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Abstract. We give a Uq(sln)-crystal structure on multiset-valued tableaux, hook-
valued tableaux, and valued-set tableaux, whose generating functions are the weak
symmetric, canonical, and dual weak symmetric Grothendieck functions, respectively.
We show the result is isomorphic to a (possibly infinite) direct sum of highest weight
crystals, and we provide an explicit bijection for multiset-valued tableaux. As a con-
sequence, these generating functions are Schur positive; in particular, the canonical
Grothendieck functions are Schur positive, which was not previously known. We ex-
tend Hecke insertion to express a dual stable Grothendieck function as a sum of Schur
functions.

Keywords: canonical Grothendieck function, crystal, quantum group, multiset-valued
tableau, hook-valued tableau, valued-set tableau

1 Introduction

The Grassmannian Gr(n, k) is the set of k-dimensional hyperplanes in Cn. K-theory
classes of structure sheaves of Schubert varieties form a basis of the K-theory ring of the
Grassmannian and are represented by Grothendieck polynomials. We can take the stable
limit to define stable Grothendieck functions Gw (often denoted Gw in the literature),
where w is a permutation. Stable Grothendieck functions have been well-studied using
a variety of methods; see for example [4, 1, 3, 8, 9, 10, 11, 12, 13] and references therein.

The functions Gw indexed by Grassmannian permutations w are called symmetric
Grothendieck functions, and they form a basis {Gλ}λ, where λ is a partition, for (an
appropriate completion of) the ring of symmetric functions Λ over Z[β]. A well-known
basis of Λ is the Schur functions {sλ}λ, and Gλ is Schur positive [9] with a finite ex-
pansion in each degree β. So we can apply the involution ω that sends sµ 7→ sµ′ , where
µ′ is the conjugate shape of µ. The resulting basis {Jλ}λ is known as the weak stable
Grothendieck functions. Since {Jλ}λ is a filtered basis, we can consider its dual basis
{gλ}λ under the Hall inner product called the dual symmetric Grothendieck functions.
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By also applying ω, we obtain the dual weak symmetric Grothendieck functions {jλ}λ.
Each of these bases have combinatorial interpretations with tableaux-like objects [3, 8].

In an effort to unify the bases {Gλ}λ and {Jλ}λ, Yeliussizov introduced in [16] the
canonical Grothendieck functions {Hλ}λ and fused the corresponding combinatorics in
hook-valued tableaux by combining those of set-valued tableaux for Gλ and multiset-
valued tableaux for Jλ. Furthermore, we have HλHµ = ∑ν(α + β)kν cν

λµHν for some kν if
and only if GλGµ = ∑ν cν

λµGν, and similarly for the coproduct. Likewise, he defined the
dual canonical Grothendieck functions as the corresponding dual basis, described them
combinatorially using rim border tableaux, and showed they are Schur positive.

Since a Schur function is a character for the special-linear Lie algebra sln, the Schur
positivity implies that (multi)set-valued tableaux, reverse plane partitions, and rim bor-
der tableaux should have Uq(sln)-crystal structures. Indeed, this was done for set-valued
tableaux [10] and for reverse plane partitions [6]. In this work, we obtain similar results
by constructing a Uq(sln)-crystal structure on multiset-valued tableaux and valued-set
tableaux. Furthermore, we show that many results from [10] for set-valued tableaux
have analogs for multiset-valued tableaux. More specifically, we extend the notion of the
uncrowding crystal isomorphism from [3, Section 6] to an explicit crystal isomorphism
from multiset-valued tableaux to the usual crystal on semistandard tableaux B(λ). We
also extend Hecke insertion [4] to give a crystal structure on weakly decreasing fac-
torizations and give a positive Schur expansion of general weak stable Grothendieck
functions.

Our other main result constructs a Uq(sln)-crystal structure on hook-valued tableaux.
This implies that Hλ is Schur positive as a corollary, which was not previously known.
Our crystal structure on hook-valued tableaux is a combination of the crystal structures
on set-valued tableaux and multiset-valued tableaux. However, we are not able to pro-
vide an explicit isomorphism with a highest weight crystal and instead must rely on the
Stembridge axioms [15]. Indeed, the set-valued (resp. multset-valued) tableaux crystal
structure preserves rows (resp. columns), each of which is isomorphic to hook shape,
and so the crystal structures are not directly compatible.

