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FREE PROBABILITY THEORY AND NON-CROSSING
PARTITIONS

ROLAND SPEICHER ∗

Abstract. Voiculescu’s free probability theory – which was in-
troduced in an operator algebraic context, but has since then de-
veloped into an exciting theory with a lot of links to other fields
– has an interesting combinatorial facet: it can be described by
the combinatorial concept of multiplicative functions on the lat-
tice of non-crossing partitions. In this survey I want to explain
this connection – without assuming any knowledge neither on free
probability theory nor on non-crossing partitions.

1. Introduction

The notion of ‘freeness’ was introduced by Voiculescu around 1985
in connection with some old questions in the theory of operator al-
gebras. But Voiculescu separated freeness from this special context
and emphasized it as a concept being worth to be investigated on its
own sake. Furthermore, he advocated the point of view that freeness
behaves in some respects like an analogue of the classical probabilistic
concept ‘independence’ - but an analogue for non-commutative random
variables.

This point of view turned out to be very succesful. Up to now there
has evolved a free probability theory with a lot of links to quite different
parts of mathematics and physics. In this survey, I want to present
some introduction into this lively field; my main emphasis will be on
the combinatorial aspects of freeness – namely, it has turned out that in
the same way as classical probability theory is linked with all partitions
of sets, free probability theory is linked with the so-called non-crossing
partitions. These partitions have a lot of nice properties, reflecting
features of freeness.
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2. Independence and Freeness

Let me first recall the classical notion of independence for random
variables. Consider two real-valued random variablesX and Y living on
some probability space. In particular, we have an expectation ϕ which
is given by integration with respect to the given probability measure
P , i.e. we have

ϕ[f(X,Y )] =

∫
f(X(ω), Y (ω))dP (ω) (1)

for all bounded functions of two variables. To simplify things and get-
ting contact with a combinatorial point of view, let us assume that
X and Y are bounded, so that all their moments exist (and further-
more, their distribution is determined by their moments). Then we
can describe independence as a concrete rule for calculating mixed mo-
ments in X and Y – i.e. the collection of all expectations of the form
ϕ[Xn1Y m1Xn2Y m2 . . .] for all ni,mi ≥ 0 – out of the moments of X
– i.e. ϕ[Xn] for all n – and the moments of Y – i.e. ϕ[Y n] for all n.
Namely, independence of X and Y just means:

ϕ[Xn1Y m1 . . . XnkY mk ] = ϕ[Xn1+···+nk ] · ϕ[Y m1+···+mk ]. (2)

For example, if X and Y are independent we have

ϕ[XY ] = ϕ[X]ϕ[Y ] (3)

and

ϕ[XXY Y ] = ϕ[XYXY ] = ϕ[XX]ϕ[Y Y ]. (4)

Let us now come to the notion of freeness. This is an analogue for
independence in the sense that it provides also a rule for calculating
mixed moments of X and Y out of the single moments of X and the sin-
gle moments of Y . But freeness is a non-commutative concept: X and
Y are not classical random variables any more, but non-commutative
random variables. This just means that we are dealing with a unital
algebra A (in general non-commutative) equipped with a unital linear
functional ϕ : A → C, ϕ(1) = 1. (For a lot of questions it is important
that the free theory is consistent if our ϕ’s are also positive, i.e. states;
but for our more combinatorial considerations this does not play any
role). Non-commutative random variables are elements in the given
algebra A and we define freeness for such random variables as follows.

Definition . The non-commutative random variables X, Y ∈ A are
called free (with respect of ϕ), if

ϕ[p1(X)q1(Y )p2(X)q2(Y ) . . .] = 0 (5)
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(finitely many factors), whenever the pi and the qj are polynomials
such that

ϕ[pi(X)] = 0 = ϕ[qj(Y )] (6)

for all i, j.

As mentioned above, this should be seen as a rule for calculating
mixed moments in X and Y out of moments of X and moments of Y .
In contrary to the case of independence, this is not so obvious from
the definition. So let us look at some examples to get an idea of that
concept. In the following X and Y are assumed to be free and we will
look at some mixed moments.

The simplest mixed moment is ϕ[XY ]. Our above definition tells us
immediately that

ϕ[XY ] = 0 if ϕ[X] = 0 = ϕ[Y ]. (7)

But what about the general case when X and Y are not centered.
Then we do the following trick: Since our definition allows us to use
polynomials in X and Y – we should perhaps state explicitely that
polynomials with constant terms are allowed – we just look at the
centered variables p(X) = X − ϕ[X]1 and q(Y ) = Y − ϕ[Y ]1 and our
definition of freeness yields

0 = ϕ[p(X)q(Y )] = ϕ[(X − ϕ[X]1)(Y − ϕ[Y ]1)]

= ϕ[XY ]− ϕ[X]ϕ[Y ],
(8)

which implies that we have in general

ϕ[XY ] = ϕ[X]ϕ[Y ]. (9)

In the same way one can deal with more complicated mixed moments.
E.g. by looking at

ϕ[(X2 − ϕ[X2]1)(Y 2 − ϕ[Y 2]1)] = 0 (10)

we get

ϕ[XXY Y ] = ϕ[XX]ϕ[Y Y ]. (11)

Up to now there is no difference to the results for independent ran-
dom variables. But consider next the mixed moment ϕ[XYXY ]. Again
we can calculate this moment by using

ϕ[(X − ϕ[X]1)(Y − ϕ[Y ]1)(X − ϕ[X]1)(Y − ϕ[Y ]1)] = 0.
(12)
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Resolving this for ϕ[XYXY ] (and using induction for the other ap-
pearing mixed moments, which are of smaller order) we obtain

ϕ[XYXY ] = ϕ[XX]ϕ[Y ]ϕ[Y ]

+ ϕ[X]ϕ[X]ϕ[Y Y ]− ϕ[X]ϕ[Y ]ϕ[X]ϕ[Y ]. (13)

From this we see that freeness is something different from indepen-
dence; indeed it seems to be more complicated: in the independent
case we only get a product of moments of X and Y , whereas here in
the free case we have a sum of such product. Furthermore, from the
above examples one sees that variables which are free cannot commute
in general: if X and Y commute then ϕ[XXY Y ] must be the same
as ϕ[XYXY ], which gives, by comparision between (11) and (13) very
special relations between different moments of X and of Y . Taking the
analogous relations for higher mixed moments into account it turns
out that commuting variables can only be free if at least one of them
is a constant. This means that freeness is a real non-commutative con-
cept; it cannot be considered as a special kind of dependence between
classical random variables.

The main problem (at least from a combinatorial point of view) with
the definition of freeness is to understand the combinatorial structure
behind this concept. Freeness is a rule for calculating mixed moments,
and although we know in principle how to calculate these mixed mo-
ments, this rule is not very explicit. Up to this point, it is not clear
how one can really work with this concept.

Two basic problems in free probability theory are the investigation
of the sum and of the product of two free random variables. Let X
and Y be free, then we want to understand X + Y and XY . Both
these problems were solved by Voiculescu by some operator algebraic
methods, but the main message of my survey will be that there is
a beautiful combinatorial structure behind these operations. First,
we will concentrate on the problem of the sum, which results in the
notion of the additive free convolution. Later, we will also consider the
problem of the product (multiplicative free convolution).

3. Additive free convolution

Let us state again the problem: We are given X and Y , i.e. we know
their moments ϕ[Xn] and ϕ[Y n] for all n. We assume X and Y are
free and we want to understand X + Y , i.e. we want to calculate all
moments ϕ[(X + Y )n]. Since the moments of X + Y are just sums of
mixed moments in X and Y , we know for sure that there must be a
rule to express the moments of X + Y in terms of the moments of X
and the moments of Y . But how can we describe this rule explicitely?
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Again it is a good point of view to consider this problem in analogy
with the classical problem of taking the sum of independent random
variables. This classical problem is of course intimately connected with
the classical notion of convolution of probability measures. By analogy,
we are thus dealing with (additive) free convolution.

