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Abstract. We define the acyclic orientation polynomial of a graph to be the generating
function for the sinks of its acyclic orientations. Stanley proved that the number of
acyclic orientations is equal to the chromatic polynomial evaluated at −1 up to sign.
Motivated by this result, we develop “acyclic orientation” analogues for theorems con-
cerning the chromatic polynomial by Birkhoff, Whitney, and Greene–Zaslavsky. As
the main application, we provide a new proof for Stanley’s sink theorem for chromatic
symmetric functions XG, which gives a relation between the number of acyclic orien-
tations with a fixed number of sinks and the coefficients in the expansion of XG with
respect to elementary symmetric functions.
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1 Introduction

The purpose of this paper is to introduce acyclic orientation polynomials, present their
several expressions, and give a new proof for Stanley’s sink theorem from these expres-
sions. Throughout this paper, let G = (V, E) be a simple graph with |V| = d vertices.
The variable associated to a vertex v ∈ V will be denoted by the same notation v.

Our object of study is an acyclic orientation of the graph G, an assignment of a direction
to each edge so that the orientation induces no directed cycles. Denote by A(G) the
collection of acyclic orientations of G. The number of acyclic orientations of G is a Tutte-
Grothendieck invariant, i.e., this number obeys a deletion-contraction recursion. As a
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refinement of the quantity, we introduce the acyclic orientation polynomial (Definition 2.1).
For o ∈ A(G), let Sink(G, o) be the set of sinks of o, and define the acyclic orientation
polynomial AG(V) to be

AG(V) = ∑
o∈A(G)

∏
v∈Sink(G,o)

v.

Specializing v = t for all v ∈ V in our polynomial AG(V), one obtains the polynomial
aG(t) whose coefficient of tj counts the number of acyclic orientations with j sinks [10,
7]. We prove that AG(V) satisfies the deletion-contraction recurrence (Theorem 2.3) with
a change of variables:

ve = u1 + u2 − u1u2, or equivalently 1− ve = (1− u1)(1− u2), (1.1)

where ve is the vertex of the graph G/e obtained from G by contracting an edge e =
u1u2 ∈ E.

Using this deletion-contraction recurrence, we shall give several expressions for AG(V).
Stanley [9] showed that the number of acyclic orientations of G is equal to (−1)dχG(−1),
where χG(n) is the chromatic polynomial of G and d is the number of vertices. This
result motivates us to develop “acyclic orientation” analogues for theorems concerning
χG(n). Let us recall four famous expressions for the chromatic polynomial χG(n):

χG(n) = ∑
S⊆E

(−1)|S|nc(S) [The subgraph expansion] (1.2)

= ∑
S∈BG

(−1)|S|nc(S) [13, Whitney’s Theorem] (1.3)

= ∑
π∈LG

µG(0̂, π)n|π| [2, Birkhoff’s Theorem] (1.4)

= ∑
o∈A(G)

(−1)d−|π(o)|n|π(o)| [6, Corollary 7.4], (1.5)

where S ⊆ E is a spanning subgraph of G, c(S) is the number of connected components
of S, BG is the broken circuit complex, LG is the bond lattice and µG is the Möbius
function of LG, and π : A(G)→ LG is the map defined in [1, Section 4].

Similarly for the chromatic polynomial, we provide four expressions for AG(V):

AG(V) = ∑
S⊆E

(−1)s(S) ∏
C∈C(S)

vC [Theorem 3.2]

= ∑
S∈BG

∏
C∈C(S)

vC [Theorem 3.5]

= ∑
π∈LG

(−1)d−|π|µG(0̂, π) ∏
B∈π

vB [Theorem 3.8]

= ∑
o∈A(G)

∏
B∈π(o)

vB [Theorem 3.13],
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where C(S) is the set of connected components of a subgraph S and s(S) = |S| − d+ c(S)
is the corank of S. To a connected component C and a vertex subset B, we associate
variables

vC = 1− ∏
v∈V(C)

(1− v) and vB = 1−∏
v∈B

(1− v),

which are generalizations of (1.1). Comparing above expressions for χG(n) and AG(V),
we can see that replacing n by −vC or −vB in expressions for the chromatic polynomial
gives the acyclic orientation polynomial (up to sign).