Since dual canonical Grothendieck are Schur positive [16, Theorem 9.8], there should
exist a Uq(sln)-crystal structure on rim border tableaux with an additional marking of
all interior boxes by either α or β as the exponent of (α + β) corresponds to the number
of interior boxes. However, the crystal structure appears to be more complicated than
combining the crystal structures on reverse plane partitions and valued-set tableaux.
Thus, it is an open problem to construct a Uq(sln)-crystal on marked rim border tableaux.

This paper is organized as follows. In Section 2, we provide the necessary back-
ground. In Section 3 (resp. Section 4, Section 5), we give our results on multiset-valued
(resp. hook-valued, valued-set) tableaux. This is an extended abstract version of [7].
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2 Background

We use English convention for partitions and tableaux. Let x = (x1, x2, . . .) be commut-
ing indeterminates. Let Uq(sln) be the quantum group of the special linear Lie algebra
over C. Let λ = (λ1, λ2, . . . , λ`) be a partition, also written as ∑n

i=1 ciΛi, where ci is the
number of columns of height i, under the identification with the Uq(sln) weight lattice.

A (multi)set-valued tableau of shape λ is a filling T of the boxes of Young diagram of λ

by finite nonempty (multi)sets of positive integers such that rows are weakly increasing
and columns are strictly increasing in the following sense: For every (multi)set A to the
left of a (multi)set B in the same row, we have max A ≤ min B, and for C below A in
the same column, we have max A < min C. A semistandard tableau is a set-valued tableau
with all sets of size 1. Let SVTn(λ) (resp. SSTn(λ), MVTn(λ)) denote the set-valued
(resp. semistandard, multiset-valued) tableaux of shape λ with entries at most n.

In [10], a Uq(sln)-crystal structure was given on SVTn(λ) whose crystal operators
ei, fi : SVTn(λ)→ SVTn(λ) t {0}, where i ∈ I := {1, . . . , n− 1}, are defined as follows.

Definition 2.1. Fix T ∈ SVTn(λ) and i ∈ I. Write + (resp. −) above columns of T
containing an i but not an i + 1 (resp. an i + 1 but not an i). Cancel signs in ordered pairs
−+ until obtaining a sequence of the form + · · ·+− · · · − called the i-signature.

The action of fi is given as follows. If there is not a + in the resulting sequence, then
fiT = 0. Otherwise let b correspond to the box of the rightmost uncanceled +. Then fiT
either given by removing the i from b→ and adding an i + 1 to b if there exists a box b→

immediately to the right of b that contains an i and otherwise replacing the i in b with
an i + 1. The action of ei is the reverse: Let b be the box for the leftmost uncanceled −.
Move the i + 1 from b←, the box immediately to the left of b, into b as an i if changing
the i + 1 ∈ b is not a valid set-valued tableau.

The weight of a set-valued tableau T ∈ SVTn(λ) is wt(T) := xm1
1 xm2

2 · · · x
mn
n , where mi

is the number of occurrences of i in T. Let |T| := ∑n
i=1 mi. This gives a Uq(sln)-crystal

structure on SVTn(λ).1 We say a T ∈ SVTn(λ) is highest weight if eiT = 0 for all i ∈ I.
A crystal morphism is called strict if it commutes with all ei and fi. For more details
on crystals, we refer the reader to [5]. This crystal structure on SSTn(λ) is the crystal
B(λ) of the irreducible Uq(sln)-module of highest weight λ. Furthermore, this gives a
Uq(sln)-crystal structure on words of length ` by equating with B(Λ1)

⊗`.

Theorem 2.2 ([10, Theorem 3.9]). Let λ be a partition. Then SVTn(λ) ∼=
⊕

λ⊆µ B(µ)⊕Sµ
λ ,

where the Sµ
λ is the highest weight elements of weight µ in SVTn(λ).