Usually these operations are operations on the level of probability
measures, not on the level of moments, but (at least in the case of self-
adjoint bounded random variables) these two points of view determine
each other uniquely. So, instead of talking about the collection of all
moments of some random variable X we can also consider the distri-
bution µX of X which is a probability measure on R whose moments
are just the moments of X, i.e.

ϕ[Xn] =

∫
tndµX(t). (14)

Let us first take a look at the classical situation before we deal with
the free counterpart.

3.1. Classical convolution. Assume X and Y are independent, then
we know that the moments of X + Y can be written in terms of the
moments of X and the moments of Y or, equivalently, the distribution
µX+Y of X + Y can be calculated somehow out of the distribution µX
of X and the distribution µY of Y . Of course, this ‘somehow’ is nothing
else than the convolution of probability measures,

µX+Y = µX ∗ µY , (15)

a well-understood operation.
The main analytical tool for handling this convolution is the concept

of the Fourier transform (or characteristic function of the random vari-
able). To each probability measure µ or to each random variable X
with distribution µ (i.e. µX = µ) we assign a function Fµ on R given
by

Fµ(t) :=

∫
eitxdµ(x) = ϕ[eitX ]. (16)

From our combinatorial point of view it is the best to view Fµ just as
a formal power series in the indeterminate t. If we expand

Fµ(t) =
∞∑
n=0

(it)n

n!
ϕ[Xn] (17)

then we see that the Fourier transform is essentially the exponential
generating series in the moments of the considered random variable.
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The importance of the Fourier transform in the context of the clas-
sical convolution comes from the fact that it behaves very nicely with
respect to convolution, namely

Fµ∗ν(t) = Fµ(t) · Fν(t). (18)

If we take the logarithm of this equation then we get

logFµ∗ν(t) = logFµ(t) + logFν(t), (19)

i.e. the logarithm of the Fourier transform linearizes the classical con-
volution.

3.2. Free convolution. Now consider X and Y which are free. Then
freeness ensures that the moments of X+Y can be expressed somehow
in terms of the moments of X and the moments of Y , or, equivalently,
the distribution µX+Y of X + Y depends somehow on the distribution
µX of X and the distribution µY of Y . Following Voiculescu [25], we
denote this ‘somehow’ by �,

µX+Y = µX � µY , (20)

and call this operation (additive) free convolution. This is of course just
a notation for the object which we want to understand and the main
question is whether we can find some analogue of the Fourier transform
which allows us to deal effectively with �. This question was solved
by Voiculescu [25] in the affirmative: He provided an analogue of the
logarithm of the Fourier transform which he called R-transform. Thus,
to each probability measure µ he assigned an R-transform Rµ(z) –
which is in an analytic function on the upper half-plane, but which we
will view again as a formal power series in the indeterminate z – in
such a way that this R-transform behaves linear with respect to free
convolution, i.e.

Rµ�ν(z) = Rµ(z) +Rν(z). (21)

Up to now I have just described what properties theR-transform should
have for being useful in our context. The main point is that Voiculescu
could also provide an algorithm for calculating such an object. Namely,
the R-transform has to be calculated from the Cauchy-transform Gµ

which is defined by

Gµ(z) =

∫
1

z − x
dµ(x) = ϕ[

1

z −X
]. (22)

This Cauchy-transform determines the R-transform uniquely by the
prescription that Gµ(z) and Rµ(z)+1/z are inverses of each other with
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respect to composition:

Gµ[Rµ(z) + 1/z] = z. (23)

Although the logarithm of the Fourier transform and theR-transform
have analogous properties with respect to classical and free convolution,
the above analytical description looks quite different for both objects.

My aim is now to show that if we go over to a combinatorial level
then the description of classical convolution ∗ and free convolution
� becomes much more similar (and, indeed, we can understand the
above formulas as translations of combinatorial identities into generat-
ing power series).

3.3. Cumulants. The connection of the above transforms with combi-
natorics comes from the following observation. The Fourier-transform
and the Cauchy-transform are both formal power series in the moments
of the considered distribution. If we write the logarithm of the Fourier-
transform and the R-transform also as formal power series then their
coefficients must be some functions of the moments. In the classical
case this coefficients are essentially the so-called cumulants of the dis-
tribution. In analogy we will call the coefficients of the R-transform
the free cumulants. The fact that logF and R behave additively under
classical and free convolution, respectively, implies of course for the co-
efficients of these series that they, too, are additive with respect to the
respective convolution. This means the whole problem of describing
the structure of the corresponding convolution has been shifted to the
understanding of the connection between moments and cumulants.

Let us state this shift of the problem again more explicitely – for
definiteness in the case of the classical convolution. We have random
variables X and Y which are independent and we want to calculate
the moments of X + Y out of the moments of X and the moments
of Y . But it is advantegous (in the free case even much more than in
the classical case) to go over from the moments to new quantities cn,
which we call cumulants, and which behave additively with repect to
the convolution, i.e. we have cn(X + Y ) = cn(X) + cn(Y ). The whole
problem has thus been shifted to the connection between moments and
cumulants. Out of the moments we must calculate cumulants and the
other way round. The connection for the first two moments is quite
easy, namely

m1 = c1 (24)

and

m2 = c2 + c2
1 (25)
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(i.e. the second cumulant c2 = m2 − m2
1 is just the variance of the

measure). In general, the n-th moment is a polynomial in the cumu-
lants c1, . . . , cn, but it is very hard to write down a concrete formula
for this. Nevertheless there is a very nice way to understand the com-
binatorics behind this connection, and this is given by the concept of
multiplicative functions on the lattice of all partitions.

So let me first recall this connection between classical probability
theory and multiplicative functions before I am going to convince you
that the description of free probability theory can be done in a very
analogous way.

4. Combinatorial aspects of classical convolution

On a combinatorial level classical convolution can be described quite
nicely with the help of multiplicative functions on the lattice of all
partitions. I extracted my knowledge on this point of view from the
fundamental work of Rota [16, 4]. Let me briefly recall these well-
known notions.

4.1. Lattice of all partitions and their incidence algebra. Let n
be a natural number. A partition π = {V1, . . . , Vk} of the set {1, . . . , n}
is a decomposition of {1, . . . , n} into disjoint and non-empty sets Vi,

i.e. Vi 6= ∅, Vi ∩ Vj = ∅ (i 6= j) and
⋃k
i=1 Vi = {1, . . . , n}. The elements

Vi are called the blocks of the partition π. We will denote the set of
all partitions of {1, . . . , n} by P(n). This set becomes a lattice if we
introduce the following partial order (called refinement order): π ≤ σ
if each block of σ is a union of blocks of π. We will denote the smallest
and the biggest element of P(n) – consisting of n blocks and one block,
respectively – by special symbols, namely

0n := {(1), (2), . . . , (n)}, 1n := {(1, 2, . . . , n)}. (26)

An example for the refinement order is the following:

{(1, 3), (2), (4)} ≤ {(1, 3), (2, 4)}. (27)

Of course, there is no need to consider only partitions of the sets
{1, . . . , n}, the same definitions apply for arbitrary sets S and we have
a natural isomorphism P(S) ∼= P(|S|).

We consider now the collection of all partition lattices P(n) for all
n,

P :=
⋃
n∈N

P(n), (28)

and in such a frame (of a locally finite poset) there exists the combi-
natorial notion of an incidence algebra, which is just the set of special
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functions with two arguments from these partition lattices: The inci-
dence algebra consists of all functions

f :
⋃
n∈N

(P(n)× P(n))→ C (29)

subject to the following condition:

f(π, σ) = 0, whenever π 6≤ σ (30)

Sometimes we will also consider functions of one element; these are
restrictions of functions of two variables as above to the case where the
first argument is equal to some 0n, i.e.

f(π) = f(0n, π) for π ∈ P(n). (31)

On this incidence algebra we have a canonical (combinatorial) con-
volution ?: For f and g functions as above, we define f ? g by

(f ? g)(π, σ) :=
∑

τ∈P(n)
π≤τ≤σ

f(π, τ)g(τ, σ) for π ≤ σ ∈ P(n).
(32)

One should note that apriori this combinatorial convolution ? has noth-
ing to do with our probabilistic convolution ∗ for probability measures;
but of course we will establish a connection between these two concepts
later on.