Various known results for acyclic orientations are represented as coefficients in our
expressions for AG(V). The linear terms (Corollaries 3.6 and 3.9) give [6, Theorem
7.3], which says that the number of acyclic orientations with the unique sink at a fixed
v ∈ V equals the Möbius invariant. Using [6, Theorem 7.3] and Weisner’s theorem, we
present an alternative proof for Theorem 3.8. Comparing Theorems 3.8 and 3.13 yields
[6, Theorem 7.4] representing the cardinalities of images under the map π in terms of
Möbius functions. Note that this theorem gives an expression for the number of acyclic
orientations whose sinks are in U ⊆ V, which is directly derived from our expression
for AG(V).

The main application of our expressions for AG(V) is to give a new proof of the sink
theorem [10, Theorem 3.3] for the chromatic symmetric function XG. The theorem asserts

sink(G, j) = ∑
λ ` d

l(λ)=j

cλ,

where sink(G, j) is the number of acyclic orientations of G with j sinks, the numbers
cλ are defined by the expansion XG = ∑λ ` d cλeλ in terms of elementary symmetric
functions eλ, and l(λ) is the length of a partition λ. The original proof relies on the
theory of quasi-symmetric functions and P-partitions, which inspired Stanley [11, 12] to
ask for a simple and conceptual proof for the theorem. Also we analyze how AG(V) and
aG(t) distinguish graphs.

2 Acyclic orientation polynomials and their recurrence

Let G be a graph with the vertex set V = V(G) and the edge set E = E(G). In this paper,
let |V| = d and assume that G is simple, i.e., G has no loops or multiple edges. For an
edge u1u2 ∈ E, a direction −−→u1u2 (resp. −−→u2u1) means that the oriented edge is toward u2
(resp. u1). An orientation o is an assignment of a direction −−→u1u2 or −−→u2u1 to each edge
u1u2 ∈ E. An orientation o is said to be acyclic if o has no directed cycles. Let A(G) be
the set of acyclic orientations of G. For o ∈ A(G), a sink of o is a vertex v such that the
direction of each edge incident to v is toward to v. Let Sink(G, o) be the set of sinks of
an orientation o and sink(G, o) = | Sink(G, o)|.
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We associate a variable to each vertex v ∈ V, and use the same notation v for this
variable. Then V also denotes the set of the variables corresponding to vertices. Assume
that all the variables commute with each other.

We now introduce the definition of the main object in this paper.

Definition 2.1. For a graph G = (V, E), define the acyclic orientation polynomial AG(V) of
G to be the generating function for sinks of acyclic orientations of G, i.e.,

AG(V) = ∑
o∈A(G)

∏
v∈Sink(G,o)

v.

Let aG(t) be the polynomial obtained from AG(V) by setting v = t for each v ∈ V, i.e.,

aG(t) = ∑
o∈A(G)

tsink(G,o).

Take a non-empty subset U of V. Let A(G, U) be the set of acyclic orientations o of
G with Sink(G, o) = U. Then the coefficient of ∏v∈U v is equal to |A(G, U)|, which will
be denoted by a(G, U). When U consists of a single vertex u, we write a(G, u) instead of
a(G, {u}).

Example 2.2. Let us consider two graphs G1 = ({v1, v2, v3}, {v1v2, v2v3, v3v1}) and G2 =
({v1, v2, v3, v4}, {v1v2, v2v3, v3v1, v1v4}). Their acyclic orientation polynomials are

AG1({v1, v2, v3}) = 2(v1 + v2 + v3), and
AG2({v1, v2, v3, v4}) = 2(v1 + v2 + v3 + v4 + v2v4 + v3v4).

In Figure 1, we list all the acyclic orientations of G2 with corresponding monomials.
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Figure 1: Acyclic orientations of G2 with corresponding monomials below.

