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Abstract. Recently, Gillespie, Levinson and Purbhoo introduced a crystal-like structure
for shifted tableaux, called the shifted tableau crystal. We introduce a shifted analogue
of the crystal reflection operators, which coincides with the restriction of the shifted
Schützenberger involution to any primed interval of two adjacent letters. Unlike type
A Young tableau crystals, these operators do not realize an action of the symmetric
group on the shifted tableau crystal because braid relations do not hold. We exhibit
a natural internal action of the cactus group, realized by restrictions of the shifted
Schützenberger involution on primed intervals of the underlying crystal alphabet.

Résumé. Gillespie, Levinson et Purbhoo ont récemment introduit une structure simi-
laire à celle de graphe cristalline sur les tableaux déplacés, appelée graphe cristalline
des tableaux déplacés. Nous introduisons une analogue de l’opérateur de réflexion de
graphe cristalline, qui coïncide avec la restriction de l’involution de Schützenberger dé-
placée aux intervalles marqués de deux lettres adjacentes. Contrairement aux graphes
cristallines de type A, des tableaux de Young, ces opérateurs ne réalisent pas une
action du groupe symétrique sur le graphe cristalline des tableaux déplacés parce que
les rélations de tresse ne sont pas satisfaites. Pourtant, nous montrons qu’il y a une
action interne naturelle du groupe de cactus, réalisée par les restrictions de l’involution
de Schützenberger déplacé aux intervalles marqués de l’alphabet sous-jacent au graphe
cristalline.
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1 Introduction

Young tableaux, as well as shifted tableaux, arise in many areas of mathematics. While
the first have their original role in the representation theory of symmetric groups, the
latter have their origin in projective representations, due to I. Schur. One important tool
for the study of the former are Kashiwara crystals [12]. We recall that a Kashiwara crystal
of type A (for GLn) is a non-empty set B together with maps ei, fi : B −→ B t {∅},
length functions εi, ϕi : B −→ Z, for i ∈ I = [n− 1], and weight function wt : B −→ Zn
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satisfying certain axioms (see [3, Definition 2.13]). This crystal may be regarded as a

directed graph, with vertices in B and i-coloured edges y i−→ x if and only if fi(y) = x,
for i ∈ I. The set of semistandard Young tableaux of a given shape in the alphabet [n] is
known to provide a model for Kashiwara type A crystals [3, Chapter 3], with coplactic
operators ei and fi defined in terms of reading words. This crystal is isomorphic to the
crystal basis of an irreducible Uq(gln)-module. The Schützenberger involution [15] (also
known as Lusztig involution) is defined on the type A Young tableau crystal [3], and
acts on its graph structure by “flipping” it upside down, while reverting the orientation
of arrows and their colours. It is realized by the evacuation (for straight shapes) or its
coplactic extension, often called reversal (for skew shapes).

Recently, Gillespie, Levinson and Purbhoo [7, 8] introduced a crystal-like structure
on shifted tableaux, called the shifted tableau crystal. The vertices of this structure are the
skew shifted tableaux, for a given shape λ/µ on the primed alphabet [n]′ and it has dou-
ble edges, corresponding to the action of the primed and unprimed lowering and raising
operators which commute with the shifted jeu de taquin. Each connected component has
a unique highest weight element (a vertex for which all the raising operators are equal
to ∅), a Littlewood-Richardson-Stembridge (LRS) tableau of shape λ/µ, and a unique
lowest weight element, its reversal. We remark that this structure is not a queer crystal,
differing from the one in [1, 6], which is indeed a crystal for the queer Lie superalgebra.

We introduce a shifted analogue of the crystal reflection operator in type A, for each
i ∈ I, for the shifted tableau crystal (Definition 3.6). It coincides with the restriction of
the shifted Schützenberger involution on the letters {i′, i, (i + 1)′, i + 1} (see Figure 2).
Unlike type A crystals, they do not define an action of the symmetric group on the
shifted tableau crystal, since the braid relations do not need to be satisfied. We then show
that the restriction of the shifted Schützenberger involution to all primed subintervals
of [n] yields an action of the cactus group on that crystal. This paper has the following
structure: Section 2 provides the basic notions on shifted tableaux. Then, Section 3 gives
the main concepts on the shifted tableau crystal of [7, 8], and introduces the shifted
crystal reflection operators. In Section 4, we prove the main result (Theorem 4.4), where
a natural action of the cactus group in the shifted tableau crystal, realized by those
restrictions of the shifted Schützenberger involution, is exhibited (see Figure 3).