The following special functions from the incidence algebra are of
prominent interest: The neutral element δ for the combinatorial con-
volution is given by

δ(π, σ) =

{
1, π = σ

0, otherwise.
(33)

The zeta function is defined by

Zeta(π, σ) =

{
1, π ≤ σ

0, otherwise.
(34)

It is an easy exercise to check that the zeta function possesses an in-
verse; this is called the Möbius function of our lattice: Moeb is defined
by

Moeb ? Zeta = Zeta ? Moeb = δ. (35)
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4.2. Multiplicative functions. The whole incidence algebra is a quite
big object which is in general not so interesting; in particular, one
should note that up to now, although we have taken the union over
all n, there was no real connection between the involved lattices for
different n. But now we concentrate on a subclass of the incidence
algebra which only makes sense if there exists a special kind of relation
between the P(n) for different n – this subclass consists of the so-called
multiplicative functions.

Our functions f of the incidence algebra have two arguments –
f(π, σ) – but since non-trivial things only happen for π ≤ σ we can
also think of f as a function of the intervals in P , i.e. of the sets
[π, σ] := {τ ∈ P(n) | π ≤ τ ≤ σ} for π, σ ∈ P(n) (n ∈ N) and π ≤ σ.
One can now easily check that for our partition lattices such intervals
decompose always in a canonical way in a product of full partition
lattices, i.e. for π, σ ∈ P(n) with π ≤ σ there are canonical natural
numbers k1, k2, . . . such that

[π, σ] ∼= P(1)k1 × P(2)k2 × · · · . (36)

(Of course, only finitely many factors are involved.) A multiplicative
function factorizes by definition in an analogous way according to this
factorization of intervals: For each sequence (a1, a2, . . . ) of complex
numbers we define the corresponding multiplicative function f (we de-
note the dependence of f on this sequence by f! (a1, a2, . . . )) by the
requirement

f(π, σ) := ak1
1 a

k2
2 . . . if [π, σ] ∼= P(1)k1 × P(2)k2 × · · · .

(37)

Thus we have in particular that f(0n, 1n) = an, everything else can
be reduced to this by factorization. It can be seen directly that the
combinatorial convolution of two multiplicative functions is again mul-
tiplicative.

Let us look at some examples for the calculation of multiplicative
functions.

[{(1, 3), (2), (4)}, {(1, 2, 3, 4)}] ∼= [{(1), (2), (4)}, {(1, 2, 4)}]
∼= P(3), (38)

thus

f({(1, 3), (2), (4)}, {(1, 2, 3, 4)}) = a3. (39)

Note in particular that if the first argument is equal to some 0n, then
the factorization is according to the block structure of the second ar-
gument, and hence multiplicative functions of one variable are really
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multiplicative with respect to the blocks. E. g., we have

[{(1), (2), (3), (4), (5), (6), (7), (8)}, {(1, 3, 5), (2, 4), (6), (7, 8)}] ∼=
[{(1), (3), (5)}, {(1, 3, 5)}]× [{(2), (4)}, {(2, 4)}]×

× [{(6)}, {(6)}]× [{(7), (8)}, {(7, 8)}], (40)

and hence for the multiplicative function of one argument

f({(1, 3, 5), (2, 4), (6), (7, 8)}) =

f({(1, 3, 5)}) · f({(2, 4)}) · f({(6)}) · f({(7, 8)}) = a3a2a1a2. (41)

The special functions δ, Zeta, and Moeb are all multiplicative with
determining sequences as follows:

δ! (1, 0, 0, . . . ) (42)

Zeta! (1, 1, 1, . . . ) (43)

Moeb! ((−1)n−1(n− 1)!)n≥1 (44)

4.3. Connection between probabilistic and combinatorial con-
volution. Recall our strategy for describing classical convolution com-
binatorially: Out of the moments mn = ϕ(Xn) (n ≥ 1) of a random
variable X we want to calculate some new quantities cn (n ≥ 1) –
which we call cumulants – that behave additively with respect to con-
volution. The problem is to describe the relation between the moments
and the cumulants. This relation can be formulated in a nice way by
using the concept of multiplicative functions on all partitions. Since
such functions are determined by a sequence of complex numbers, we
can use the sequence of moments to define a multiplicative function M
(moment function) and the sequence of cumulants to define another
multiplicative function C (cumulant function). It is a well known fact
(although not to localize easily in this form in the literature) [16, 17]
that the relation between these two multiplicative funtions is just given
by taking the combinatorial convolution with the zeta function or with
the Möbius function.

Theorem . Let mn and cn be the moments and the classical cumu-
lants, respectively, of a random variable X. Let M and C be the cor-
responding multiplicative functions on the lattice of all partitions, i.e.

M! (m1,m2, . . . ), C! (c1, c2, . . . ). (45)

Then the relation between M and C is given by

M = C ? Zeta, (46)

or equivalently by

C = M ?Moeb. (47)
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Let me also point out that this combinatorial description is essen-
tially equivalent to the previously mentioned analytical description of
classical convolution via the Fourier transform. Namely, if we denote
by

A(z) := 1 +
∞∑
n=1

mn

n!
zn, B(z) :=

∞∑
n=1

cn
n!
zn (48)

the exponential power series of the moment and cumulant sequences,
respectively, then it is a well known fact [16] that the statement of the
above theorem translates in terms of these series into

A(z) = expB(z) or B(z) = logA(z). (49)

But since the Fourier transform Fµ of the random variable X (with
µ = µX) is connected with A by

Fµ(t) = A(it), (50)

this means that

B(it) = logFµ(t), (51)

which is exactly the usual description of the classical cumulants – that
they are given by the coefficents of the logarithm of the Fourier trans-
form; the additivity of the logarithm of the Fourier transform under
classical convolution is of course equivalent to the same property for
the cumulants.

5. Combinatorial aspects of free convolution

Now we switch from classical convolution to free convolution. Where-
as on the analytical level the analogy between the logarithm of the
Fourier transform and the R-transform is not so obvious, on the com-
binatorial level things become very clear: The description of free con-
volution is the same as the description of classical convolution, the
only difference is that one has to replace all partitions by the so-called
non-crossing partitions.

5.1. Lattice of non-crossing partitions and their incidence al-
gebra. We call a partition π ∈ P(n) crossing if there exist four num-
bers 1 ≤ i < k < j < l ≤ n such that i and j are in the same block,
k and l are in the same block, but i, j and k, l belong to two different
blocks. If this situation does not happen, then we call π non-crossing.
The set of all non-crossing partitions in P(n) is dentoted by NC(n),
i.e.

NC(n) := {π ∈ P(n) | π non-crossing.} (52)
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Again, this set becomes a lattice with respect to the refinement order.
Of course, 0n and 1n are non-crossing and they are the smallest and
the biggest element of NC(n), respectively.

The name ‘non-crossing’ becomes quite clear in a graphical repre-
sentation of partitions: The partition

π = {(1, 3, 5), (2), (4)} =

1 2 3 4 5

is non-crossing, whereas

π = {(1, 3, 5), (2, 4)} =

1 2 3 4 5

is crossing.
One should note, that the linear order of the set {1, . . . , n} is of

course important for deciding whether a partition is crossing or non-
crossing. Thus, in contrast to the case of all partitions, non-crossing
partitions only make sense for a set with a linear order. However, one
should also note that instead of the linear order of {1, . . . , n} we could
also put the points 1, . . . , n on a circle and consider them with circular
order. The concept ‘non-crossing’ is also compatible with this.

For n = 1, n = 2, and n = 3 all partitions are non-crossing, for n = 4
only {(1, 3), (2, 4)} is crossing. The following figure shows NC(4). Note
the high symmetry of that lattice compared to P(4).