We show that the acyclic orientation polynomial AG(V) satisfies the deletion-contrac-
tion recurrence with a change of variables. Our theorem generalizes the fact that the
number of acyclic orientations satisfies the deletion-contraction recurrence. Take an edge
e = u1u2 ∈ E(G). The deletion G \ e is the graph obtained from G by deleting e. The
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contraction G/e is the graph obtained from G by contracting e and replacing all resulting
multiple edges by a single edge so that G/e is simple. Let ve be the vertex created by
contracting e and let the variable ve satisfy the following relation:

ve = 1− (1− u1)(1− u2) = u1 + u2 − u1u2.

For simplicity, denote V(G/e) by V/e.

Theorem 2.3. The acyclic orientation polynomial AG(V) satisfies the deletion-contraction re-
currence: for every e ∈ E(G),

AG(V) = AG\e(V) + AG/e(V/e).

Example 2.4. Let H be the graph whose vertex set is V(H) = {v1, v2, v3, v4} and edge set
is E(H) = {v1v2, v2v3, v3v1, v1v4, v3v4}. The graphs H, H \ v3v4, and H/v3v4 are shown
in Figure 2. Using the deletion-contraction recurrence together with the computations in
Example 2.2, we obtain

AH(V) = AH\v3v4
(V) + AH/v3v4({v1, v2, v34 = v3 + v4 − v3v4})

= 2(v1 + v2 + v3 + v4 + v2v4 + v3v4) + 2(v1 + v2 + v3 + v4 − v3v4)

= 4(v1 + v2 + v3 + v4) + 2v2v4,

and hence we have aH(t) = 16t + 2t2.

v1
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v3

v4

H

v1

v2

v3

v4

H \ v3v4

v1

v2

v34

H/v3v4

Figure 2: Graphs H, H \ v3v4, and H/v3v4.

3 Four expressions for acyclic orientation polynomials

3.1 Subgraph expansions

We will expand our acyclic orientation polynomial AG(V) with respect to spanning
subgraphs of G. Let S be a subset of the edge set E(G). The set S will be identified with
the spanning subgraph of G whose edge set is S. Denote by |S| the number of edges of
S. Let S(G) be the collection of spanning subgraphs of G. For an edge e = u1u2 ∈ E(G),
define

S(G)e = {S ∈ S(G) | e /∈ E(S)}, and S(G)e = S(G) \ S(G)e.
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Proposition 3.1. For an edge e ∈ E(G), deleting e yields S(G)e = S(G \ e) and contracting e
gives a bijection between S(G)e and S(G/e).

Let C(S) be the set of connected components of a subgraph S. For each connected
component C ∈ C(S), define the variable vC to be

vC = 1− ∏
v∈V(C)

(1− v).

Note that vC = ve, where C is a graph with two vertices and one edge e. Let s(S) be the
corank of S defined as s(S) = |S| − d + |C(S)|.

Theorem 3.2. For a graph G = (V, E), its acyclic orientation polynomial AG(V) equals

AG(V) = ∑
S⊆E

(−1)s(S) ∏
C∈C(S)

vC.

Hence,
aG(t) = ∑

S⊆E
(−1)s(S) ∏

C∈C(S)

(
1− (1− t)|V(C)|).

Example 3.3. Let P be the path graph of length 2. See Figure 3. We can compute
∏C∈C(S) vC for each spanning subgraph S. For instance, let S = {v1v2} be the second
subgraph in Figure 3. S has the two connected components whose vertex sets are {v1, v2}
and {v3}. Then the corresponding term is

∏
C∈C(S)

vC = (1− (1− v1)(1− v2))v3.