From [3], we can define a symmetric Grothendieck function as

Gλ(x; β) := ∑
T∈SVT∞(λ)

β|T|−|λ|wt(T),

1We give the weights as a multiplicative group as it is useful for defining polynomials in the sequel.
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Figure 1: The Uq(sl3)-crystal structure on SVT3
( )

= SVT3(2Λ2).

where |λ| denotes the size of λ (i.e., the number of boxes in λ). When β = 0, we recover
the Schur function, where the sum is instead over all T ∈ SST∞(λ). The weak symmetric
Grothendieck function is defined by

Jλ(x; α) := ∑
T∈MVT∞(λ)

α|T|−|λ|wt(T) = Gλ

(
x1

1− αx1
,

x2

1− αx2
,

x3

1− αx3
, . . . ; α

)
,

which recovers the definition given in [12, Theorem 6.11] when α = −1 and xi 7→ −xi.
Another equivalent way to define a weak symmetric Grothendieck function is by using
the involution ω on symmetric functions given by ωsλ(x) = sλ′(x), where λ′ is the
conjugate partition of λ. Indeed, we have Jλ′(x; α) = ωGλ(x; α) [8, Proposition 9.22].

The bases {Gλ}λ and {Jλ}λ have a common generalization given by Yeliussizov [16].
A hook tableau is a semistandard Young tableau T of the form

h A1 · · · Ak

L1
...

L`

, where
h is the hook entry,
A(T) := (A1, . . . , Ak) is the arm,
L(T) := (L1, . . . , L`) is the leg.

Let L+(T) := {h} ∪ L(T) denote the extended leg. A (semistandard) hook-valued tableau of
shape λ is a filling T of the boxes of λ by hook tableaux such that the rows are weakly
increasing and the columns are strictly increasing the in the same sense as for (multi)set-
valued tableaux. Let HVTn(λ) denote the set of hook-valued tableau of shape λ with
max entry n. The canonical Grothendieck polynomial is defined in [16] as

Hλ(x; α, β) := ∑
T∈HVT∞(λ)

α|A(T)|β|L(T)|wt(T).

Note that Hλ(x; α, 0) = Jλ(x; α) and Hλ(x; 0, β) = Gλ(x; β).
A reverse plane partition (RPP) of shape λ is a filling of λ by positive integers such
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that rows and columns are weakly increasing. Define the weight of a RRP P to be
wt(P) := xm1

1 xm2
2 · · · x

mn
n , where here mi is the number of columns that contain an i in P.

Denote |P| := ∑n
i=1 mi. Let RPPn(λ) be the set of reverse plane partitions with maximum

entry n. The dual symmetric Grothendieck function gλ(x; β) is defined

gλ(x; β) = ∑
P∈RPP∞(λ)

β|λ|−|P|wt(P).

The basis {gλ}λ is dual to {Gλ}λ under the Hall inner product and is Schur positive [8].
Let jλ(x; α) denote the dual weak symmetric Grothendieck function, which define by

jλ(x; α) = ωgλ′(x; α). The dual weak symmetric Grothendieck functions form the dual
basis of {Jλ}λ [8, Theorem 9.15] with the following combinatorial interpretation. Define
a valued-set tableau of shape λ to be a semistandard Young tableau of shape λ along with
a grouping of boxes such that each group is composed of adjacent boxes with the same
content (our description is conjugate to [8]). See Examples 5.2 and 5.4 for examples.
The weight of a valued-set tableau V is wt(V) := xm1

1 xm2
2 · · · x

mn
n , where here mi is the

number of groups that contain an i in V. Denote |P| := ∑n
i=1 mi. Thus, we have

jλ(x; α) = ∑
V∈VST∞(λ)

α|λ|−|V|wt(V),

where VSTn(λ) is the set of all valued-set tableaux of shape λ with max entry n. We call
the leftmost entry in a group the anchor. We will also consider groups constructed by
adding a vertical divider between certain pairs of entries i in the same row.

3 Crystal structure on multiset-valued tableaux

Definition 3.1 (Reading word). Let C be a column of T ∈ MVTn(λ). Define the column
reading word rd(C) by reading the smallest entry of each box from bottom-to-top in C
and then the remaining entries from smallest to largest in each box from top-to-bottom
in C. Define the reading word rd(T) = rd(C1) rd(C2) · · · rd(Ck), where C1, C2, . . . , Ck are
the columns of T from left-to-right.

