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1 Introduction

This article is a short survey on the following problem: given a set X ⊆
N, find a “simple algorithm” accepting X and rejecting N \ X. By simple
algorithm, we mean a finite automaton, a substitution, a logical formula, . . .

We will see that these algorithms strongly depend on the way one repre-
sents the integers. However, once the base of representation is fixed, these
models are all equivalent.

This article is divided into two parts. Standard bases like base 10 are first
considered. The properties are then generalized to nonstandard bases like
the Fibonacci one. No proofs are given, but several examples try to explain
the results.

The state of the art on this subject was presented at the “Séminaire
Lotharingien de Combinatoire”, Hesselberg, Germany, 4–6 October 1995.

2 Standard Numeration Systems

2.1 Dependence on the Base

We begin with an example: the set X of powers of two

X = {2n | n ∈ N} .
∗This work was partially supported by ESPRIT-BRA Working Group 6317 ASMICS
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Figure 1: Automaton for the powers of two in base 2.
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Figure 2: Automaton for the powers of two in base 4.

In base 2, X is represented as the set of binary words equal to X2 =
{1, 10, 100, 1000, . . .}. The finite automaton of Figure 1 accepts X because
the words of X2 (with any number of leading zeroes) are exactly the labels
of the paths going from the initial state a to the final state b. We say that
X is 2-recognizable.

In base 4, there is also a finite automaton accepting X (see Figure 2).
The set X is represented in base 4 as X4 = {1, 2, 10, 20, 100, 200, . . .} and
the words of X4 over the alphabet {0, 1, 2, 3} are the labels of the paths from
state a to b in Figure 2 (leading zeroes are allowed). The set X is then
4-recognizable.

The automaton in base 4 is easily constructed from the automaton in
base 2. The three states are identical, the arrows of the second automaton
are exactly the paths with length 2 of the first one. Indeed letters 0, 1, 2, 3
in base 4 correspond to words 00, 01, 10, 11 in base 2.

The set X written in base 3 is X3 = {1, 2, 11, 22, 121, 1012, . . .}. No
regularity appears inside the first words of X3. Does this mean that X is not
3-recognizable?

To answer this question, we are going to state some results, in particular
the famous Cobham’s theorem.

Given a base p ≥ 2, a set X ⊆ N is called p-recognizable if X written in
base p is accepted by a finite automaton. Two bases p, q ≥ 2 are said multi-
plicatively dependent if p = rk, q = rl for some r, k, l ∈ N. Otherwise, they
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are multiplicatively independent. The relation “to be multiplicatively depen-
dent” divides N \ {0, 1} into equivalence classes {{2, 4, 8, . . .}, {3, 9, 27, . . .},
{5, 25, 125, . . .}, {6, 36, 216}, . . .}.

It is rather easy to prove that inside a class, the existence of an automaton
accepting X ⊆ N is independent of the base (remember the example above
with bases 2 and 4).

Proposition 1 Let p, q ≥ 2 be two multiplicatively dependent bases. Then a
set X ⊆ N is p-recognizable if and only if it is q-recognizable.

Some sets X admit a finite automaton in any base. These are the ul-
timately periodic sets, equal to finite unions of arithmetic progressions, like
the set X = {3n | n ∈ N} ∪ {3n+ 1 | n ∈ N}.

Proposition 2 Let X ⊆ N be an ultimately periodic set, then X is p-
recognizable for any p ≥ 2.

Cobham’s theorem [14] states that ultimately periodic sets are the only
ones to be recognizable in every base. It states more: X is ultimately periodic
as soon as it is recognizable in two bases chosen in two distinct equivalence
classes. This result shows that the set X of powers of two cannot be 3-
recognizable, as this set is not ultimately periodic.

Theorem 1 Let p, q ≥ 2 be two multiplicatively independent bases. If a set
X ⊆ N is p-recognizable and q-recognizable, then X is ultimately periodic.