Note that the corank of each subgraph of P is equal to 0. Using the previous theorem,
we have

AP(V) = (1− (1− v1)(1− v2)(1− v3)) + (1− (1− v1)(1− v2))v3

+ (1− (1− v2)(1− v3))v1 + v1v2v3

= v1 + v2 + v3 + v1v3.

v2

v1 v3

1− (1− v1)(1− v2)(1− v3)

v2

v1 v3

(1− (1− v1)(1− v2))v3

v2

v1 v3

(1− (1− v2)(1− v3))v1

v2

v1 v3

v1v2v3

Figure 3: All spanning subgraphs of P and their corresponding terms.
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3.2 Broken circuit complexes

We will give an expression for AG(V) in terms of the broken circuit complex BG as
an analogue of Whitney’s theorem [13]. Let the edge set E(G) be linearly ordered. A
broken circuit is a cycle with its smallest edge removed. The broken circuit complex BG is
the collection of all spanning subgraphs S which do not contain a broken circuit. For an
edge e ∈ E(G), define

(BG)
e = {S ∈ BG | e /∈ E(S)}, and (BG)e = BG \ (BG)

e.

Proposition 3.4. If e ∈ E(G) is the largest edge in E(G), then deleting e yields (BG)
e = BG\e

and contracting e gives a bijection between (BG)e and BG/e.

Theorem 3.5. For a graph G = (V, E), the acyclic orientation polynomial AG(V) equals

AG(V) = ∑
S∈BG

∏
C∈C(S)

vC. (3.1)

The linear terms of equation (3.1) give the following corollary ([6, Theorem 7.3]).

Corollary 3.6 ([6, Theorem 7.3]). Let G be a connected graph whose vertex set is V with
|V| = d. For any vertex v ∈ V(G), the number of acyclic orientations of G with the unique sink
v is equal to the number of no-broken-circuit sets with d− 1 edges.

3.3 Bond lattices

We express AG(V) in terms of the bond lattice LG as an analogue of Birkhoff’s Theorem
[2]. For a partition π of a set, an element B ∈ π is called a block. A bond is a vertex
partition each of whose blocks induces a connected graph. The set of bonds of G forms
the lattice LG partially ordered by refinement, called the bond lattice of G.

The least element 0̂ of LG is the bond each of whose blocks has only one vertex,
and the greatest element 1̂ of LG is the bond each of whose blocks is the vertex set of
a connected component of G. Let µG(·, ·) be the Möbius function of LG. The Möbius
invariant of G is defined as µ(G) = |µG(0̂, 1̂)|. Note that |µG(0̂, π)| = (−1)d−|π|µG(0̂, π)
for π ∈ LG.

Proposition 3.7. Let e = u1u2 ∈ E(G) and π ∈ LG. Denote by 0̂e the bond whose blocks are
singletons except the one block {u1, u2}. Then µG(0̂, π) = µG\e(0̂, π)− µG(0̂e, π) if π ∈ LG\e,
and µG(0̂, π) = −µG(0̂e, π) otherwise.

Let us take a bond π ∈ LG. Let G/π be the graph obtained from G by contracting
each block B ∈ π to the vertex vB, and denote by V/π the vertex set of G/π. For B ∈ π,
define the variable vB associated with the vertex vB to be

vB = 1−∏
v∈B

(1− v).
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Theorem 3.8. For a graph G = (V, E), its acyclic orientation polynomial AG(V) equals

AG(V) = ∑
π∈LG

(−1)d−|π|µG(0̂, π) ∏
B∈π

vB. (3.2)

By the Möbius inversion formula, equation (3.2) is equivalent to

∑
π∈LG

(−1)d−|π|AG/π(V/π) = ∏
v∈V

v.

For a non-empty subset U of V, define

R(U) = {π ∈ LG | B ∩U 6= ∅ for every B ∈ π },

and then extracting the coefficient of ∏v∈U v from equation (3.2) yields

a(G, U) = ∑
π∈R(U)

(−1)d−|U|µG(0̂, π). (3.3)

As in Corollary 3.6, Theorem 3.8 gives the following corollary.

Corollary 3.9 ([6, Theorem 7.3]). Let G be a connected graph with the vertex set V. For any
vertex v ∈ V, we have |a(G, v)| = µ(G).

[6, Theorem 7.3] was proved via the theory of hyperplane arrangements, and three
more proofs were also presented in [4]. We shall alternatively give a non-inductive proof
for Theorem 3.8 using [6, Theorem 7.3] and Weisner’s theorem.

