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Abstract

Lattice basis reduction in combination with an efficient back-
tracking algorithm is used to find all (4 996 426) simple 7-
(33,8,10) designs with automorphism group PΓL(2,32). The
paper contains a short description of the algorithm.

1 Introduction

Let X be a v-set (i.e. a set with v elements) whose elements are called
points. A t-(v, k, λ) design is a collection of k-subsets (called blocks) of
X with the property that any t-subset of X is contained in exactly λ
blocks. A t-(v, k, λ) design is called simple if no blocks are repeated,
and trivial if every k-subset of X is a block and occurs the same number
of times in the design.

A straightforward approach to the construction of t-(v, k, λ) designs
is to consider the matrix

M v
t,k := (mi,j), i = 1, . . . ,

(
v

t

)
, j = 1, . . . ,

(
v

k

)
:

The rows of M v
t,k are indexed by the t-subsets of X and the columns by

the k-subsets of X. We set mi,j := 1 if the i-th t-subset is contained
in the j-th k-subset, otherwise mi,j := 0. Simple t-(v, k, λ) designs

therefore correspond to {0, 1}-solutions x of the system of
(
v
t

)
linear

equations:
M v

t,k · x = λ(1, 1, . . . , 1)>.
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Unfortunately, for most designs with interesting parameters v, t, k the
size of the matrix M v

t,k is prohibitively large. For example in the case
of v = 33, t = 7 and k = 8 the matrix M33

7,8 has 4 272 048 rows and
13 884 156 columns.

But by assuming a group action on the set X the size of M v
t,k can be

dramatically reduced. A group G acting on X induces also an action on
the set of t-subsets and the set of k-subsets of X. With At,k = (ai,j) we
denote the matrix where aij counts the number of those elements in the
j-th orbit of G on the k-subsets of X which contain a representative
of the i-th orbit of t-subsets of X. This matrix was introduced by
Kramer and Mesner [7]. They observed:

Theorem 1 (see [7]) A simple t-(v, k, λ) design with G ≤ Sym(X) as
an automorphism group exists if and only if there is a {0, 1}-solution x
to the matrix equation

At,k · x = λ(1, 1, . . . , 1)>. (1)

Taking the group PΓL(2, 25) the matrix A7,8 in the above example has
32 rows and 97 columns. Nevertheless it is still a respectable task to
find solutions of (1).

Finding solutions for this problem requires algorithms which do
searching in high dimensional spaces. These algorithms can roughly
be divided into two classes, depending on whether they search in a sys-
tematic manner for all possible solutions or if they just try to find one
solution.

For finding just one solution the algorithms are mostly random-
ized, for example simulated annealing, combinatorial optimization, lo-
cal search [13] and lattice basis reduction [8, 15, 1]. See [13] for a survey.
Recently also algorithms which use Gröbner bases have been proposed
[21, 22].

In [8] the authors used the original lattice basis reduction algo-
rithm (LLL) as described in [11] and a lattice like the one proposed
in [9]. Meanwhile lattice basis reduction algorithms have been greatly
improved. New algorithms were invented by Schnorr, [17, 18, 19].
Also new lattices have been proposed, see [2, 4].

On the contrary, in order to find all {0, 1}-solutions of (1) until now
only exhaustive search techniques based on backtracking have been
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used, see for example [13, 14]. Schmalz [16] used a graph theoretical
approach, he enumerates all solutions implicitely via graphs.

The new approach – using lattice basis reduction [11] – is to con-
struct a basis of the kernel of the equation 1

At,k
...
1

(x
y

)
=

 0
...
0

 , xi ∈ Z, y ∈ Z (2)

which consists of short integer vectors. But the shortest integer vectors
(in the euclidean norm) in the kernel of (2) need not correspond to
solutions of our {0, 1}-problem (1). Kaib and Ritter proposed in
[5] an algorithm which enumerates all solutions with y = ±λ as linear
combination of this short integer basis vectors.

The first step of this algorithm – finding a basis of the kernel – can
be done in polynomial time in the number of columns of the Kramer
Mesner matrix Atk with the help of lattice basis reduction [11]. But
the explicit enumeration in the second step of [5] is still an exponen-
tial algorithm whilst in most cases much faster than the brute force
enumeration as it was used in the above mentioned algorithms. Thus
in some sense this algorithm combines the two classes of algorithms to
solve (1).