This is an extended abstract of the full paper [13] to appear.

2 Background

This section is intended to provide the basic definitions and results on shifted tableaux,
words, and involutions among them. We follow the notations in [7, 8]. A strict partition is
a sequence λ = (λ1, . . . , λ`(λ)) of non-negative integers such that λ1 > . . . > λ`(λ). It may
be represented, in English notation, by a shifted shape S(λ) which consists of |λ| boxes
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S(λ) = S(λ/µ) = S(λ∨) =

Figure 1: The shapes of λ, λ/µ and λ∨, shaded in gray, for λ = (5, 3, 2) and µ = (3, 1).

placed in `(λ) rows, with the i-th row having λi boxes and being shifted i− 1 units to
the right. Skew shapes S(λ/µ) are defined as usual. Shapes of the form λ/∅ are called
straight. A shifted shape λ lies naturally in a stair shifted shape δ = (λ1, λ1− 1, . . . , 1). The
complement of the shape of λ in δ defines the shifted partition λ∨, the complement of λ

(see Figure 1). Consider the totally ordered alphabet [n] = {1 < . . . < n} and define the
primed (or marked) alphabet [n]′ as {1′< 1< . . .< n′< n}. We write i when referring to
the letters i and i′ without specifying whether they are primed. The canonical form of a
string w in [n]′ is the string obtained from w by replacing the leftmost i (if it exists) with
i, for all 1 ≤ i ≤ n. Strings w and v are said to be equivalent, denoted by w ' v, if they
have the same canonical form. We have 12′2′1123′2′2 ' 122′11232′2, the latter being the
canonical form of the former. A word ŵ is an equivalence class of strings [8, Definition
2.2]. The canonical representative is given by the canonical form of all the elements of ŵ.
The weight of a word ŵ is wt(ŵ) = (wt1, . . . , wtn), where wti is equal to the number of i
and i′ in ŵ. We denote wt(ŵ)rev = (wtn, . . . , wt1).

Let λ and µ be strict partitions such that µ ⊆ λ. A semistandard shifted (Young) tableau
T of shape λ/µ is a filling of S(λ/µ) with letters in {1′ < 1 < . . .} such that the entries
are weakly increasing in each row and in each column and there is at most one i′ per
row and one i per column. The (row) reading word w(T) of such a tableau is formed by
reading the entries of T from left to right, from bottom to top. The weight of T is defined
as wt(T) := wt(w(T)). A shifted tableau is said to be standard if its weight is (1, . . . , 1).
We say that a tableau T is in canonical form if w(T) is the canonical representative of
ŵ(T). A tableau T in canonical form is identified with its set of representatives, that are
obtained by possibly priming the entry corresponding to the leftmost i in w(T), for all
i. Let SShT(λ/µ, n) denote the set of semistandard shifted tableaux of shape λ/µ in the
alphabet [n]′ (in canonical form). The following is a semistandard shifted tableau:

T = 1 1 2′

2 3′ 3
3 3

, where w(T) = 3323′3112′ and wt(T) = (2, 2, 4).

2.1 The shifted jeu de taquin, Knuth equivalence and dual equivalence

The shifted jeu de taquin [14, 17], for shifted tableaux, is similar to the one for usual
Young tableaux. Given T ∈ SShT(λ/µ, n), an inner jeu de taquin slide is a process in
which an inner corner is chosen and then either the entry to its right or the one below it
is chosen to slide, in such way that the tableau is still semistandard, and then repeating
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the process with the obtained empty square until it is an outer corner. An outer jeu de
taquin slide is the reverse process, starting with an outer corner. This process has an
exception, illustrated by the following slide:

a′

a
←→ a

a
←→ a a

The rectification rect(T) of T is the tableau obtained by applying a sequence of inner
slides until a straight shape is obtained (this does not depend on the chosen sequence of
slides [14, Theorem 11.1]). The rectification of a word w is the word of the rectification
of any tableau with reading word w. Two tableaux are said to be shifted jeu de taquin
equivalent if they have the same rectification. An operator on shifted tableaux is called
coplactic if it commutes with the shifted jeu de taquin.