Theorem 3.10 (Weisner’s theorem). Let L be a finite lattice with at least two elements, µL(·, ·)
its Möbius function, 0̂L its least element, and 1̂L its greatest element. For a ∈ L with a 6= 1̂L,

∑
t: t∧a=0̂L

µL(t, 1̂L) = 0,

where a ∧ b is the largest element p satisfying p ≤ a and p ≤ b.

Let GU be the graph whose vertex set is V ∪ {u0} and edge set is E ∪ {u0v | v ∈ U}.
For o ∈ A(GU, {u0}), deleting u0 from o yields an acyclic orientation whose sinks are
contained in U. This procedure is bijective, which gives the following identity:

a(GU, u0) = a(G,⊆ U),

where a(G,⊆ U) denotes the number of acyclic orientations of G whose sinks belong to
U.

Proposition 3.11. For a non-empty proper subset U of V, we have

∑
π∈LG

(−1)d−|π|a(G/π,⊆ U/π) = 0,

where U/π is the subset of V/π corresponding to U, i.e., U/π = {vB | B ∈ π, B ∩U 6= ∅}.
From Proposition 3.11, we obtain a non-inductive proof of Theorem 3.8.
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3.4 The map from A(G) to LG

We present an expression of AG(V) in terms of the map π : A(G) → LG defined in [1,
Section 4]. Let us fix an ordering of V, and take o ∈ A(G). For j ≥ 1, suppose that
B1, B2, . . . , Bj−1 ⊆ V are defined. Denote by sj the smallest element in V \ ∪j−1

i=1Bi. Let Bj

be the collection of vertices v in V \ ∪j−1
i=1Bi such that there is a directed path in o from v

to sj. Define π(o) = {B1, · · · , Bq}, where q is the largest integer with Bq 6= ∅. Clearly,
π(o) ∈ LG. The blocks in π(o) are called the sink-components.

Take an edge e = u1u2 ∈ E(G). Let A= be the set of acyclic orientations of G \ e
which contain neither a directed path from u1 to u2 nor one from u2 to u1. Define

A(G)e = {o∪−−→u2u1 | o ∈ A=} and A(G)e = A(G) \ A(G)e.

Deleting e from an acyclic orientation in A(G)e gives a bijection between A(G)e and
A(G \ e), while contracting e yields a bijection between A(G)e and A(G/e).

Proposition 3.12. Let e = u1u2 with u1 < u2 be the smallest edge of E(G) in the lexicographic
order. Then for o ∈ A(G)e, the sink-components of o are preserved when deleting e from o. For
o ∈ A(G)e, let π(o) = {B1, B2, . . . , Bq}, and let B1 and B2 be the sink-components containing
u1 and u2, respectively. Then π(o/e) = {B1 ∪ B2, B3, . . . , Bq}.

Theorem 3.13. For a graph G = (V, E), its acyclic orientation polynomial AG(V) equals

AG(V) = ∑
o∈A(G)

∏
B∈π(o)

vB.

Comparing Theorems 3.8 and 3.13 gives a proof for [6, Theorem 7.4] whose original
proof exploits Corollary 3.9 ([6, Theorem 7.3]).

Corollary 3.14 ([6, Theorem 7.4]). For a bond π ∈ LG, the cardinality of the preimage {o ∈
A(G) | π = π(o)} is equal to |µG(0̂, π)| = (−1)d−|π|µ(0̂, π).

If each element in U ⊆ V is smaller than any elements in V \U, then for o ∈ A(G),
its sinks are in U if and only if π(o) lies in R(U), which together with [6, Theorem 7.4]
gives

a(G,⊆ U) = ∑
π∈R(U)

(−1)d−|π|µG(0̂, π). (3.4)

Using the inclusion-exclusion principle, equation (3.4) is equivalent to equation (3.3).
Hence, we remark that Theorem 3.8 could be alternatively proved using [6, Theorem
7.4].