Example 3.2. For the multiset-valued (column) tableau

C =

113

4445

6

7899

−→ rd(C) = 764113445899.

Definition 3.3 (Crystal operators). Fix T ∈ MVTn(λ) and i ∈ I. Consider the i-signature
as in Definition 2.1 using the reading word. The action of fi is given as follows. If there
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is not a + in the resulting sequence, then fiT = 0. Otherwise let b correspond to the box
of the rightmost uncanceled +. Then fiT is given by removing an i from b and adding
an i + 1 to b↓ if there exists a box b↓ immediately below b that contains an i + 1 and
otherwise replacing the i in b with an i + 1. The action of ei is the reverse: Let b be the
box for the leftmost uncanceled −. Move the i + 1 from b into b↑, the box immediately
above b, as an i if changing the i + 1 ∈ b is not a valid multiset-valued tableau.

Example 3.4. The connected components in MVT3(Λ2) with the crystal operators from
Definition 3.3 that correspond to α0, α1, and α2 are
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111
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11
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Lemma 3.5. Let T ∈ MVTn(λ) and suppose fiT 6= 0, then the i changed to i+ 1 in fiT does not
change its position in the reading word. That is to say, we have rd( fiT) = fi rd(T). Moreover,
this defines a strict crystal embedding from MVTn(λ).

Remark 3.6. We note that our reading word is the column version of the reading word
from [1, Definition 2.5]. Furthermore, when we consider the reading word from [1,
Definition 2.5] applied to SVTn(λ), but otherwise keep the same crystal operators, then
the analog of Lemma 3.5 holds in that setting. In addition, our reading word and crystal
structure for a single column is similar to the one for the minimaj crystal from [2].

Theorem 3.7. Let λ be a partition. We have

MVTn(λ) ∼=
⊕
µ⊇λ

B(µ)⊕Mµ
λ , Jλ(x; α) = ∑

µ⊇λ

α|µ|−|λ|Mµ
λsµ(x),

where Mµ
λ is the number of highest weight elements of weight µ in MVTn(λ).
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Our proof is similar to that from [10]: we show the isomorphism for a building
block, here these are single columns (in [10], these are single rows), and using general
properties of the tensor product rule. Note that Lemma 3.5 also yields Theorem 3.7 as
every B(µ) ⊆ B(Λ1)

⊗|µ|, where the strict embedding is given by the reading word.

Proposition 3.8. Suppose T ∈ MVTn(λ) is a highest weight element. Then the i-th row of T
contains only instances of the letter i.

Let F c
µ/λ denote the set of column flagged tableaux, semistandard tableaux that strictly

increase across rows and whose i-th column has maximum entry strictly less than i. Let

T RSK←−− T′ denote the Robinson–Schensted–Knuth (RSK) insertion of rd(T′) into T.
Next, we construct an explicit crystal isomorphism

Υ : MVTn(λ)→
⊔

µ⊇λ

B(µ)×F c
µ/λ,

where the crystal structure on the codomain is given by fi(b × F) = ( fib) × F for all
b× F ∈ B(µ)×F c

µ/λ for any fixed µ. We call the map Υ uncrowding as it is similar to the
uncrowding map for set-valued tableaux (see [3, Section 6], [1, Section 5], and [10, The-
orem 3.12]), but working column-by-column and measuring the growth of the diagram
along columns. More specifically, for any T ∈ MVTn(λ) we define Υ(T) recursively
starting with bλ1+1 × Fλ1+1 = ∅ × ∅. Suppose we are at step i with the current state
being bi × Fi, and let Cj denote the j-th column of T. Construct

bi−1 := rd(Cλ1)
RSK←−− · · · RSK←−− rd(Ci)

RSK←−− rd(Ci−1).

Construct Fi−1 by starting first with Fi of shape µi but shifting the necessary elements
to the right one step to partially fill in the (skew) shape of bi−1. Then add entries in
the unfilled boxes in column j with entry j − 1 until Fi−1 has been filled in. Thus, we
constructed the (i− 1)-th step bi−1 × Fi−1. The final result is Υ(T) = b1 × F1.