The reader is referred to Chapter 5 of Eilenberg’s book [17] for properties
of p-recognizable sets. Cobham’s proof [14] is only 4 pages long, but Eilen-
berg says that “it is a challenge to find a more reasonable proof”. The first
comprehensible proof is Hansel’s one [26, 38]. Other authors have recently
found simple logical proofs [34]. An extension of Cobham’s theorem to sub-
sets X of Nm with m ≥ 2 is due to Semenov [41]. The proof of Semenov
is difficult; simpler proofs are available in [36, 10], [35] and [3]. Fagnot [20]
has recently extended Cobham’s theorem where the set X is replaced by two
sets X, Y with the same “set of factors”.
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2.2 Equivalence of the Models

We again consider the example X of the powers of two and the (fixed) base
2. We already know that X is 2-recognizable.

It is also 2-substitutive in the following way. There exists a 2-substitution
f : A = {a, b, c} → A2 and a projection g : A→ {0, 1}

f : a → ab g : a → 0
b → bc b → 1
c → cc c → 0 .

In this situation, the algorithm accepting X runs as follows: infinitely iterate
f on letter a, apply g on the generated infinite word. Notice that this infinite
word is a fixpoint of f because f(a) begins with a.

a → ab → abbc → abbcbccc → . . .
↓ ↓ ↓ ↓
0 → 01 → 0110 → 01101000 → . . . → X .

The generated binary infinite word is precisely the characteristic word X of
X

n ∈ X ⇔ Xn = 1 .

Another model to accept X uses formal series. With X we associate the
formal series

X(y) =
∞∑
n=0

y2n = y + y2 + y4 + . . . .

The set X is called 2-algebraic because the series X(y) is algebraic over F2[y],
i.e., it is root of the polynomial p(t) = t2 + t + y with coefficients in F2[y].
Indeed, remember that in the field F2 with characteristic 2, one has 1+1 = 0.

The last model uses logical formulas. Let 〈N,+, V2〉 be the logical struc-
ture where + denotes the usual addition in N and V2(x) = y means that y is
the greatest power of two dividing x. The computation of y = V2(x) is easy
if x is written in base 2: if the representation of x is u10n, then the repre-
sentation of y is 10n. With this structure, we can write first-order formulas
with variables describing N, the equality =, the two functions + and V2, the
connectives ∨,∧,¬,→,↔ and the quantifiers ∃,∀ (on the variables).

We say that the set X of powers of two is 2-definable because X is defined
by the formula ϕ(x) equal to V2(x) = x. Another example of 2-definable set
is {3n | n ∈ N} using the formula (∃y)(x = y + y + y).
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Let us now give the general definitions for a fixed base p ≥ 2. The first one
is the notion of p-recognizable set introduced in Subsection 2.1. A set X ⊆ N
is called p-substitutive if there exist a p-substitution f : A → Ap (with f(a)
beginning with a for some a ∈ A) and a projection g : A→ {0, 1} such that
the characteristic infinite word X of X is equal to g(fω(a)). If p is a prime
number, X is said to be p-algebraic if the formal series X(y) =

∑
n∈X y

n is
algebraic over K[y] with K a field with characteristic p. Finally, we say that
X is p-definable if X equals {x ∈ N | ϕ(x) is true } where ϕ(x) is a first-order
formula of the structure 〈N,+, Vp〉. Recall that Vp(x) = y means that y is
the greatest power of p dividing x.

As shown on the example above, the four models are equivalent.

Theorem 2 Let p ≥ 2 and X ⊆ N . Are equivalent
1. X is p-recognizable,
2. X is p-substitutive,
3. X is p-algebraic (if p is prime),
4. X is p-definable.

Theorem 2 collects the works of several authors. Equivalence (1) ⇔ (2)
is proved in [15] where Cobham calls “tag systems” the p-substitutions.

Let us show on the example of the powers of two, how substitutions
simulate automata. Remember that this set is 2-substitutive, thanks to f
defined by f(a) = ab, f(b) = bc, f(c) = cc, and g defined by g(a) = 0,
g(b) = 1, g(c) = 0. The 2-substitution f simulates the transitions of the
automaton of Figure 1. Indeed the alphabet A used by f is the set of states
{a, b, c} of the automaton. The image of a by f is ab because there is an
arrow from state a to state a labelled by 0 and an arrow from state a to
state b labelled by 1. The iteration of f on the initial state a indicates the
list of states reached by binary words of length 1, 2, 3, . . . The projection g
indicates, by a 1, which states are final.