We close this section with a generating function for a(G,⊆ U):

∑
U⊆V

(
a(G,⊆ U) ∏

v∈U
v
)
= ∑

π∈LG

(−1)d−|π|µG(0̂, π) ∏
B∈π

(
∏
v∈B

(1 + v)− 1
)

.
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4 Chromatic symmetric functions and Stanley’s sink theo-
rem

In this section, we present a new proof for [10, Theorem 3.3], which expresses the number
of acyclic orientations with a fixed number of sinks as the sum of the coefficients of
elementary symmetric functions eλ with a fixed length in the expansion of the chromatic
symmetric function. Our proof does not require the theory of quasi-symmetric functions
and P-partitions, which was used in the original proof of [10, Theorem 3.3].

We begin with the definition of the chromatic symmetric function XG of a graph G. Let
x1, x2, . . . be commuting indeterminates. A proper coloring κ of G is a function κ : V →
{1, 2, 3, . . . } such that κ(v) 6= κ(v′) whenever v, v′ ∈ V are adjacent.

Definition 4.1 ([10, Definition 2.1]). The chromatic symmetric function XG is defined as

XG = ∑
κ

∏
v∈V

xκ(v),

where the sum is over all proper colorings κ of G.

We will expand the symmetric function XG in terms of power sum symmetric func-
tions pλ and elementary symmetric functions eλ. Note that {pλ | λ ` n} and {eλ | λ ` n}
form bases for the space of all homogeneous symmetric functions of degree n.

Let us collect expansions of XG with respect to power sum symmetric functions pλ:

XG = ∑
S⊆E

(−1)|S|pλ(S) [10, Theorem 2.5] (4.1)

= ∑
S∈BG

(−1)|S|pλ(S) [10, Theorem 2.9]

= ∑
π∈LG

µ(0̂, π)ptype(π) [10, Theorem 2.6]

= ∑
o∈A(G)

(−1)d−|π(o)|ptype(π(o)) [1, Proposition 5.2],

where λ(S) and type(π) are the non-increasing sequences of the sizes of connected
components of a spanning subgraph S, and elements of a vertex partition π, respectively.

Let Λ be the Q-algebra of symmetric functions with Q-coefficients. Define an algebra
homomorphism φ : Λ→ Q[t] by φ(en) = t for each n ≥ 1. Then

φ(eλ) = tl(λ).

Lemma 4.2 ([11, Exercise 7.43]). The image of pn under φ is equal to

φ(pn) = (−1)n−1(1− (1− t)n).
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Applying Lemma 4.2 to equation (4.1) and comparing with the expression of aG(t) in
Theorem 3.2, we have an alternating proof of the sink theorem.

Theorem 4.3 ([10, Theorem 3.3]). Let XG = ∑λ ` d cλeλ be the expansion of the chromatic
symmetric function XG in terms of elementary symmetric functions eλ and let sink(G, j) be the
number of acyclic orientations of G with j sinks. Then

sink(G, j) = ∑
λ ` d

l(λ)=j

cλ.

5 On distinguishing graphs by acyclic orientation polyno-
mials

We end this paper with a discussion on how well graphs are distinguished by the poly-
nomials AG(V) and aG(t). Stanley [10] asked the question of whether the chromatic
symmetric polynomial XG distinguishes non-isomorphic trees. The answer to the ques-
tion is still unknown, but several graph polynomials [5, 8] associated with XG have been
introduced in the endeavor to resolve the question.

The (univariate) polynomial aG(t) is a weaker invariant than XG by Stanley’s sink
theorem. Trees with 10 or fewer vertices are distinguished by aG(t). But there exist non-
isomorphic trees having the identical aG(t) with 11 vertices. These two trees shown in
Figure 4 were introduced in [3] as the smallest instances which are not distinguished by
the subtree data.

Figure 4: Two non-isomorphic trees with the same aG(t).

The (multivariate) acyclic orientation polynomial AG(V) is a complete isomorphism
invariant. To see this, we first assume that G is connected. For two vertices u1, u2 ∈ V,
the coefficient of u1u2 in AG(V) is zero if and only if u1 and u2 are adjacent. Hence, the
polynomial AG(V) can recover the original graph G. For any graph G, the polynomial
AG(V) has a factorization into those of its connected components, and therefore using
the previous argument applied to each component shows that G can be determined by
AG(V).
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