The standardization of a word w, denoted std(w), is obtained by replacing the letters
of any representative of w with 1, . . . , n, from least to greatest, reading right to left for
primed entries, and left to right for unprimed entries [8, Definition 2.8]. This process
does not depend on the choice of the representative. The standardization of a shifted
tableau T is the tableau of the same shape as T with reading word std(w(T)).

Given ν a strict partition, the Yamanouchi tableau Yν is the tableau of shape ν whose
i-th row is filled only with i’s. It is easy to check that Yν is the unique tableau, up to
canonical form, that has shape and weight equal to ν. A Littlewood-Richardson-Stembridge
(LRS) tableau is a tableau T ∈ SShT(λ/µ, n) such that rect(T) = Yν [17]. Its reading
word is called a ballot (or lattice) word. Given strict partitions λ, µ and ν, such that
|λ| = |µ|+ |ν|, the shifted Littlewood-Richardson coefficients f λ

µν are defined as the number
of LRS tableaux of shape λ/µ and weight ν. For other formulations, see [4, 16].

Definition 2.1. Two words w and v are said to be shifted Knuth equivalent, denoted w ≡k v,
if one can be obtained from the other by applying a sequence of the following Knuth
moves on adjacent letters:

(K1) bac←→ bca if, under the standardization ordering, a < b < c.
(K2) acb←→ cab if, under the standardization ordering, a < b < c.
(S1) ab←→ ba if these are the first two letters.
(S2) aa←→ aa′ if these are the first two letters.

Two semistandard shifted tableaux are shifted Knuth equivalent if their reading
words are shifted Knuth equivalent [14, Theorem 12.2], or, equivalentely, if they have the
same rectification [17, Theorem 6.4.17]. Two semistandard shifted tableaux are shifted
dual equivalent if they have the same shape after applying any sequence of shifted jeu de
taquin slides to both.
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2.2 The shifted evacuation and reversal

In this section, we recall an involution on semistandard shifted tableaux of straight
shape, known as the (shifted) evacuation, which preserves shape and reverts weight. This
involution was firstly presented by Worley [17], as an analogue of the Schützenberger
involution [15]. We use Worley’s definition, however, we remark that Choi, Nam and Oh
[5, Section 5] gave another formulation using the shifted switching process, and proved
the coincidence of both.

Given T ∈ SShT(λ/µ, n), the tableau T∗ is obtained by reflecting T along the anti-
diagonal in the shifted stair shape δ = (λ1, λ1 − 1, . . . , 1), while complementing the
entries by i 7→ (n− i + 1)′ and i′ 7→ n− i + 1. Note that if T is of shape λ/µ, then T∗

is of shape µ∨/λ∨, and wt(T∗) = wt(T)rev. If T is a tableau with straight shape, then
TE := rect(T∗) and the operator E is called the (shifted) evacuation [17, Definition 7.1.5].
For example, if T = 1 1 2′ 2

2 3
, then TE = 1 2′ 2 3

2 3
. Moreover, TE has the same shape as

T and (TE)E = T [17, Lemma 7.1.6]. As a consequence of the uniqueness of Yν we have
that YE

ν is the unique one of shape ν and weight νrev.
It is due to Haiman that, given T ∈ SShT(λ/µ, n), there is a unique tableau Te ∈

SShT(λ/µ, n), the reversal of T, that is shifted Knuth equivalent to T∗ and dual equivalent
to T [9, Theorem 2.13]. Since the operator ∗ preserves shifted Knuth equivalence [17,
Lemma 7.1.4], the reversal operation is the coplactic extension of evacuation, in the sense
that, we may first rectify T, apply evacuation, and then outer jeu de taquin slides (in
the order defined by the previous rectification) to get Te with the shape of T. Hence,
TE = Te for tableaux of straight shape. The reversal is a shape-preserving weight-
reversing involution on shifted tableaux and it yields a bijection T 7−→ (Te)∗ between
the set of LRS tableaux of shape λ/µ and weight ν and the set of LRS tableaux of shape
µ∨/λ∨ and weight ν. Hence, we have the symmetry f λ

µν = f µ∨

λ∨ν.

