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Combinatorics is the branch of Mathematics dealing with finite structures, while Ge-
ometry deals with spatial structures. Thus Combinatorial Geometry deals with the close
interaction of discrete geometric objects and the combinatorial objects and data that
determine them.

In this framework, essential aspects of a great variety of geometric structures can be
studied in terms of combinatorial data (such as the number and incidence structure of
the points, lines, planes etc. involved). At the same time, many combinatorial objects
can be represented by geometric models (e.g. graphs, complexes, and polytopes), which
leads to additional insight and new methods for their analysis.

The new methods of combinatorial geometry rely on a systematic development of
the combinatorial models for geometric structures. Moreover, one uses that the struc-
ture, completeness and complexity of combinatorial objects can be measured in terms of
topological and algebraic invariants [1]. The evolving systematic theory of combinatorial
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structures can be applied in many mathematical situations. For this the reduction to
combinatorial problems is often not new (see e.g. the method of cell decomposition and
stratifications of topological spaces) — the new element in the game is the (algebraic and
topological) theory that is available to deal with the combinatorial data generated this
way.

Our research program, supported by “Algebraic Combinatorics” network in the EU
Human Capital and Mobility Programme, deals with selected questions that seem to be
in the focus of current interest. In the following we describe five ranges of topics studied
within our research group, with very brief sketches of the structures and problems studied,
of current research work and some recent progress and success. We are happy to provide
more information, details and explanations.

1. Polytope Theory.

Polytope theory has made rapid, substantial progress in the last few years (see Ziegler
[19]), and has experienced more and more interest from “pure mathematics”, due to its
close connections to parts of algebraic geometry (e.g. toric varieties), optimization (linear
programming), commutative algebra, and so on. Thus, for example, the construction of
the “permuto-associahedra” as symmetric, convex polytopes (Reiner & Ziegler [9]) was
motivated by a problem by Kapranov from Homotopy Theory.

A comprehensive goal in our research on polytopes asks to understand more about the
algebraic structure of polytopes, including diameter questions, rationality, decomposition
theory, as well as the universal constructions within the category of polytopes.

The realization spaces of polytopes are objects of particular importance and interest.
Here one studies the configuration space given by all the realizations of some discrete
object, and asks for the (topological and arithmetic) complexity of this space. A class
of structures is called universal if (essentially) all semialgebraic sets can appear as con-
figuration spaces of objects in the class. Mnëv’s celebrated “Universality Theorem” for
oriented states that planar line configurations are universal in this sense. By now, even
a simple proof of a much more powerful “Universal Partition Theorem” is available, see
Richter-Gebert [12].

Quite spectacular progress was recently achieved by Richter-Gebert [11, 14]: a strong
Universality Theorem (and a Universal Partition Theorem) for 4-dimensional polytopes,
which has many interesting corollaries, among them
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• realization spaces of 4-polytopes can have complicated homotopy types,

• for 4-polytopes one cannot prescribe the shape of a 2-face, (a Schlegel diagram for
the simplest example, a 4-polytope X with 10 vertices, is indicated below),

• not every combinatorial type can be realized with rational coordinates,

• for integral realizations of rational 4-polytopes, one needs at least doubly exponen-
tially large coordinates.

After these complete answers for 4-polytopes, some of the open problems about 3-
polytopes need to be reevaluated, and studied anew.

2. Homotopy Theory of Finite Structures.

Homotopy methods provide essential new tools for problems of Algebraic Combinatorics.
Combinatorial methods here led to elementary proofs for the famous homology formulas
of Goresky & MacPherson, and even to homotopy formulas (Ziegler & Živaljević [16]),
with applications in complexity theory (Björner, Lovász & Yao). Surveys of this line
of research, which has led to a quite complete picture of the topological structure of
arrangements, are given in Björner [2] and in Ziegler [18, Chap. 1]. The “homotopy
theory techniques” (in particular, the diagram method of Ziegler & Živaljević [16]) still
have great potential. We are working both on the tools and on extending the range of
applicability.

For this one needs a systematic theory of diagrams of spaces and their homotopy
limits. Substantial progress in this direction is given in Welker, Ziegler & Živaljević [15],
providing a collection of versatile tools for the manipulation and comparison of homotopy
limits of different posets, including analogs of the main homotopy comparison results for
order complexes, in particular of the Quillen Fibration Theorem and the Björner-Walker
Complementation Formula.

This makes the diagram construction available in much more general contexts. Ap-
plications include the topology of toric varieties, as well as the homotopy types of posets,
with a new proof of Björner’s [3] Generalized Homotopy Complementation Formula. In
the future we will test and work out applications to combinatorial, geometric and topo-
logical situations (esp. configurations, tilings, knots, arrangements) of special interest. A
particularly challenging problem here is the classification of line configurations in real or
projective 3-space.

This research is done in close collaboration with the Stockholm Group (Prof. Anders
Björner) of the EU network.
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3. Matroid Theory, and the Grassmannians.

Oriented Matroids [4] are a versatile and widely applicable model for geometric objects.
In this model, one can, in particular, profitably study realizability and embeddability
problems.

The oriented matroid models associated with (stratifications of) the finite-dimensional
real Grassmannians are important structures that link several topics mentioned above.
Here we investigate the local (inductive resp. shelling) structure of spaces of oriented
matroids resp. spaces of strings in polytope theory, which are discrete models for finite-
dimensional Grassmannians. This is also closely related to the investigations of the Paris
Group (Prof. Alain Lascoux).

Here our recent research is connected to two most important problems:

• the “Generalized Baues Conjecture” of Billera, Kapranov & Sturmfels, for which
we provided counterexamples in Rambau & Ziegler [8], and

• the cohomology structure of the “OM-Grassmannian,” see Mnëv & Ziegler [7]. Here
research is directed towards the key problem of MacPherson’s theory of “combina-
torial differential manifolds.” This is closely related to our work on the geometric
realization of extension spaces via zonotopal tilings, via the Bohne-Dress Theorem
(see Richter-Gebert & Ziegler [13]).

• The structure of the complex matroids introduced and studied in Ziegler [17]. Spaces
of such complex matroids provide models for complex Grassmannians, and should
eventually lead to the analogs of Chern classes for complex combinatorial differential
manifolds.

4. Automatic Theorem Proving.

This is a large, important field of research, connecting geometry with combinatorics and
algebra. Here the aim is to design algorithms that can use the structural data of hypothe-
ses and conclusions of a geometric theorem (incidence properties, angles, etc.) in order to
automatically generate a proof. New approaches and tools [10] are based on methods of
invariant theory (going back to Felix Klein’s work!), which can be translated into effective
algorithms.

In collaboration with H. Crapo (INRIA, Paris) we are developing a software package
[5, 6] that provides an interactive, graphic interface, linked to a powerful prover, for
dealing with geometric theorems. Here work is still in progress — but the performance
of the current prototype version is already impressively strong!
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[3] A. Björner: A generalized homotopy complementation formula, Preprint 1995.

[4] A. Björner, M. Las Vergnas, B. Sturmfels, N. White & G. M. Ziegler: Oriented Matroids,
Encyclopedia of Mathematics 46, Cambridge University Press 1993.

[5] H. Crapo & J. Richter-Gebert: Automatic proving of geometric theorems, in: Proc. Confer-
ence “Invariant Methods in Discrete and Computational Geometry,” Williamstadt, Curacao
1994, Kluwer Academic Publishers, to appear.

[6] H. Crapo & J. Richter-Gebert: CINDERELLA Computer Interactive Drawing Environ-
ment, work in progress.
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