue of the Tchebyshev transform of the second kind related to the interval trans-
form of a poset. Generalizations of permutohedra abound, and performing an analogous
sequence of stellar subdivisions on their duals, respectively taking the graded poset of
intervals for an associated poset may result in interesting geometric constructions, pro-
ducing perhaps new type B analogues. Finally, applying the Tchebyshev transform stud-
ied in [5], [6] and [3] to a Boolean algebra creates a poset whose order complex has the
same face numbers as the dual of a type B permutohedron. It may be interesting to find
out whether the resulting polytope also has a nice geometric representation.
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