Example 3.9. Applying uncrowding to

T =

112 22 256

33 444 7

568

9

,

where rd(T) = 953112368 42244 7256, we start with b4 × F4 = ∅×∅ and then obtain

b3 × F3 =
2 5 6
7

× · 1 2
· ,
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b2 × F2 =
2 2 2 4 5 6
4 4 7

× · · 1 2 4 5
· · 2

,

Υ(T) = b1 × F1 =

1 1 2 2 2 2 4 5 6
3 3 4 4 7
5 6 8
9

×

· · · 1 2 4 5 7 8
· · · 2 4
· 1 2
·

.

Theorem 3.10. Under the isomorphism by the uncrowding map Υ, we have

MVTn(λ) ∼=
⊕
µ⊇λ

B(µ)⊕|F
c
µ/λ|, Jλ(x; α) = ∑

µ⊇λ

α|µ|−|λ||F c
µ/λ|sµ(x).

As a consequence of Theorem 3.10, we have Mµ
λ = |Fµ/λ|. Furthermore, these are the

conjugate of the flagged increasing tableaux of Lenart [9], and so

Gλ(x; β) = ∑
µ⊇λ

Mµ′

λ sµ = ∑
µ′⊇λ

Mµ′

λ ωsµ′ = ωJλ(x; β),

yielding a crystal-theoretic proof of [8, Proposition 9.22] (recall that ω is an involution).
The 0-Hecke monoid is the monoid of all finite words in the alphabet {1, 2, . . . , n}

subject to the relations ij ≡ ji if |i − j| > 1, iji ≡ jij if |j − i| = 1, and ii ≡ i. For any
w ∈ Sn, let Hk

w denote the words of length k that are equivalent to a reduced expression
of w in the 0-Hecke monoid (i.e w = si1 · · · si` is considered as i1 · · · i` and does not
depend on the reduced expression of w). Let Ĥk

w,m denote the set of two-line arrays[
1 · · · 1 1 2 · · · 2 2 · · · m · · · m

a1`1 · · · a12 a11 a2`2 · · · a22 a21 · · · am`m · · · am1

]
such that 1 ≤ ap1 ≤ · · · ≤ ap`p < n, (a1`1 · · · a11) · · · (am`m · · · am1) ≡ w, and ∑m

p=1 `p = k.
Let Pw(λ) denote the set of increasing tableaux of shape λ such that reading the

entries of P from top-to-bottom, right-to-left is equivalent to w in the 0-Hecke monoid.
Let MVT(λ)k denote the set of multiset-valued tableaux T such that |wt T| = k.

Proposition 3.11. Hecke insertion defined in [4] is a bijection Ĥk
w →

⊔
λ Pw(λ)×MVT(λ)k.

Definition 3.12. The weak stable Grothendieck polynomial is defined to be

Jw(x; α) :=
∞

∑
k=`(w)

αk−`(w) ∑
(w,a)∈Ĥk

w

k

∏
i=1

xai .

The discussion above implies that Jw(x; α) = ∑∞
k=`(w) αk−`(w) ∑(P,Q̂) wt(Q̂), where we

are summing over all (P, Q̂) ∈ ⊔λ Pw(λ)×MVT(λ)k. Putting this all together we obtain:
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Proposition 3.13. For any w ∈ Sn, we have

Jw(x; α) = ∑
λ

∑
P∈Pw(λ)

∞

∑
k=`(w)

αk−`(w) ∑
Q̂

swt(Q̂), Jw(x; α) = ∑
λ

α|λ|−`(w)|Pw(λ)|Jλ(x; α),

where we take the sum over all Q̂ ∈ MVT(λ)k such that Q̂ is a highest weight element.

4 Crystal structure on hook-valued tableaux

Definition 4.1 (Reading word). Let C be a column of T ∈ HVTn(λ). Define the column
reading word rd(C) by reading the extended leg from largest to smallest in each box
from bottom-to-top in C and then the entries in the arm from smallest to largest in each
box from top-to-bottom in C. Define the reading word rd(T) = rd(C1) · · · rd(Ck), where
C1, C2, . . . , Ck are the columns of T from left-to-right.