0 1 00 01 10 11 000 001 010 011 100 101 110 111
a → a b → a b b c → a b b c b c c c
↓
0 → 0 1 → 0 1 1 0 → 0 1 1 0 1 0 0 0

Equivalence (1)⇔ (3) is proved in [13].
Equivalence (1) ⇔ (4) is due to Büchi [11], with a proof only for base

2 and structure 〈N,+, P2〉 instead of 〈N,+, V2〉 (predicate P2(x) means that
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Figure 3: Automaton for the addition in base 2.

x is a power of p). In a review of Büchi’s paper, MacNaughton [32] says
that predicate P2 is not correct and suggests predicate e2(x, y) meaning that
y is a power of 2 which appears with digit 1 in the representation of x in
base 2. In [8], Büchi’s paper is corrected and generalized to any base p with
structure 〈N,+, Vp〉 instead of 〈N,+, Pp〉. Moreover the proof of (4) ⇒ (1)
uses techniques developed by Hodgson in [28]. The other implication (1)⇒
(4) is first simplified in [33] and then in [46].

The characterization of automata by formulas is plenty of information for
the following reasons. Addition can be checked by a finite automaton. The
case of base 2 is given on Figure 3: the two states a, b indicate correct com-
putation without and with carry respectively, the state c indicates uncorrect
computation. Notice that words must be read from right to left.

Multiplication cannot be checked by a finite automaton (because it cannot
be defined by a formula of 〈N,+, Vp〉). Only multiplication by a constant is
allowed since c ∗ y, with c an integer constant, is defined in 〈N,+, Vp〉 by
y + · · · + y (c times). The set X whose “elements are numbers 27 ∗ y with
y = z + 1 and z divisible by 4” is p-recognizable for any p ≥ 2. Indeed, X is
definable by the following formula ϕ(x) of 〈N,+〉 which is a substructure of
〈N,+, Vp〉

(∃y)(∃z)(∃t)(x = 27 ∗ y) ∧ (y = z + 1) ∧ (z = 4 ∗ t)

(constants are definable in 〈N,+〉). A proof based on automata would be
rather tedious.
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Hodgson’s paper [28] shows that N, =, + and Vp are the “core” of the
automata. It describes a generic method to translate a formula of 〈N,+, Vp〉
into a finite automaton, as soon as the “basic” automata for N, {(x, y) ∈
N

2 | x = y}, {(x, y, z) ∈ N3 | x+ y = z} and {(x, y) | Vp(x) = y} are known.
Finally, notice [33] that the structure 〈N,+, Vp〉 has the same expressive

power than the structure 〈N,+, ep(x, y)〉 proposed by MacNaughton. Notice
also that Büchi has really made a mistake by using 〈N,+, Pp〉 instead of
〈N,+, Vp〉 which is more powerful than 〈N,+, Pp〉 [16, 42, 12, 8].

3 Nonstandard Numeration Systems

3.1 Representations of Integers

The Fibonacci sequence can be used as a nonstandard base. For instance,
the integer sixteen is represented as the following binary words

. . . 34 13 8 5 3 2 1
1 0 0 1 0 0
1 0 0 0 1 1

1 1 1 0 0
1 1 0 1 1

Among these four representations, one is more natural, the first one given by
the Euclidean algorithm. We call it the normalized representation of sixteen
in the Fibonacci base.

More generally [22], a base or numeration system is a striclty increasing
sequence U = (Un)n∈N of integers such that

1. U0 = 1 (in a way to represent all n ∈ N),

2. sup Un+1

Un
<∞ (in a way to have a finite alphabet of digits when using

the Euclidean algorithm).

The canonical alphabet associated with U is therefore AU = {0, 1, . . . , c}
with c maximum such that c < sup Un+1

Un
. A representation of n ∈ N is any

word ak · · · a0 ∈ A∗U such that n =
∑k

l=0 alUl. The particular representation
given by the Euclidean algorithm is called normalized representation. These
definitions naturally generalize the usual bases p ≥ 2.