Non-crossing partitions were introduced by Kreweras [8] in 1972 (but
see also [1]) and since then there have been some combinatorial investi-
gations on this lattice, e.g. [14, 6, 7, 18]. But it seems that the concept
of incidence algebra and multiplicative functions for this lattice have
not received any interest so far. Motivated by my investigations [19]
on freeness I introduced these concepts in [20]. It is quite clear that
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this goes totally in parallel to the case of all partitions: We consider
the collection of the lattices of non-crossing partitions for all n,

NC :=
⋃
n∈N

NC(n), (53)

and the incidence algebra is as before the set of special functions
with two arguments from these lattices: The incidence algebra of non-
crossing partitions consists of all functions

f :
⋃
n∈N

(NC(n)×NC(n))→ C (54)

subject to the following condition:

f(π, σ) = 0, whenever π 6≤ σ. (55)

Again, sometimes we will also consider functions of one element; these
are restrictions of functions of two variables as above to the case where
the first element is equal to some 0n, i.e.

f(π) = f(0n, π) for π ∈ NC(n). (56)

Again, we have a canonical (combinatorial) convolution ? on this
incidence algebra: For functions f and g as above, we define f ? g by

(f ? g)(π, σ) :=
∑

τ∈NC(n)
π≤τ≤σ

f(π, τ)g(τ, σ) for π ≤ σ ∈ NC(n).
(57)

As before we have the following important special functions: The
neutral element δ for the combinatorial convolution ? is given by

δ(π, σ) =

{
1, π = σ

0, otherwise.
(58)

The zeta function is defined by

zeta(π, σ) =

{
1, π ≤ σ

0, otherwise.
(59)

Again, the zeta function possesses an inverse, which we call Möbius
function: moeb is defined by

moeb ? zeta = zeta ? moeb = δ. (60)
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5.2. Multiplicative functions on non-crossing partitions. Where-
as the notion of an incidence algebra and the corresponding combina-
torial convolution is a very general notion (which can be defined on any
locally finite poset), the concept of a multiplicative function requires
a very special property of the considered lattices, namely that each
interval can be decomposed into a product of full lattices. This was
fulfilled in the case of all partitions and it is not hard to see that we
have the same property also for non-crossing partitions [20, 10]: For
all π, σ ∈ NC(n) with π ≤ σ there exist canonical natural numbers
k1, k2, . . . such that

[π, σ] ∼= NC(1)k1 ×NC(2)k2 × . . . . (61)

Having this factorization property at hand it is quite natural to define
a multiplicative function f (for non-crossing partitions) corresponding
to a sequence (a1, a2, . . . ) of complex numbers by the requirement that

f(π, σ) := ak1
1 a

k2
2 . . . (62)

if [π, σ] has a factorization as above. Again we use the notation f!
(a1, a2 . . . ) to denote the dependence of f on the sequence (a1, a2, . . . ).

As before, the special functions δ, zeta, and moeb are all multiplica-
tive with the following determining sequences:

δ! (1, 0, 0, . . . ) (63)

zeta! (1, 1, 1, . . . ) (64)

moeb! ((−1)n−1cn−1)n≥1, (65)

where cn are the Catalan numbers.
Let me stress the following: Consider π ∈ NC(n) ⊂ P(n). Then the

factorization for intervals of the form [0n, π] is the same in P(n) and
in NC(n), i.e. we have the same ki in both decompositions:

[0n, π]P(n)
∼= P(1)k1 × P(2)k2 × . . .

⇐⇒ [0n, π]NC(n)
∼= NC(1)k1 ×NC(2)k2 × . . . . (66)

For intervals of the form [π, 1n], however, the factorization might be
quite different – reflecting the different structure of both lattices. For
example, for π = {(1, 3), (2), (4)} ∈ NC(4) ⊂ P(4) we have

[{(1, 3), (2), (4)}, {(1, 2, 3, 4)}]P(4)
∼= P(3), (67)

but

[{(1, 3), (2), (4)}, {(1, 2, 3, 4)}]NC(4)
∼= NC(2)×NC(2).

(68)
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The latter factorization comes from the fact that, by the non-crossing
property, the block (1, 3) separates the blocks (2) and (4) from each
other.

5.3. Connection between free convolution and combinatorial
convolution. As in the case of classical convolution we want to de-
scribe free convolution by quantities kn (n ≥ 1) which behave addi-
tively unter free convolution. These kn are calculated somehow out of
the moments mn of a random variable X – they should essentially be
the coefficients of the R-transform – and they will be called the free
cumulants of X. The question is how we calculate the cumulants out of
the moments and vice versa. The answer is very simple: it works as in
the classical case, just replace all partitions by non-crossing partitions.

Theorem (Speicher [20]). Let mn and kn be the moments and the
free cumulants, respectively, of a random variable X. Let m and k be
the corresponding multiplicative functions on the lattice of non-crossing
partitions, i.e.

m! (m1,m2, . . . ), k! (k1, k2, . . . ). (69)

Then the relation between m and k is given by

m = k ? zeta, (70)

or equivalently

k = m ?moeb. (71)

The important point that I want to emphasize is that this com-
binatorial relation between moments and free cumulants can again
be translated into a relation between the corresponding formal power
series; these series are essentially the Cauchy transform and the R-
transform and their relation is nothing but Voiculescu’s formula for
the R-transform.

Let us look at this more closely: By taking into account the non-
crossing character of the involved partitions, the relation m = k ? zeta
can be written more concretely in a recursive way as (where m0 = 1)

mn =
n∑
r=1

∑
i1,...,ir≥0

i1+...ir+r=n

krmi1 . . .mir . (72)

Multiplying this by zn, distributing the powers of z and summing over
all n this gives

∞∑
n=0

mnz
n = 1 +

∞∑
n=1

∞∑
r=1

∑
i1,...,ir≥0

i1+...ir+r=n

krz
rmi1z

i1 . . .mirz
ir ,

(73)
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which is easily recognized as a relation between the formal power series

C(z) := 1 +
∞∑
n=1

mnz
n and D(z) := 1 +

∞∑
n=1

knz
n

(74)

of the momens and of the free cumulants. The above formula reads in
terms of these power series as

C(z) = D[zC(z)], (75)

and the simple redefinitions

G(z) :=
C(1/z)

z
and R(z) =

D(z)− 1

z
(76)

change this into

G[R(z) + 1/z] = z. (77)

But – by noticing that the above defined function G is nothing but
the Cauchy transform – this is exactly Voiculescu’s formula for the
R-transform.

Thus we see: The analytical descriptions of the classical and the free
convolution via the logarithm of the Fourier transform and via the R-
transform are nothing but translations of the combinatorial relations
between moments and cumulants into formal power series. Whereas the
analytical descriptions look quite different for both cases the underlying
combinatorial relations are very similar. They have the same structure,
the only difference is the replacement of all partitions by non-crossing
partitions.

6. Freeness and generalized cumulants

Whereas up to now I have described free cumulants as a good object
to deal with additive free convolution I will now show that cumulants
have a much more general meaning: they are the right concept to
deal with the notion of freeness itself. From this more general point
of view we will also get a very simple proof of the main property of
free cumulants, that they linearize free convolution. (In Sect. 5.3, we
have presented the connection between moments and cumulants, but
we have not yet given any idea why the cumulants from that theorem
are additive unter free convolution.)

6.1. Generalized cumulants. Whereas I defined freeness in Sect. 2
only for two random variables, I will now present the general case.

Again, we are working on a unital algebra A equipped with a fixed
unital linear functional ϕ. Usually one calls the pair (A, ϕ) a (non-
commutative) probability space.
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We consider elements a1, . . . , al ∈ A of our algebra (called random
variables) and the only information we use about these random vari-
ables is the collection of all mixed moments, i.e. all quantities

ϕ[ai(1) . . . ai(n)] for all n ∈ N and all 1 ≤ i(1), . . . , i(n) ≤ l.
(78)

Definition . The random variables a1, . . . , al ∈ A are called free (with
respect to ϕ) if

ϕ[p1(ai(1))p2(ai(2)) . . . pn(ai(n))] = 0 (79)

whenever the pj (n ∈ N, j = 1, . . . , n) are polynomials such that

ϕ[pj(ai(j))] = 0 (j = 1, . . . , n) (80)

and

i(1) 6= i(2) 6= · · · 6= i(n). (81)

Note that the last condition in the definition requires only that con-
secutive indices are different; it might happen, e.g., that i(1) = i(3).