This is the first announcement of the 4 996 246 7-(33,8,10)-designs
with automorphism group PΓL(2,32) together with a short overview of
the algorithm. A more detailed description will be submitted to the
Journal of Combinatorial Designs.
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2 From linear equations to lattices

As in [1] we transform the Kramer Mesner matrix Atk with l rows and
s columns into the matrix

c01 0

c0Atk
...

...
c01 0

c12 0 0 c11
. . .

...
...

0 c12 0 c11
0 . . . 0 1 0
0 . . . 0 0 c11


(3)

containing s+2 column vectors with l+s+2 rows. The set of all integer
linear combinations of these vectors is called a lattice. A minimal set
of vectors which generates the lattice is called a basis of the lattice.
Important in our context are bases which contain short vectors. These
are called reduced bases if they fulfill certain criteria of shortness, see
[11].

The lattice L spanned by the columns of the matrix (3) has the
column vectors of the matrix itself as a basis. This basis is reduced
with the algorithm proposed in [20] to a new basis.

Definition 1 Let L ⊂ Rn be a lattice. For 1 ≤ p < ∞ the norm
defined by the mapping

‖.‖p : Rn → R, x 7→ ‖x‖p := (
n∑
i=1

|xi|p)1/p

is called p-norm. The norm defined by the mapping

‖.‖∞ : Rn → R, x 7→ ‖x‖∞ := max{|xi| | 1 ≤ i ≤ n}

is called ∞-norm.
For 1 ≤ p ≤ ∞ we call a vector ∈ L p-shortest if it is a shortest vector
in L in p-norm.
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If we set in (3) c1 = λ and c0 > λ, the ∞-shortest vectors of the lattice
are solutions of the equation (1). ∞-shortest vectors in L consist of
zeros in the first l rows and have only the entries −1 · c1 or 1 · c1 in the
rows l+ 1, . . . , l+ s. Further, in row l+ s+ 1 and l+ s+ 2 they contain
±λ and ±1, respectively.

Until now only reduction techniques for the norm p = 2 are working
efficiently. To find a∞-shortest vector we have to employ backtracking
methods. Since the 2-norm and the ∞-norm are equivalent (for all
x ∈ Rn: ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞) it’s reasonable to use 2-short

vectors to find the ∞-shortest vectors.
Let 〈., .〉 denote the ordinary inner product in Rn, n ∈ N. For a

sequence of linear independent vectors b1, . . . , bm ∈ Rn we let b∗1, . . . , b
∗
m

be the Gram-Schmidt orthogonalized sequence. We thus have

b∗i := bi −
i−1∑
j=1

µi,jb
∗
j for i = 1, . . . ,m, where µi,j =

〈bi, b∗j〉
〈b∗j , b∗j〉

. (4)

Definition 2 For an (ordered) basis b1, b2, . . . , bm of a lattice L ⊂ Rn

and 1 ≤ i ≤ m, πi(v) is the orthogonal projection of v ∈ Rn into
〈b1, b2, . . . , bi〉⊥. Li := πi(L) is the orthogonal projection of the lattice
L into 〈b1, b2, . . . , bi〉⊥.

Since

v =
m∑
j=1

〈v, b∗j〉b∗j

we see that

πi(v) =
m∑
j=i

〈v, b∗j〉b∗j . (5)

3 Explicit enumeration

For every basis vector bt and j ≤ t we have:

πj(bt) =
t∑
i=j

µt,ib
∗
i .
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With cs := ‖b∗s‖2
2 for 1 ≤ s ≤ k it follows

πj(
m∑
t=j

utbt) = (
m∑
i=j

uiµi,j)b
∗
j + πj+1(

m∑
t=j+1

utbt), (6)

and

‖πj(
m∑
t=j

utbt)‖2
2 = (

m∑
i=j

uiµi,j)
2cj + ‖πj+1(

m∑
t=j+1

utbt)‖2
2.

Definition 3 For uj, uj+1, . . . , um ∈ Z we write wj := πj(
∑m
t=j utbt).

The backtracking algorithm tries all possible integer values for um,
um−1, . . . , u1. Starting from t = m it computes wt for m ≥ t ≥ 1
and finally w1 =

∑m
i=1 uibi.

Remark 1 If uj+1, uj+2, . . . , um ∈ Z are fixed and uj ∈ Z has to be
choosen such that ‖wj‖2

2 is minimal, then uj has to be set to the nearest
integer to −∑m

i=j+1 uiµi,j, since

‖wj‖2
2 = ‖πj(

m∑
t=j

utbt)‖2
2 = (uj +

m∑
i=j+1

uiµi,j)
2cj + ‖πj+1(

m∑
t=j+1

utbt)‖2
2.