7



0

0

1

a b

Figure 4: Automaton for N in Fibonacci base.
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Figure 5: Automaton for Thue-Morse set in Fibonacci base.

3.2 U-Recognizable Sets

Let U be a numeration system. A set X ⊆ N is U-recognizable is the normal-
ized representations of the elements of X are accepted by a finite automa-
ton. Figures 4 and 5 show two examples for the Fibonacci base, respectively
X = N and X = {n ∈ N | the normalized representation of n has an even
number of 1’s }.

To get a logical characterization of U -recognizable sets, as it was done
for standard bases in Theorem 2, the first task is the construction of a finite
automaton for the set N, the equality =, the addition + and the function
VU . This is done in the next sections.

3.3 U-Recognizability of N

Contrarily to standard bases p ≥ 2, for some numeration systems, a finite
automaton for N does not exist.

Proposition 3 [44, 31] Let U be a numeration system. If N is U-recognizable,
then U satisfies a linear recurrence relation with integer coefficients.
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For instance, if U is the Fibonacci base, we know that N is U -recognizable
(see Figure 4) and we have Un = Un−1 +Un−2, for all n ≥ 2. The same holds
for the usual base 10 for which Un = 10Un−1.

The converse of Proposition 3 is false, since N is not U -recognizable for
the numeration system U defined by the recurrence Un = 2Un−2 + Un−3 and
the initial conditions U0 = 1, U1 = 2 and U2 = 4.

Hollander [29] has recently described which recurrence relations allow a
finite automaton for N, under the hypothesis that

lim
n→∞

Un+1

Un
= θ

for some real number θ > 1. His description is strongly related to the θ-
expansion eθ(1) of 1 defined as follows [37]. Compute by the greedy algorithm

1 =
∞∑
i=1

di
θi

.

Then eθ(1) is equal to d1d2 · · · di · · ·.
For instance, for the Fibonacci base, lim Un+1

Un
= ϕ = 1+

√
5

2
and 1 = 1

ϕ
+ 1

ϕ2 .

For the decimal numeration system, eθ(1) = 10. For the numeration system
Un = 3Un−1 − Un−2, with U0 = 1, U1 = 3, we have lim Un+1

Un
= ϕ2 and

eϕ2(1) = 21ω. Observe that in these three examples, N is U -recognizable and
the θ-expansion of 1 is either finite or ultimately periodic. This is always the
case.

Proposition 4 [29] Let U be a numeration system such that lim Un+1

Un
= θ >

1. If N is U-recognizable, then eθ(1) is finite or ultimately periodic (in this
case, θ is called a β-number [37]).

Now, assume that the θ-expansion of 1 is ultimately periodic

eθ(1) = d1 · · · dl(dl+1 · · · dl+p)ω .

One verifies that eθ(1) is root of the polynomial

Pl,p(x) = xl+p −
l+p∑
i=1

dix
l+p−i − xl +

l∑
i=1

dix
l−i .
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If l, p are minimal, then Pl,p(x) is called θ-polynomial, otherwise extended
θ-polynomial.

For example, for the previous system Un = 3Un−1 − Un−2, with 21ω as
θ-expansion of 1, we get P1,1(x) = x2− 3x+ 1 as θ-polynomial and P2,2(x) =
x(x+1)(x2−3x+1) as an extended θ-polynomial. One can notice that P1,1(x)
is exactly the polynomial of the recurrence Un = 3Un−1 − Un−2 defining U .

We can now state the main theorem [29].

Theorem 3 Let U be a numeration system such that lim Un+1

Un
= θ > 1.

Assume that eθ(1) is ultimately periodic. Then N is U-recognizable if and
only if U satisfies a recurrence relation whose polynomial is a (extended)
θ-polynomial.

A little more complex characterization holds, when eθ(1) is finite, instead
of being ultimately periodic.

3.4 Bertrand Numeration Systems

In [2], particular numeration systems are introduced, which can be seen as
the most natural numeration systems in the following sense. A system U is
called Bertrand numeration system if

w is a normalized representation
⇔ w0n is a normalized representation.