As said before, this definition provides a rule for calculating mixed
moments, but it is far from being explicit. Thus freeness is difficult to
handle in terms of moments. The cumulant philosophy presented so far
can be generalized to this more general setting by trying to find some
other quantities in terms of which freeness is much easier to describe. I
will now show that there are indeed such (generalized) free cumulants
and that the transition between moments and cumulants is given as
before with the help of non-crossing partitions.

Similarly as our general moments are of the form

ϕ[ai(1) . . . ai(n)], (82)

our general cumulants (kn)n∈N will be n-linear functionals kn with ar-
guments of the form

kn(ai(1), . . . , ai(n)) (n ∈ N, 1 ≤ i(1), . . . , i(n) ≤ l). (83)

In the one-dimensional case, as treated up to now, we had only one
random variable a and the previously considered numbers kn are related
with the above functionals by kn = kn(a, . . . , a).

The rule for calculating the cumulants out of the moments is the
same as before, formally it is given by ϕ = k ? zeta. This means
that for calculating a moment ϕ[ai(1) . . . ai(n)] in terms of cumulants we
have to sum over all non-crossing partitions, each such partition gives
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a contribution in terms of cumulants which is calculated according to
the factorization of that partition into its blocks:

ϕ[ai(1) . . . ai(n)] =
∑

π∈NC(n)

k(π)[ai(1), . . . , ai(n)];

here k(π)[ai(1), . . . , ai(n)] denotes a product of cumulants where the
ai(1), . . . , ai(n) are distributed as arguments to these cumulants accord-
ing to the block structure of π.

The best way to get the idea is to look at some examples:

ϕ[a1] = k1(a1) (84)

ϕ[a1a2] = k2(a1, a2) + k1(a1)k1(a2) (85)

ϕ[a1a2a3] =k3(a1, a2, a3) + k2(a1, a2)k1(a3)

+ k2(a2, a3)k1(a1) + k2(a1, a3)k1(a2)

+ k1(a1)k1(a2)k1(a3)

(86)

ϕ[a1a2a3a4] =k4(a1, a2, a3, a4) + k3(a1, a2, a3)k1(a4)

+ k3(a1, a2, a4)k1(a3) + k3(a1, a3, a4)k1(a2)

+ k3(a2, a3, a4)k1(a1) + k2(a1, a2)k2(a3, a4)

+ k2(a1, a4)k2(a2, a3) + k2(a1, a2)k1(a3)k1(a4)

+ k2(a1, a3)k1(a2)k1(a4) + k2(a1, a4)k1(a2)k1(a3)

+ k2(a2, a3)k1(a1)k1(a4) + k2(a2, a4)k1(a1)k1(a3)

+ k2(a3, a4)k1(a1)k1(a2) + k1(a1)k1(a2)k1(a3)k1(a4).

(87)

Note that in the last example the summation is only over the 14 non-
crossing partitions, the crossing {(1, 3), (2, 4)} makes no contribution.

Of course, on can also invert the above expressions in order to get
the cumulants in terms of moments; formally we can write this as
k = ϕ ? moeb.

The justification for the introduction of these quantities comes from
the following theorem, which shows that these free cumulants behave
very nicely with respect to freeness.

Theorem (Speicher [20], cf. [9]). In terms of cumulants, freeness can
be characterized by the vanishing of mixed cumulants, i.e. the following
two statements are equivalent:
i) a1, . . . , al are free
ii) kn(ai(1), . . . , ai(n)) = 0 (n ∈ N) whenever there are 1 ≤ p, q ≤ n
with: i(p) 6= i(q).
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This characterization of freeness is nothing but a translation of the
original definition in terms of moments to cumulants, by using the
relation ϕ = k ? zeta. However, it should be clear that this characteri-
zation in terms of cumulants is much easier to handle than the original
definition.

Let me indicate the main step in the proof of the theorem.

Proof. In terms of moments freeness is characterized by the vanishing
of very special moments, namely mixed, alternating and centered ones.
Because of the relation ϕ = k ? zeta it is clear that, by induction, this
should also translate to the vanishing of special cumulants. However,
what we claim is that on the level of cumulants the assumptions are
much less restrictive, namely the arguments only have to be mixed.
Thus by the transition from moments to cumulants (via non-crossing
partitions) we get somehow rid of the conditions ‘alternating’ and ‘cen-
tered’. The essential point is centeredness. (It is also this condition
that is not so easy to handle in concrete calculations with moments.)
That we can get rid of this is essentially equivalent to the fact that

kn(. . . , 1, . . . ) = 0 for all n ≥ 2. (88)

That this removes the centeredness condition for cumulants is clear,
since with the help of this we can go over from non-centered to centered
arguments without changing the cumulants:

kn(ai(1), . . . , ai(n)) = kn
(
ai(1) − ϕ[ai(1)]1, . . . , ai(n) − ϕ[ai(n)]1

)
.

(89)

So it only remains to see the validity of (88). But this follows from the
fact that the calculation rule ϕ = k ? zeta – which is indeed a system
of rules, one for each n – is consistent for different n’s. This can again
be seen best by an example. Let us see why k4(a1, a2, a3, 1) = 0. By
induction, we can assume that we know the vanishing of k2 and k3 if
one of their arguments is equal to 1. Now we take formula (87) and
put there a4 = 1. According to our induction hypothesis some of the
terms will vanish and we remain with

ϕ[a1a2a3] = ϕ[a1a2a31]

= k4(a1, a2, a3, 1) + k3(a1, a2, a3)k1(1)

+ k2(a1, a2)k1(a3)k1(1) + k2(a1, a3)k1(a2)k1(1)

+ k2(a2, a3)k1(a1)k1(1) + k1(a1)k1(a2)k1(a3)k1(1).
(90)

Note that we have k1(1) = ϕ[1] = 1 and thus the right hand side of the
above is, by (86), exactly equal to

k4(a1, a2, a3, 1) + ϕ[a1a2a3]. (91)
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But this implies k4(a1, a2, a3, 1) = 0.

6.2. Additive free convolution. Having the characterization of free-
ness by the vanishing of mixed cumulants, it is now quite easy to give a
selfcontained combinatorial (i.e. without using the results of Voiculescu
on the R-transform) proof of the linearity of free cumulants under ad-
ditive free convolution. Recall that the problem of describing additive
free convolution consists in calculating, for X and Y being free, the
moments of X +Y in terms of moments of X and moments of Y . As a
symbolic notation for this we have introduced the concept of (additive)
free convolution,

µX+Y = µX � µY . (92)

As described before, this problem can be treated by going over to the
free cumulants according to

mX = kX ? zeta or kX = mX ? moeb, (93)

where mX and kX are the multiplicative functions on the lattice of non-
crossing partitions determined by the sequence of moments (mX

n )n≥1

of X and the sequence of free cumulants (kXn )n≥1 of X, respectively.
In the last section I have shown that the above relation (93) is es-
sentially equivalent to Voiculescu’s formula for the calculation of the
R-transform. So it only remains to recognize the additivity of the free
cumulants (and thus of the R-transform) under free convolution. But
since the one-dimensional cumulants of the last section are just special
cases of the above defined more general cumulants according to

kXn = kn(X, . . . , X), (94)

this additivity is a simple corollary of the vanishing of mixed cumulants
in free variables:

kX+Y
n = kn(X + Y, . . . , X + Y )

= kn(X, . . . , X) + kn(Y, . . . , Y )

= kXn + kYn .

(95)

Thus we have recovered, by our combinatorial approach, the full
content of Voiculescu’s results on additive free convolution.

7. Multiplicative free convolution and the general structure
of the combinatorial convolution on NC

7.1. Multiplicative free convolution. Voiculescu considered also
the problem of the product of free random variables: if X and Y are
free, how can we calculate moments of XY out of moments of X and
moments of Y ?
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Note that in the classical case we can make a transition from the
additive to the multiplicative problem just by exponentiating; thus
in this case the multiplicative problem reduces to the additive one,
there is no need to investigate something like multiplicative classical
convolution as a new operation.