The solutions of our system of linear equations (2) are the ∞-
shortest vectors in the lattice generated by the vectors in (3), but we de-
scribe the search for the p-shortest vector in L for arbitrary 1 ≤ p ≤ ∞.

Let F be an upper bound of the p-shortest vector of L. Since all
p-norms in Rn are equivalent, there exist constants rp, Rp such that
rp‖x‖p ≤ ‖x‖2 ≤ Rp‖x‖p for all x ∈ Rn. Therefore a p-shortest vector
v has 2-norm ‖v‖2 ≤ RpF and in order to find p-shortest vectors we
enumerate all vectors with 2-norm not greater than RpF .

Moreover, Kaib, Ritter [5] use Hölder’s inequality to combine the
search for p-shortest vectors with enumeration in 2-norm:

Theorem 2 If for fixed uj, uj+1, . . . , um ∈ Z there exist

u1, u2, . . . , uj−1 ∈ Z

with ‖∑m
i=1 wi‖p ≤ F , then for all yj, yj+1, . . . , ym ∈ R:∣∣∣∣ m∑

i=j

yi‖wi‖2
2

∣∣∣∣ ≤ F · ‖
m∑
i=j

yiwi‖q (7)

with 1 ≤ q ≤ ∞ such that 1/p+ 1/q = 1.
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It remains to select yj, . . . , ym appropiately to enable an early recog-
nition of enumeration branches which cannot yield solutions. Kaib,

Ritter [5] proposed two selections:

1. (yj, yj+1, . . . , ym) = (1, 0, . . . , 0): Test if ‖wj‖2
2 ≤ F‖wj‖q.

2. (yj, yj+1, . . . , ym) = (η, 1− η, 0, . . . , 0) with η ∈ ]0, 1[ .

Let’s say wj = xb∗j +wj+1 for an x ∈ R. Then for every successive
w′j in the same direction, that means every w′j = (x+ r)b∗j +wj+1

with r ∈ Z and having the same sign as x, we have for η := x
x+r

:

wj = ηw′j + (1− η)wj+1 and 0 < η < 1. (8)

If w′j can lead to a solution, then from (7) it follows for every
η ∈ ]0, 1[:

η‖w′j‖2
2 + (1− η)‖wj+1‖2

2 ≤ F‖ηw′j + (1− η)wj+1‖q. (9)

With (8) the inequality reduces to

‖wj‖2
2 ≤ F‖wj‖q.

Here 0 ≤ η ≤ 1 is needed.

Therefore we can cut the enumeration in the direction of x if
‖wj‖2

2 > F‖wj‖q.

This results in the following algorithm:

Algorithm 1 1. Compute a LLL-reduced integer basis of the kernel
of the linear system (1): Choose c0 large enough such that the
number of remaining columns will be equal to s− l+ 2 and LLL-
reduce the matrix (3).

2. Remove the columns with nonzero entries in the first l rows. From
the remaining columns remove the first l rows (the zero entries).

3. Compute for the remaining columns b1, . . . , bm the Gram-Schmidt
vectors b∗1, b

∗
2, . . . , b

∗
m with their Gram-Schmidt coefficients µi,j, see

(4).
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4. Set j := 1;
F := upper limit to the p-shortest vector in L.
Set F̄ := R2

pF
2.

5. Do the search loop:

while j ≤ m
Compute wj from wj+1.
if ‖wj‖2

2 > F̄ then
j := j + 1
NEXT(uj)

else
if j > 1 then

if PRUNE(uj) then
if onedirection then

j := j + 1
NEXT(uj)

else
onedirection := true
NEXT(uj)

end if
else

j := j − 1
y :=

∑m
i=j+1 uiµi,j

uj := round(−y)
onedirection := false

end if
else /* (j = 1) */

PRINT u1, . . . , um
NEXT(uj)

end if
end if

end while

The procedure NEXT determines the next value of the variable uj.
Initially uj is set to the nearest value of −yj := −∑m

i=j+1 uiµi,j, say
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u1
j . The next value (u2

j) of uj is the second nearest integer to −yj then
follows u3

j and so forth. Therefore the values of uj alternate around −yj.
If PRUNE is true for one value of uj we do one more jump around −yj,
then the enumeration is only proceeded in this remaining direction until
it is pruned again.