For example, the Fibonacci base is a Bertrand numeration system. However,
the system U with the same reccurence Un = Un−1 +Un−2, but with different
initial conditions U0 = 1 and U1 = 4, is not a Bertrand numeration system.

The next property characterizes Bertrand numeration systems.

Theorem 4 A system U is a Bertrand numeration system if and only if

U0=1
Un = d1Un−1 + d2Un−2 + . . .+ dnU0 + 1

where d1d2 · · · di · · · is the θ-expansion eθ(1) of 1, for some θ > 1.

Moreover, with respect to Theorem 3, one can prove that for a Bertrand
numeration system U , N is U -recognizable if and only if the polynomial of
the recurrence defining U is the θ-polynomial of θ and the initial conditions
are those described in the previous theorem.
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Figure 6: β-numbers inside the family of Perron numbers.

3.5 β-Numbers

Theorem 3 suggests the following question: “which numbers θ > 1 are β-
numbers?”. As we will see, these numbers are related to Pisot (resp. Salem,
Perron) numbers defined as algebraic integers θ > 1 whose conjugates have

modulus < 1 (resp. ≤ 1, < θ). For instance, 1+
√

5
2

is a Pisot number, 5+
√

5
2

is a
Perron number which is not a Salem number. The following strict inclusions
hold

Z ⊂ Pisot ⊂ Salem ⊂ Perron .

The relation between β-numbers and these numbers is described in Figure
6 summarizing the next results.

Theorem 5 Let θ be a β-number. Then the conjugates of θ have modulus
respectively less than 2 [37], 1+

√
5

2
[45, 21], θ [30].

In [5], Blanchard notes that if θ is a Perron number with some real con-
jugate > 1, then θ is not a β-number.

Theorem 6 Let θ be respectively a Pisot number [1, 40], a Salem number
with degree 4 [6], then θ is a β-number.

Boyd [7] has made several experimentations on Salem (not Pisot) numbers
which suggest that, apart Salem numbers with degree 4, the only Salem
numbers being β-numbers should have degree 6. In [45], Solomyak has given
the exact description of a compact subset of the plane which is the closure
of the set of all conjugates of all β-numbers.
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Figure 7: Normalizer for the Fibonacci base.

3.6 U-Recognizability of the Addition

Let us now turn to the U -recognizability of the addition. The addition in
standard bases p ≥ 2 is well-known. However the addition in the Fibonacci
base, can be surprizing, since left carry and right carry happen!

. . . 13 8 5 3 2 1

0 0 1 0 1 0
0 1 0 0 1 0
1 0 0 1 0 1

A way to perform the addition of two numbers is to add them digit by
digit without carry, and then to normalize the result [23].

. . . 13 8 5 3 2 1

0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 0 2 0 addition without carry
1 0 0 1 0 1 normalization

Given a numeration system U , its canonical alphabet AU and some al-
phabet B ⊂ Z, the normalization ηU,B is a map replacing any w ∈ B∗ by
the corresponding normalized representation (if it exists). Hence, if ηU,B is
computable by a finite automaton, with B = 2AU , then the addition is U -
recognizable. Figure 7 shows a finite automaton for the normalization ηU,B
with U the Fibonacci base and B = {0, 1}.
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About the recognizability by a finite automaton of the normalization, and
therefore of the addition, the known results only concern β-numbers θ > 1
whose minimal polynomial is the polynomial of the recurrence satisfied by
the numeration system U . The case of non minimal polynomials is open.

Theorem 7 [25] Let U be a numeration system given by a linear recurrence
whose polynomial is the minimal polynomial of a β-number.
1. If θ is a Pisot number, then ηU,B is computable by a finite automaton, for
any finite alphabet B ⊆ Z,
2. if θ is a Perron number which is not Pisot, then ηU,B is not computable
by a finite automaton, for any finite alphabet B ⊇ {0, 1, . . . , c + 1}, if AU =
{0, 1, . . . , c}.

Another proof of the first part of Theorem 7 can be found in [9].

3.7 U-Definable Sets and Cobham’s Theorem

As for standard bases p ≥ 2, we define the logical structure 〈N,+, VU〉 where
VU(x) = y means that y is the smallest Un appearing in the normalized
representation of x with a non null digit. We say that X ⊆ N is U -definable
if there exists a first-order formula of 〈N,+, VU〉 defining X. The following
logical characterization uses the results of Subsection 3.3 and 3.6.