3 A crystal-like structure on shifted tableaux

After recalling the set up on the shifted tableau crystal B(λ/µ, n) = SShT(λ/µ, n), intro-
duced in [7, 8], we define, for each i ∈ I = [n− 1], the shifted crystal reflection operator,
using the primed and unprimed crystal operators. Example 3.9 shows that these do not
need to satisfy the braid relations, thus not yielding a natural action of Sn on this crystal.

Let {e1, . . . , en} be the canonical basis of Rn. Given words w and v on the alphabet
[n]′, and i ∈ I, the primed raising operator E′i(w) is the unique word with the same stan-
dardization of w and such that wt(E′i(w)) = wt(w) + αi, where αi = ei − ei+1, if such
word exists, otherwise E′i(w) = ∅ [8, Definition 3.3]. The primed lowering operator F′i (w)
is defined analogously using −αi. These notions are well defined [8, Lemma 3.2], and
as a direct consequence, E′i(w) = v if and only if w = F′i (v), for any words w and v
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[8, Proposition 3.4]. The definition is extended to semistandard shifted tableaux, E′i(T)
being the shifted tableau with the same shape of T and reading word E′i(w(T)). These
operators are well defined and are coplactic [8, Propositions 3.6 and 3.7].

The unprimed raising operators are defined by giving conditions on the lattice walks
of a word. These are extended to shifted tableaux as before. Due to lack of space, we
omit these definitions and refer to [8, Section 5.1] for details. The unprimed operators
are coplactic and, given T ∈ SShT(λ/µ, n), Ei(T) and Fi(T) ∈ SShT(λ/µ, n), for all i ∈ I,
whenever they are defined [8, Theorems 5.18 and 5.35].

Tableaux that differ by a sequence of unprimed raising or lowering operators are
dual equivalent [8, Corollary 5.33]. This is also true for the primed operators, since the
standardization is unchanged. Hence, tableaux that differ by a sequence of any lowering
or raising operators are dual equivalent.

Proposition 3.1 ([8, Proposition 6.4]). Let ν be a strict partition. The unique T ∈ SShT(ν, n)
for which Ei(T) = E′i(T) = ∅, for all i ∈ I, is Yν. Then, every T ∈ SShT(ν, n) may be obtained
from every other by a sequence of primed and unprimed lowering and raising operators.

The set SShT(λ/µ, n) is closed under the operators Ei, E′i , Fi, F′i , for i ∈ I. We also
have partial length functions [7] given by:

ε′i(T) := max{k : E′ki (T) 6= ∅} ε̂i(T) := max{k : Ek
i (T) 6= ∅}

ϕ′i(T) := max{k : F′ki (T) 6= ∅} ϕ̂i(T) := max{k : Fk
i (T) 6= ∅},

and total length functions εi(T) and ϕi(T), defined in [8, Section 5.1] via the i-lattice walk
of T, for i ∈ I. The set SShT(λ/µ, n), together with primed and unprimed operators,
length functions, and weight function, is called a shifted tableau crystal and denoted by
B(λ/µ, n). It may be regarded as a directed graph with weighted vertices, and i-coloured
double edges, the solid ones being labelled with i and the dashed ones with i′. For
each i ∈ I, B(λ/µ, n) may be partitioned as a set into the {i′, i}-connected components
underlying subsets, which are called i-strings, with two possible arrangements [7, Section
3.1]:

•

•

•

•

•

•

•

• • • • • •

The left one is called a separated i-string, consisting of two i-labelled chains of equal
length connected by i′-labelled edges. The smallest separated string is formed by two
vertices connected by a i′ labelled edge. The one on the right is called a collapsed i-string
and is formed by a double chain both i- and i′-labelled. A single vertex is considered
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a collapsed string. The total length functions can be easily formulated in terms of i-
doubled strings, (analogous for ϕi), i ∈ I:

εi(T) =

{
ε̂i(T) = ε′i(T) if T is in a collapsed i-string
ε̂i(T) + ε′i(T) if T is in a separated i-string.

A highest weight element (respectively lowest weight element) of B(λ/µ, n) is a tableau
T such that Ei(T) = E′i(T) = ∅ (respectively Fi(T) = F′i (T) = ∅), for any i ∈ I.

Proposition 3.2 ([8, Corollary 6.5]). Each connected component of B(λ/µ, n) has a unique
highest weight element Thigh, which is a LRS tableau, and is isomorphic, as a weighted edge-
labelled graph, to the shifted tableau crystal B(ν, n), where ν = wt(Thigh).