In the free case, however, this reduction does not work, because for
non-commuting random variables we have in general

exp(X + Y ) 6= expX · expY. (96)

Hence it is by no means clear whether the multiplicative problem is
somehow related to the additive problem.

We know that freeness results in some rule for calculating the mo-
ments of XY out of the moments of X and the moments of Y , thus the
distribution of XY depends somehow on the distribution of X and the
distribution of Y . As in the additive case, Voiculescu [26] introduced
a special symbol, �, for this ‘somehow’ and named the corresponding
operation on probability measures multiplicative free convolution:

µXY = µX � µY . (97)

And, more importantly, he could solve the problem of describing this
operation in analytic terms. In the same way as the additive prob-
lem was dealt with by introducing the R-transform, he defined now a
new formal power series, called S-transform, which behaves nicely with
respect to multiplicative convolution,

Sµ�ν(z) = Sµ(z) · Sν(z). (98)

Again he was able (by quite involved arguments) to derive a formula
for the calculation of this Sµ-transform out of the distribution µ:

Sµ(z) :=
1 + z

z

( ∞∑
n=1

ϕ(Xn)zn
)<−1>

, (99)

where < −1 > denotes the operation of taking the inverse with respect
to composition of formal power series.

Voiculescu dealt with two problems in connection with freeness, the
additive convolution � and the multiplicative convolution �, and he
could solve both of them by introducing the R-transform and the S-
transform, respectively. I want to emphasize that in his treatment there
is no connection between both problems, he solved them independently.

One of the big advantages of our combinatorial approach is that
we shall see a connection between both problems. Up to now, I have
described how we can understand the R-transform combinatorially in
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terms of cumulants – the latter were just the coefficients in the R-
transform. My next aim is to show that also the multiplicative convo-
lution (and the S-transform) can be described very nicely in combina-
torial terms with the help of the free cumulants.

But before I come to this, let me again switch to the purely combina-
torial side by recognizing that there is also still some canonical problem
open.

7.2. General structure of the combinatorial convolution on
NC. Recall that, in Sect. 5, we have introduced a combinatorial con-
volution on the incidence algebra of non-crossing partitions. We are
particulary interested in multiplicative functions on non-crossing par-
titions and it is quite easy to check that the combinatorial convolution
of multiplicative functions is again multiplicative. This means that
for two multiplicative functions f and g, given by their corresponding
sequences,

f! (a1, a2, . . . ), g! (b1, b2, . . . ), (100)

their convolution

h := f ? g (101)

must, as a multiplicative function, also be determined by some sequence
of numbers

h! (c1, c2, . . . ). (102)

These ci are some functions of the ai and bi and it is an obvious question
to ask for the concrete form of this connection. The answer, however,
is not so obvious.

Note that in Sect. 5 we dealt with a special case of this problem,
namely the case where g = zeta. This was exactly what was needed
for describing additive free convolution in the form m = k ? zeta, and
the relation between the two series f and h = f ? zeta is more or less
Voiculescu’s formula for the R-transform: If

f! (a1, a2, . . . ) and h = f ? zeta! (c1, c2, . . . )
(103)

then in terms of the generating power series

C(z) := 1 +
∞∑
n=1

cnz
n and D(z) := 1 +

∞∑
n=1

anz
n

(104)

the relation is given by

C(z) = D[zC(z)]. (105)
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Now we ask for an analogue treatment of the general case h = f ? g.
The corresponding problem for all partitions was solved by Doubilet,
Rota, and Stanley in [4]: The multiplicative functions on P correspond
to exponential power series of their determining sequences and under
this correspondence the convolution ? goes over to composition of power
series.

What is the corresponding result for non-crossing partitions? The
answer to this is more involved than in the case of all partitions, but
it will turn out that this is also intimately connected with the problem
of multiplicative free convolution and the S-transform. In the case
of all partitions there is no connection between the above mentioned
result of Doubilet, Rota, and Stanley and some classical probabilistic
convolution.

The answer for the case of non-crossing partitions depends on a spe-
cial property of NC (which has no analogue in P): all NC(n) are
self-dual and there exists a nice mapping, the (Kreweras) complemen-
tation map

K : NC(n)→ NC(n), (106)

which implements this self-duality. This complementation map is a
lattice anti-isomorhism, i.e.

π ≤ σ ⇔ K(π) ≥ K(σ), (107)

and it is defined as follows: If we have a partition π ∈ NC(n) then
we insert between the points 1, 2, . . . , n new points 1̄, 2̄, . . . , n̄ (lin-
early or circularly), such that we have 1, 1̄, 2, 2̄, . . . , n, n̄. We draw now
the partition π by connecting the blocks of π and we define K(π) as
the biggest non-crossing partition of {1̄, 2̄, . . . , n̄} which does not have
crossings with the partition π: K(π) is the maximal element of the set
{σ ∈ NC(1̄, . . . , n̄) | π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄)}. (The union of two
partitions on different sets is of course just given by the union of all
blocks.)

This complementation map was introduced by Kreweras [8]. Note
that K2 is not equal to the identity but it shifts the points by one (mod
n) (corresponding to a rotation in the circular picture). Simion and Ull-
man [18] modified the complementation map to make it involutive, but
the original map of Kreweras is more adequate for our investigations.
Biane [2] showed that the complementation map of Kreweras and the
modification of Simion and Ullman generate together the group of all
skew-automorphisms (i.e., automorphisms or anti-automorphisms) of
NC(n), which is the dihedral group with 4n elements.
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As an example for K we have:

K({(1, 4, 8), (2, 3), (5, 6), (7)}) = {(1, 3), (2), (4, 6, 7), (5), (8)}.
(108)

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

With the help of this complementation map K we can rewrite our
combinatorial convolution in the following way: If we have multiplica-
tive functions connected by h = f ? g, and the sequence determining h
is denoted by (c1, c2, . . . ), then we have by definition of our convolution

cn = h(0n, 1n) =
∑

π∈NC(n)

f(0n, π)g(π, 1n), (109)

which looks quite unsymmetric in f and g. But the complementation
map allows us to replace

[π, 1n] ∼= [K(1n), K(π)] = [0n, K(π)] (110)

and thus we obtain

cn =
∑

π∈NC(n)

f(0n, π)g(0n, K(π)) =
∑

π∈NC(n)

f(π)g(K(π)).
(111)

An immediate corollary of that observation is the commutativity of
the combinatorial convolution on non-crossing partitions.

Corollary (Nica+Speicher [10]). The combinatorial convolution ? on
non-crossing partitions is commutative:

f ? g = g ? f. (112)

Proof.

(f ? g)(0n, 1n) =
∑

π∈NC(n)

f(π)g(K(π))

=
∑

σ=K−1(π)

f(K(σ))g(σ)

= (g ? f)(0n, 1n).

(113)
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The corresponding statement for the convolution on all partitions is
not true – this is obvious from the fact that under the above stated cor-
respondence with exponential power series this convolution goes over
to composition, which is clearly not commutative. This indicates that
the description of the combinatorial convolution on non-crossing par-
titions should differ substantially from the result for all partitions. Of
course, this corresponds to the fact that the lattice of all partitions is
not self-dual, there exist no analogue of the complementation map for
arbitrary partitions.

7.3. Connection between ? and �. Before I am going on to present
the solution to the problem of describing the full structure of the com-
binatorial convolution ?, I want to establish the connection between
this combinatorial problem and the problem of the multiplicative free
convolution.

Let X and Y be free. Then multiplicative free convolution asks for
the moments of XY . In terms of cumulants we can write them as

ϕ[(XY )n] =
∑

π∈NC(2n)

k(π)[X, Y,X, Y, . . . , X, Y ], (114)

where k(π)[X, Y,X, Y, . . . , X, Y ] denotes a product of cumulants which
factorizes according to the block structure of the partition π. The
vanishing of mixed cumulants in free variables implies that only such
partitions π contribute where all blocks connect either only X or only
Y . Such a π ∈ NC(2n) splits into the union π = π1 ∪ π2, where
π1 ∈ NC(1, 3, 5, . . . ) (the positions of the X) and π2 ∈ NC(2, 4, 6, . . . )
(the positions of the Y ), and we can continue the above equation with

ϕ[(XY )n] =

=
∑

π=π1∪π2∈NC(2n)
π1∈NC(1,3,5,... )
π2∈NC(2,4,6,... )

k(π1)[X,X, . . . , X] · k(π2)[Y, Y, . . . , Y ]

=
∑

π1∈NC(n)

(
k(π1)[X,X, . . . , X] ·

∑
π2∈NC(n)

π1∪π2∈NC(2n)

k(π2)[Y, Y, . . . , Y ]
)
.