Example 4.2. For the hook-valued tableau

T =

11
3

4
5

447
5
6

7779

899
9

−→ rd(T) = 986543114799754779.

We define crystal operators by combining the set-valued crystal operators and the
multiset-valued crystal operators.

Definition 4.3 (Crystal operators). Fix T ∈ HVTn(λ) and i ∈ I. We define fiT (resp. eiT)
by applying Definition 3.3 if i (resp. i + 1) is in the arm of b and Definition 2.1 otherwise.

The hook element is min b, and so if we move the hook entry, there is no ambiguity
in defining the hooks in fiT and eiT by the definition of the crystal operators.

Example 4.4. The following connected components in HVT3(2Λ1) are those that corre-
spond to αβ and both are isomorphic to B(Λ2 + 2Λ1):

1 11
2

1 12
2 1 13

2 1 13
3 1 23

3 2 23
3

1
2 22 1

2 23 1
2 33 1

3 33

1 11
3 1 12

3 1 22
3 2 22

3

2
3 33

1

1

2

2 2

1

1 1

2 2 2 1

1 1 1

2 2

2
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11 1
2

11
2 2 11

2 3 11
3 3 12

3 3 22
3 3

12
2 2 12

2 3 13
2 3 13

3 3

11 1
3 11 2

3 12 2
3 22 2

3

23
3 3

1

1

2

2 2

1

1 1

2 2 2 1

1 1 1

2 2

2

Lemma 4.5. ei and fi are well-defined and eiT = T′ ⇐⇒ T = fiT′ for all T, T′ ∈ HVTn(λ).

Theorem 4.6. Let λ be a partition. We have

HVTn(λ) ∼=
⊕
µ⊇λ

B(µ)⊕Hµ
λ , Hλ(x; α, β) = ∑

T
α∑b∈T |A(b)|β∑b∈T |L(b)|swt(T)(x),

where Hµ
λ is the number of highest weight elements of weight µ in HVTn(λ) and the sum is

taken over all highest weight elements in HVTn(λ).

We prove Theorem 4.6 using the Stembridge axioms [15].

Example 4.7. We have the following local relation in HVT3(2Λ1) on the left and their
corresponding reading words on the right:

11
2

2
3

12
2

2
3

11
2
3

3
12
2
3

3

1

2

1

2

21132 21232

32113 32123

1

2

1

2

For the the upper-left hook-valued tableau T, we note that while the position of the 1
that is acted on by f1 in T and f2T is the same, it is still the second 1 in the reading word.

5 Crystal structure on valued-set tableaux

Definition 5.1 (Reading word). Let T ∈ VSTn(λ). Define the reading word rd(T) to be the
reading word of the usual reading word of the tableau of the anchors of T.

Example 5.2. For the valued set tableau

T =

1 11 1 1 1 2
2 2 2
3

3 3
4 4

4
4

5 5 5
5 5 5

5 5

6

7 7
8

, we have
rd(T) = 75321485153452456,

wt(T) = x2
1x2

2x2
3x3

4x5
5x6x7x8.
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Definition 5.3 (Crystal operators). Fix T ∈ VSTn(λ) and i ∈ I. Consider the i-signature
of rd(T) as in Definition 2.1. Define fiT as follows. If there is no + in the resulting
sequence, then fiT = 0. Otherwise let g correspond to the group of the rightmost
uncanceled +. Define fiT by moving the divider on the left of g one step down if there
is an i + 1 immediately below g and otherwise changing every i to an i + 1 in g. The
definition of ei is the reverse: Let g be the group of the leftmost uncanceled −. Move the
divider up if changing all i + 1’s to i’s in g is not a valued-set tableau.

Example 5.4. The following are connected components in VST3(3Λ2) corresponding to
α2 that are isomorphic to B(2Λ2) and B(Λ2 + 2Λ1):
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Theorem 5.5. Let λ be a partition. Then rd defines strict crystal embedding from VSTn(λ) and

VSTn(λ) ∼=
⊕
µ⊆λ

B(µ)⊕Vµ
λ , jλ(x; α) = ∑

µ⊆λ

α|λ|−|µ|Vµ
λ sµ(x),

where Vµ
λ is the number of highest weight elements of weight µ in VSTn(λ).
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