Proposition 3.3 ([8, Corollary 6.6]). Each connected component of B(λ/µ, n) forms a shifted
dual equivalence class.

3.1 Schützenberger involution and the shifted reflection operators

The Schützenberger (or Lusztig) involution is defined on the shifted tableau crystal [7,
Section 2.3.1] in the same fashion as for type A Young tableau crystals. We realize it
through shifted evacuation, for tableaux of straight shape, and through shifted reversal
otherwise. Throughout this section ν will denote a strict partition.

Definition 3.4. Let B(ν, n) be the shifted tableau crystal with highest weight Thigh = Yν

and lowest weight Tlow = YE
ν . The Schützenberger involution η : B(ν, n) −→ B(ν, n) is the

unique map that satisfies the following conditions, for all T ∈ B(ν, n) and i ∈ I:
1. E′iη(T) = ηF′n−i(T) and Eiη(T) = ηFn−i(T).
2. F′i η(T) = ηE′n−i(T) and Fiη(T) = ηEn−i(T).
3. wt(η(T)) = wt(T)rev.

In particular, η(Thigh) = Tlow and we have ϕi(T) = εn−iη(T) and εi(T) = ϕn−iη(T).
Due to Proposition 3.2, the involution η may be defined in B(λ/µ, n), by extending it to
its connected components. In either cases, we denote it by η. This is indeed well defined
by the next result.

Proposition 3.5. The Schützenberger involution η coincides with the evacuation E in B(ν, n),
and with the reversal e in B(λ/µ, n).

We now introduce a shifted version of the crystal reflection operators σi ([3, Definition
2.35]) on B(ν, n), for each i ∈ I. In type A Young tableau crystals, these are involutions
on the crystal, so that each i-string is sent to itself by reflection over its middle axis, for
all i ∈ I. It coincides with the restriction of the Schützenberger involution to the tableaux
consisting of the letters i, i+ 1, ignoring the remaining ones. On B(ν, n), collapsed strings
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are similar to the i-strings of type A crystals, hence the shifted reflection operator σi is
expected to resemble the one for Young tableaux. However, for separated strings, a sole
reflection of the i-string would not coincide with the restriction of the Schützenberger
involution to {i, i + 1}′, hence we have the next definition.

Definition 3.6 (Shifted crystal reflection operators). Let i ∈ I and T ∈ B(ν, n). Let
k = 〈w(T), αi〉 (usual inner product in Rn). Define σi(T) = T, if Fi(T) = F′i (T) = ∅, and
otherwise according to the table below:

F′i (T) 6= ∅ F′i (T) = ∅

if k > 0 F′i Fk−1
i (T) E′i F

k+1
i (T)

if k = 0 EiF′i (T) E′i Fi(T)

if k < 0 E−k+1
i F′i (T) E−k−1

i E′i(T)

As the definition suggests, the shifted reflection operator σi must do a double reflec-
tion, by vertical and horizontal middle axes (see Figure 2). By coplacity, the operator σi
is extended to B(λ/ν, n), for i ∈ I.

•
•

•

•

•

•

•
•

• • • • •

Figure 2: The action of a crystal reflection operator in separated and collapsed strings,
which corresponds to the Schützenberger involution.

Proposition 3.7. For i ∈ I and T ∈ B(λ/µ, n), the operator σi satisfies the following:
1. σi sends each connected component of B(λ/µ, n) to itself.
2. σi takes each i-string to itself.
3. σ2

i = id and σiσj = σjσi, if |i− j| > 1.
4. wt(σi(T)) = si · wt(T), where si = (i, i + 1) ∈ Sn.

Proof. We prove the first part of the third assertion, with the case where k > 0 and
Fi(T) 6= ∅. Let S = σi(T) = F′i Fk−1

i (T). Then, F′i (S) = ∅. By definition of σi, we
prove that wt(S) = wt(T) − kαi. Moreover, it is easy to check that k̃ := 〈wt(S), αi〉 =
wt(S)i−wt(S)i+1 < 0. Hence, we may show that σi(S) = σ2

i (T) = Ek−1
i Fk−1

i (T) = T.

In what follows, Ti denotes the shifted tableau obtained from T ∈ SShT(λ/µ, n)
considering only the boxes filled with i′ or i.