(115)

Now note that the condition

π2 ∈ NC(n) with π1 ∪ π2 ∈ NC(2n) (116)

is equivalent to

π2 ≤ K(π1) (117)
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and that with kY and mY being the multiplicative functions determined
by the cumulants and the moments of Y , respectively, the relation
mY = kY ? zeta just means explicitely

mY (σ1) =
∑
σ2≤σ1

kY (σ2). (118)

Taking this into account we can continue our calculation of the mo-
ments of XY as follows:

ϕ[(XY )n] =
∑

π1∈NC(n)

(
kX(π1) ·

∑
π2≤K(π1)

kY (π2)
)

=
∑

π1∈NC(n)

kX(π1) ·mY (K(π1)).
(119)

According to our formulation of the combinatorial convolution in terms
of the complementation map, cf. (111), this is nothing but the following
relation

mXY = kX ? mY . (120)

Hence we can express multiplicative free convolution � in terms of
the combinatorial convolution ?. This becomes even more striking if
we remove the above unsymmetry in moments and cumulants. By
applying the Möbius function on (120) we end up with

kXY = mXY ? moeb = kX ? mY ? moeb = kX ? kY ,
(121)

and we have the beautiful result

kXY = kX ? kY for X and Y free. (122)

One sees that we can describe also multiplicative free convolution in
terms of cumulants, just by taking the combinatorial convolution of
the corresponding cumulant functions. Thus the problem of describing
multiplicative free convolution � is equivalent to understanding the
general structure of the combinatorial convolution h = f ? g.

7.4. Description of ?. The above connection means in particular that
Voiculescu’s description of the multiplicative free convolution, via the
S-transform, must also contain (although not in an explicit form) the
solution for the description of h = f ? g.

This insight was the starting point of my joint work [10] with A. Nica
on the combinatorial convolution ?. From Voiculescu’s result on the
S-transform and the above connection we got an idea how the solution
should look like and then we tried to derive this by purely combinatorial
means.
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Theorem (Nica+Speicher [10]). For a multiplicative function f on
NC with

f! (a1, a2, . . . ) where a1 = 1 (123)

we define its ‘Fourier transform’ F(f) by

F(f)(z) :=
1

z

( ∞∑
n=1

anz
n
)<−1>

. (124)

Then we have

F(f ? g)(z) = F(f)(z) · F(g)(z). (125)

Hence multiplicative functions on NC correspond to formal power
series (but now this correspondence F is not as direct as in the case of
all partitions), and under this correspondence the combinatorial con-
volution ? is mapped onto multiplication of power series. This is of
course consistent with the commutativity of ?.

This result is not obvious on the first look, but its proof does not
require more than some clever manipulations with non-crossing parti-
tions. Let me present you the main steps of the proof.

Proof. Let us denote for a multiplicative function f determined by a
sequence (a1, a2, . . . ) its generating power series by

Φf (z) :=
∞∑
n=1

anz
n. (126)

Then we do the summation in

cn =
∑

π∈NC(n)

f(π)g(K(π)) (127)

in such a way that we fix the first block of π and then sum over the
remaining possibilities. A careful look reveals that this results in a
relation

Φf?g = Φf ◦ Φf?̌g, (128)

where f?̌g is defined by

(f?̌g)(0n, 1n) :=
∑

π∈NC′(n)

f(π)g(K(π)); (129)

the summation does not run over all of NC(n) but only over

NC ′(n) := {π ∈ NC(n) | (1) is a block of π}. (130)

This relation comes from the fact that if we fix the first block of π,
then the remaining blocks are all separated from each other, but each
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one of them has to be considered in connection with one point of the
first block.

The relation (128) alone does not help very much, since it involves
also the new quantitiy f?̌g. In order to proceed further we need one
more relation. This is given by the following symmetrization lemma
(in contrast to ? the operation ?̌ is not commutative)

z · Φf?g(z) = Φf?̌g(z) · Φg?̌f (z), (131)

which just encodes a nice bijection between

NC(n) ←→
⋃

1≤j≤n

NC ′(j)×NC ′(n+ 1− j).
(132)

The two relations (128) and (131) are all we need, the rest is just
playing around with formal power series: (128) implies

Φ<−1>
f = Φf?̌g ◦ Φ<−1>

f?g (133)

Φ<−1>
g = Φg?̌f ◦ Φ<−1>

g?f , (134)

where in the last expression we can replace g ? f by f ? g. Putting now
z = Φ<−1>

f?g (w) in (131) we obtain

Φ<−1>
f?g (w) · w = Φf?̌g

(
Φ<−1>
f?g (w)

)
· Φg?̌f

(
Φ<−1>
f?g (w)

)
.

(135)

If we replace the quantities on the right hand side according to (133),
(134) and divide by w2 we end up with

Φ<−1>
f?g (w)

w
=

Φ<−1>
f (w)

w
·

Φ<−1>
g (w)

w
. (136)

Since, by definition, the Fourier transform is nothing but

F(f)(w) =
Φ<−1>
f (w)

w
, (137)

this yields exactly the assertion.

Biane [3] related the above theorem to the concept of central multi-
plicative functions on the infinite symmetric group and gave another
proof of the theorem in that context.

7.5. Connection between S-transform and Fourier transform.
According to Sect. 7.3, the problem of the general structure of the
combinatorial convolution is essentially the same as the problem of
multiplicative free convolution. So the above theorem should also be
connected with the crucial property (98) of the S-transform. Let me
point out this connection and show that everything fits together nicely.
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If we denote by k(µ) the cumulant function of the distribution µ
(i.e. the multiplicative function on non-crossing partitions determined
by the free cumulants of µ), then I have shown, in Sect. 7.3, that the
connection between probability and combinatorics is given by

k(µ� ν) = k(µ) ? k(ν). (138)

If one compares the definition of the S-transform and of the Fourier
transform F and takes into account the relation which exists between
moments and cumulants then one sees that the definitions are made in
such a way that we have the relation

Sµ = F(k(µ)). (139)

It is then clear that our theorem on the description of ? via the Fourier
transform together with the two equations (138) and (139) yields di-
rectly the behaviour of the S-transform under multiplicative free con-
volution:

Sµ�ν = F
(
k(µ� ν)

)
= F

(
k(µ) ? k(ν)

)
= F(k(µ)) · F(k(ν))

= Sµ · Sν .

(140)

Thus we get a purely combinatorial proof of Voiculescu’s theorem on
the S-transform. Furthermore, our approach reveals a much closer
relationship between additive and multiplicative free convolution than
one would expect at a first look.

Let me close this section by emphasizing again that these consider-
ations on the multiplicative free convolution possess no classical coun-
terpart; combinatorially all this relies on the existence of the Krew-
eras complementation map for non-crossing partitions – some extra
structure which is absent in the case of all partitions. Freeness and
non-crossing partitions behave in many respects analogous to indepen-
dence and all partitions, respectively, but in the free case there exists
also some extra structure which makes this theory even richer than the
classical one.

8. Applications of the combinatorial description of freeness

Up to now I have essentially shown how one can use freeness as a
motivation for developing a lot of nice mathematics on non-crossing
partitions. Note that the combinatorial problems are canonical for
themselves – I hope you find them interesting even without taking into
account the connection with free probability.
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But of course this relation between freeness and non-crossing parti-
tions can also be reversed; we can use the combinatorial description of
freeness to derive some new results in free probability theory (up to now
I have only shown how to rederive some known results of Voiculescu).
This programme was pursued in a couple of joint papers with A. Nica
[11, 12, 13]. For illustration, I want to present some of these results.