For arbitrary p with and q such that 1/p + 1/q = 1 the procedure
PRUNE looks like this:

Algorithm 2 Choose yj, . . . , ym

PRUNE(uj)

if
∣∣∣∑m

i=j yi‖wi‖2
2

∣∣∣ ≤ F · ‖∑m
i=j yiwi‖q

Return false
else

Return true
end if

4 Results

We used the algorithm to find all 7-(33,8,10) designs with automor-
phism group PΓL2(32). The Kramer Mesner matrix was already pub-
lished in [12]. The algorithm described in [1] produced the following
32× 97 matrix which is a permutation of the rows and columns of the
matrix in [12]:
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2222222222222000000000000000000000000000000000000000000000000000000000000000000000000000000000000

2101110000000211112111111111111000000000000000000000000000000000000000000000000000000000000000000

1110000001000100200000000001000111112112111111100000000000000000000000000000000000000000000000000

0011000000000021001000000000000100011000000100012131111111110000000000000000000000000000000000000

0001200000000000000001000001001110000000010010010011000100001121111111100000000000000000000000000

0000110000000001000000100020000001001000001100111000000101001000000110021111110000000000000000000

0000013000110100100000101001001000100020001000100101010010000001000100010010001000000000000000000

0000004200000000020000200220000000020000002000000000000200000200000000000002000200000000000000000

0000000220000000002000002000002000002000020000000020000000000200002000022020000000000000000000000

0001000121000001100100000101000000001000100010100100001000000010011100000101001011100000000000000

0000002001200010011011010000110000001101000110010000010000000000100000000100001010011000000000000

0000000200020200000002200020000200000022000000020000200000000000000000000020000000020000000000000

0000000001012000000000101000022000000000000000111000000110010110000100100100010200101000000000000

0200000000002210020000101000001111000000000100000000000000001000110010100000001000010111000000000

0010100000001001001200100000010001000002000000001001011011000100000000000001010000000102110000000

0000110011000010100001020100000000000000101000000101000000010100100000000010000000010211001110000

0011020000000010010000000100100000010001000000000001010000100000100011000010001010212000001001000

0000000220000000000240002000000000000000000000000000000000000000200220000000220200000000002000000

0000010010011000010110010011001110000100000001000001010001000000001000000101100010000000100011000

0200000200000200000200000200020002000000002020000000000000200000000000000200020000000000000020000

0001000001010011000000000001000011000100010000100001000001000011000000100000000020010031010100100

0010100000011000102001001000000001000110000101100100110000000000200000100000000000100000100000300

0200000000000001000001000000000010220100000110000000000010010010011000000100011010021000010000100

0011000000000000100001000000010100011010000001000100000010100000020100000101000000101002000100120

0000000200000000000020020000000000000020000000200000000200000000020020220000000000002000200002000

0010000000000000000110000101000000000000100000010010100002001000001101110011000000001110000002110

0000000000010000010000011010000000000010001020000000200110000200000010010000111000100110001001010

0000000000000000000010010100010110000100000100001010101100000010001010002010011000000000003001100

0000000010000001000000000010100011010001001000011100100010000001001000110001000000000111001011001

0000000005000000000000000000000000000500000000000500050000000000000000000000000000000000050000001

0000000000000000000000000000000000000000000000005000000005000000050005000000000050000000000000001

0000000000000000000000000000000000000000000000000050000000000050000000000000000000500500000500001

The method of [1] in it’s first version found only 1 solution for
λ = 10. It was Brendan McKay [14] who observed with his general
integer backtracking algorithm that there are more than one solutions.
In fact he estimated the number of solutions to be between 5 and 7
million. He also estimated that the backtracking algorithm as described
in [14] would have taken 100 years to enumerate all these solutions with
the computers we had at hand at that time.

For each of the two matrices the above Algorithm 1 found that
there are 4 996 426 solutions for λ = 10 and that there are no solutions
for other values of λ beside the complementary designs with λ = 16.
All these solutions give nonisomorphic designs: By [10] PΓL(2, 25) is
a maximal subgroup of S33. Therefore the full automorphism group
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could be either PΓL(2, 25) or S33. The latter case is impossible, since
it would require all 8-subsets to be included into the design because of
the transitivity of S33 on X.

The computing time was about one week on a DEC ALPHA 3000.
The newest results of the Bayreuth group on t-designs can be found at
http://www.mathe2.uni-bayreuth.de/betten/DESIGN/d1.html

and
http://www.mathe2.uni-bayreuth.de/people/laue.html.
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