Theorem 8 [9] Let U be a numeration system defined by a recurrence whose
polynomial is the minimal polynomial of a Pisot number, then X ⊆ N is U-
recognizable if and only if X is U-definable.

Remember Cobham’s theorem (Theorem 1) which states that the only
sets recognizable in all standard bases p ≥ 2 are the ultimately periodic
ones. As ultimately periodic sets are all definable in 〈N,+〉, they are also
definable in 〈N,+, VU〉, showing that they are U -recognizable for any system
U of Theorem 8. This result was first proved in [23] by other techniques.

The contrary also holds under some hypotheses. This gives a Cobham’s
theorem for non standard bases. In [39], if X ⊆ N is p-definable and U -
definable with p ≥ 2 and U a nonstandard numeration system as in Theorem
8, then it is proved that X is ultimately periodic. The result is still true
in Nm. Another proof with θ a unitary Pisot number and in dimension
1 can already be found in [19]. Very recently, Cobham’s theorem has been
extended to two nonstandard numeration systems U and U ′ in any dimension
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m ≥ 1 [4, 27]. Fabre’s proof [19] uses U -substitutions (see Subsection 3.8),
the proof in [39] generalizes techniques developed in [36], while Hansel’s and
Bès’ proofs [27, 4] rely on two deep logical theorems established in [34, 35].
It seems that this last approach is the most powerful one.

3.8 U-Substitutive Sets

Let us begin with an example. Figure 4 is the minimal automaton for N in
the Fibonacci base. This automaton can be “simulated” by a substitution
as follows. Let

f : a → ab
b → a

This substitution describes the transition function on both states a and b.
The iteration of f on the initial state a works as follows.

0 1 00 01 10 000 001 010 100 101
a → a b → a b a → a b a a b → . . .

The constructed infinite word abaababaabaababa · · · is such that the state at
position n equals a (resp. b) if and only if the normalized representation of
n in Fibonacci base goes from the initial state to state a (resp. b).

More generally, we have the next property.

Proposition 5 Let U be a numeration system such that N is U-recognizable.
Then there exists a canonical U-substitution fU which simulates the minimal
automaton accepting N.

This notion of canonical substitution is introduced in [18] for Bertrand
numeration systems. It has been generalized to any nonstandard base in [9].
For classical bases p ≥ 2, the canonical substitution is fp : a→ ap.

We now proceed with another example in the Fibonacci base U . The
automaton of Figure 5 is simulated by the U-substitution

f : a → ab g : a → 1
b → c b → 0
c → cd c → 0
d → a d → 1

such that f describes the transitions and g the final states of the automaton.
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Notice that the automaton of Figure 5 is a “splitting” of the automaton of
Figure 4: merging states a, c, respectively b, d of the second automaton leads
to the first automaton. In the same way, function f above is a “splitting” of
function fU defined at the beginning of this subsection.

Based on this example, given a numeration system U such that N is U -
recognizable, we call U-substitution any map f which is a splitting of the
canonical U -substitution fU associated with U .

For standard bases p ≥ 2, as the canonical substitution is the map fp :
a→ ap, all the splittings of fp are maps whose images are words with length
p. These are exactly the p-substitutions introduced in Subsection 2.2.

The next theorem generalizes the characterization of p-recognizable sets
by p-substitutive sets.

Theorem 9 Let U be a numeration system such that N is U-recognizable.
A set X ⊆ N is U-recognizable if and only if there exist a U-substitution
f : B → B∗, a letter a ∈ B and a map g : B → {0, 1} such that

X = g(fω(a)).

This equivalence is proved in [18] for Bertrand numeration systems. The
general case is solved in [9]; the statement of Theorem 9 has been simplified
to be more comprehensible. Another notion of substitution can be found in
[43].
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définissables dans 〈N,+, Vk〉, C. R. Acad. Sci. Paris 303 (1986) 939–
942.

[34] C. Michaux, R. Villemaire, Cobham’s theorem seen through Büchi the-
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