Theorem 3.8. Let T ∈ B(λ/µ, n) and let Ti,i+1 := Ti t Ti+1. Then,

σi(T) = T1 t . . . t Ti−1 t (Ti,i+1)e t Ti+1 t . . . t Tn.
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Proof. It suffices to prove this result for shifted tableaux on the primed alphabet of two
adjacent letters. The raising and lowering operators are coplactic, so it is σi, thus the
proof is done for rectified shifted tableaux. Furthermore, T and σi(T) are in the same
i-string, hence by Proposition 3.3, T and σi(T) are shifted dual equivalent. It remains
to show that T∗ and σ1(T) are shifted Knuth equivalent, which is done by exhibiting
sequences of Knuth moves between their words.

Unlike the type A crystals, the reflection operators σi do not define an action of the
symmetric group Sn on B(λ/µ, n) because the braid relations σiσi+1σi = σi+1σiσi+1 may
not hold.

Example 3.9. Let B(λ, 3) where λ = (5, 3, 1), and consider the semistandard shifted
tableau T = 1 1 1 1 3′

2 2 3′

3

. Then, we have σ1σ2σ1(T) = 1 1 1 2 3
2 3′ 3

3

6= 1 1 1 2′ 3′

2 3′ 3
3

= σ2σ1σ2(T).

However, we have the following result, as in [2, Section 3.2] for ordinary LR tableaux,
ensuring that the longest permutation of Sn acts on a connected component of B(λ/µ, n)
by sending the highest weight element to the lowest weight element.

Theorem 3.10. Let T be a LRS tableau in B(λ/µ, n). Let ω0 = si1 · · · sik be the longest
permutation in Sn. Then, ω0 acts on a connected component of B(λ/µ, n) by sending the
highest weight element T to the lowest, σi1 · · · σik(T) = Te.

Proof. Since the operators σi are coplactic, we may consider Yν = rect(T), ν = wt(T). By
Proposition 3.7, σj permutes the entries j and j + 1 on the weight and keeps the shape ν,
and as ω0 is the longest permutation, σi1 . . . σik reverts the weight of T. The uniqueness
of Yν then ensures that σi1 . . . σikYν = YE

ν .

4 The cactus group action on the shifted tableau crystal

We show that the restrictions of the Schützenberger involution to primed subintervals of
[n] define an action of the cactus group Jn on B(λ/µ, n). Halacheva [10] constructed this
action for any g-crystal, for g a complex reductive Lie algebra of finite dimension.

For 1 ≤ p < q ≤ n, consider [p, q] := {p < · · · < q}. Let θp,q91 denote the longest
permutation in S[p,q91] embedded in SI , that is, θp,q91(i) is p + q− i− 1 if i ∈ [p, q− 1],
and i otherwise, and put θ := θ1,n91. Given T ∈ B(λ/µ, n), let Tp,q := Tp t · · · t Tq.
In particular, T1,n = T. By convention, we set T1,0 = Tn+1,n := ∅ and Tp,p := Tp.
To formalize the restriction of the Schützenberger involution η to an interval [p, q]′, we
define ηp,q : B(ν, n)→ B(ν, n) as the set map such that ηp,q(T) := T1,p91t [Tp,q]e t Tq+1,n.
In particular, ηp,p+1 = σp and η1,n = η. This notion is extended on the connected
components of B(λ/µ, n) using Proposition 3.2. We denote by Bp,q the subgraph of
B(ν, n) obtained by removing the edges coloured in I \ [p, q− 1], with the same vertices
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of B(ν, n), ignoring the letters that are not in [p, q]′. In particular, Bp,p+1 is the collection
of p-strings. The set B(ν, n) is partitioned into classes consisting of the underlying sets
of the connected components Bp,q (an example with B2,3 is depicted in Figure 3).

Lemma 4.1. Let 1 ≤ p < q ≤ n. Each connected component of Bp,q has unique highest and
lowest weight elements.

Lemma 4.2. Let 1 ≤ p < q ≤ n. Then ηp,q : Bp,q → Bp,q is the unique involution such that for
all T in each connected component of Bp,q, we have, for all i ∈ [p, q− 1]:

1. E′iηp,q(T) = ηp,qF′
θp,q91(i)

(T) and Eiηp,q(T) = ηp,qFθp,q91(i)(T).

2. F′i ηp,q(T) = ηp,qE′
θp,q91(i)

(T) and Fiηp,q(T) = ηp,qEθp,q91(i)(T).

3. wt(ηp,q(T)) = θp,q91 · wt(T).

We also have that ηp,q maps the highest weight of Bp,q to its lowest weight and that
εi(T) = ηp,q ϕθp,q91(T) and ϕi(T) = ηp,qεθp,q91(T), for T ∈ Bp,q and i ∈ [p, q− 1].

Definition 4.3 ([11, Section 3.1]). The n-fruit cactus group Jn is the free group with gener-
ators sp,q, 1 ≤ p < q ≤ n, subject to the relations:

1. s2
p,q = id.

2. sp,qsk,l = sk,lsp,q for [p, q] ∩ [k, l] = ∅.
3. sp,qsk,l = sp+q−l,p+q−ksp,q for [k, l] ⊆ [p, q].
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Figure 3: On the left, the shifted tableau crystal B(ν, 4), for ν = (2, 1), and the action
of s2,4 in the middle. On the right, an illustration of s1,3s1,4 = s1,4s2,4.
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Theorem 4.4 (Main result). There exists a natural action of the n-fruit cactus group Jn on the
shifted tableau crystal B(λ/µ, n) given by sp,q · T = ηp,q(T), for 1 ≤ p < q ≤ n.

Proof. It suffices to exhibit the action in a connected component identified with B(ν, n),
due to Proposition 3.2. Since the operator η is an involution, it follows that s2

p,q = id
for all 1 ≤ p < q ≤ n. The second relation is a direct consequence of ηp,q to act
only on letters [p, q]′, leaving the remaining ones unchanged. For the third relation (see
Figure 3 on the right), we note that the larger set is irrelevant, hence it suffices to show
that ηηp,q = η1+n−q,1+n−pη, for [p, q] ⊆ [1, n]. Let T ∈ B(ν, n) and assume that it is
in a connected component B0 of Bp,q. By Lemma 4.1, B0 has a unique highest weight
Thigh

0 , and lowest weight Tlow
0 = ηp,q(T

high
0 ). Moreover, B0 ⊆ B(ν, n), which has a highest

weight element Yν and a lowest weight Ylow
ν = η(Yν). Then, for some i1, . . . , ik ∈ [p, q− 1],

j1, . . . , jl ∈ [1, n− 1], mi, aj ∈ {0, 1}, ni, bj ≥ 0, we have:

T = F′m1
i1

Fn1
i1

. . . F′mk
ik

Fnk
ik
(Thigh

0 ) and Tlow
0 = E′a1

j1
Eb1

j1
. . . E′al

jl
Ebl

jl
(Ylow

ν )

Thus, using Lemma 4.2, we may prove that:

ηηp,q(T) = F′m1
θθp,q91(i1)

Fn1
θθp,q91(i1)

. . . F′mk
θθp,q91(ik)

Fnk
θθp,q91(ik)

F′a1
θ(j1)

Fb1
θ(j1)

. . . F′al
θ(jl)

Fbl
θ(jl)

(Yν) (4.1)

We note that η takes the connected component B0 to another connected component B1
of Bn−q+1,n−p+1. We have that η interchanges the highest and lowest weight elements
in B0 and B1, thus, η(Tlow

0 ) and η(Thigh
0 ) are, respectively, the highest and lowest weight

elements of B1. Since B1 is a component of Bn−q+1,n−p+1, then ηn−q+1,n−p+1 maps its
lowest weight to its highest weight, hence ηn−q+1,n−p+1η(Thigh

0 ) is the highest weight in
B1. Then, we have ηn−q+1,n−p+1η(Thigh

0 ) = η(Tlow
0 ) and we may prove that:

ηn−q+1,n−p+1η(T) = F′m1
θθp,q91(i1)

Fn1
θθp,q91(i1)

. . . F′mk
θθp,q91(ik)

Fnk
θθp,q91(ik)

F′a1
θ(j1)

Fb1
θ(j1)

. . . F′al
θ(jl)

Fbl
θ(jl)

(Yν)

(4.2)
Hence, by (4.1) and (4.2), we have ηηp,q(T) = ηn−q+1,n−p+1η(T).
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