8.1. Construction of free random variables. One class of results
are those were one starts with some variables that are free and con-
structs out of them new variables; then one asks whether one can say
something about the freeness of the new variables. It is quite aston-
ishing that there are a lot of constructions which preserve freeness –
usually constructions which have no classical counterpart. In a sense
freeness is much more rigid than classical independence – on a com-
binatorial level this corresponds to the fact that there exist a lot of
special bijections between non-crossing partitions.

Let me just state one theorem of that type. It involves a so-called
semi-circular distribution; this is the free analogue of the classical
Gauss distribution and a semi-circular variable can be characterized
by the fact that only its second free cumulant is different from zero.

Theorem (Nica+Speicher [11]). Let a and b be random variables which
are free. If b is semi-circular, then a and bab are also free.

The proof of this theorem relies mainly on the fact that there exists
a canonical bijection between NC(n) and the set

NCP (2n) := {π ∈ NC(2n) | each block of π contains

exactly two elements}. (141)

8.2. Unexpected results. Surprises are to be expected from investi-
gations which involve the Kreweras complementation map – since there
is no classical analogy it might happen that one can derive properties
which are totally opposite to what one knows from the classical case.
One striking example of that kind is the following theorem, whose proof
can be finally traced back to the property

|π|+ |K(π)| = n+ 1 for all π ∈ NC(n). (142)

Theorem (Nica+Speicher [11]). Let µ be a (compactly supported) prob-
ability measure on R. Then there exists, for each α ≥ 1, a probability
measure µ�α such that

µ�1 = µ (143)

and

µ�α � µ�β = µ�(α+β) for all α, β ≥ 1. (144)
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Note that here positivity is the main assertion, it is crucial that we
require the fractional powers to be probability measures. The corre-
sponding statement on the level of linear functionals would be trivially
true for arbitrary α.

To get an idea of the assertion consider the following example: If
µ is a probability measure then we claim that there exists another
probability measure ν = µ�3/2 such that

ν � ν = µ� µ� µ. (145)

The analogous statement for classical convolution is of course totally
wrong, as one can see, e.g., from the above example by taking µ to be
the symmetric Bernoulli distribution with mass on +1 and −1.

8.3. Free commutator. An important advantage of our combinato-
rial description over the original analytical approach of Voiculescu is
the possibility to extend the combinatorial treatment without any ex-
tra effort from the one-dimensional to the more-dimensional case. This
opens the possibility to attack problems which are not treatable from
the analytic side. The most considerable result of that kind is our anal-
ysis of the free commutator in [13]. Voiculescu solved the problem of
the sum X + Y and the product XY of two free random variables X
and Y . The next canonical problem, the free commutator XY − Y X,
could be treated, for the first time, by our combinatorial machinery –
the description of the commutator relies heavily on an understanding
of the two-dimensional distribution of the pair (XY, Y X).

8.4. Generalization to the case with amalgamation. I want to
indicate that one can generalize free probability theory also to an
operator-valued frame; linear functionals are replaced by conditional
expectations onto some fixed algebra B and all appearing algebras are
with amalgamation over this B. Again, the combinatorial point of view
using non-crossing partitions gives a natural and beautiful description
for this theory. This approach was developed in [21].

9. Relations between freeness and other fields

Up to now I have concentrated on presenting the connection between
free probability theory and non-crossing partitions. In a sense, freeness
can be regarded as an abstract concept which is more or less equiva-
lent to the combinatorics of non-crossing partitions. The most exciting
feature of freeness, however, is that this is only one facet, there exist
much more connections to various fields. Freeness is an abstract con-
cept with a lot of concrete manifestations in quite different contextes.
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In the following I want to give a slight idea of some of these connec-
tions. Whereas my presentation of the combinatorial part has covered
most of the essential aspects, the following remarks will be very brief
and selective. (In particular, I will say nothing about ‘free entropy’ – at
present one of the most exciting directions in free probability theory .)
For a more exhaustive survey I suggest to consult [30, 28, 29]. In par-
ticular, [29] contains a collection of articles on quite different aspects
of freeness.

9.1. Origin of freeness: the free group factors. Voiculescu intro-
duced ‘freeness’ in a context which is quite different from the topics I
have treated up to now: namely in the theory of operator algebras, in
connection with some old problems on special von Neumann algebras.

Let me give a very brief idea of that context. To a discrete group
G one can associate in a canoncial way a von Neumann algebra L(G),
which is the closure in some topology of the group ring of G: On the
Hilbert space

l2(G) := {
∑
g∈G

αgg |
∑
g

|αg|2 <∞} (146)

with the scalar product

〈g1, g2〉 := δg1,g2 (147)

one has a natural unitary representation λ of the group G, which is
given by left multiplication, i.e.

λ(g)h = gh. (148)

The von Neumann algebra L(G) associated to G is by definition the
closure in the weak topology of the group ring C(G) in this represen-
tation:

L(G) := λ(C(G))
weak

= vN(λ(g) | g ∈ G) ⊂ B(l2(G)).
(149)

If the considered group is i.c.c. (i.e. all its non-trivial conjugacy
classes contain infinitely many elements) then the von Neumann al-
gebra L(G) is a so-called factor; factors are in a sense the simplest
building blocks of general von Neumann algebras. Furthermore, there
exists a canonical trace on L(G), which is given by the identity element
e of G: define

ϕ(·) := 〈e, ·e〉, i.e. ϕ(
∑
g

αgg) = αe, (150)
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then it is easy to check that ϕ is a trace, i.e. it fulfills

ϕ(ab) = ϕ(ba) for all a, b ∈ L(G). (151)

Factors having such a trace are called II1-factors – they are the sim-
plest class of non-trivial von Neumann algebras. (Trivial are the von
Neumann algebras B(H) for some Hilbert space H; and there exist also
type III factors, which possess no trace and which are much harder to
analyze.)

Almost all known constructions of von Neumann algebras rely on the
above construction of group factors and one has to face the following
canonical question: What is the structure of L(G) for different G, in
particular, how much of the structure of G survives within L(G).

For some classes of groups this is quite well understood. If the group
G is amenable, then one gets always the same factor, the so-called
hyperfinite factor R,

L(G) = R for all amenable groups G. (152)

This hyperfinite II1-factor (and its type III counterparts) has a lot of
nice properties and the class of hyperfinite factors is regarded as the
nicest class of von Neumann algebras.

On the other extreme there is a treatable class of groups which are
considered as the bad guys: if G has the so-called Kazhdan property
then L(G) has some exotic properties (usually used for constructing
counter-examples); but for this class there is some evidence (i.e. it is
an open conjecture) that the von Neumann algebra contains the full
information on the group, i.e.

L(G1) ∼= L(G2)⇐⇒ G1
∼= G2 G1, G2 Kazhdan groups.

(153)

There is a canonical class of groups lying between amenable and Kazh-
dan groups: the free groups Fn on n generators. Voiculescu advocates
the philosophy that the free group factors L(Fn) are the nicest class of
von Neumann algebras after the hyperfinite case. However, since the
early days of Murray-von Neumann there has been no progress on this
class – only the most basic things are know, like that they are differ-
ent from the hyperfinite factor. But even the most canonical question,
namely whether L(Fn) is isomorphic to L(Fm) for n 6= m, is still open.

Voiculescu introduced the notion of ‘freeness’ exactly in order to
investigate the structure of the free group factors. His idea was the
following: The free group Fn is the free product (of groups)

Fn = Z ∗ · · · ∗ Z, (154)
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thus one might expect that the corresponding free group factor can also
be decomposed as a free product (of von Neumann algebras) like

L(Fn) = L(Z) ∗ · · · ∗ L(Z). (155)

L(Z) are commutative von Neumann algebras, thus well-understood;
the main problem consists in understanding the operation of taking
the free product of von Neumann algebras. But this amounts to un-
derstanding freeness: It is easy to see that with respect to the canon-
ical trace in L(Fn) the different copies of L(Z) are free in L(Fn). The
first main step of Voiculescu was to separate freeness as an abstract
concept from that concrete problem and to develop it as a theory on
its own sake. The second main point was to consider freeness as a
non-commutative analogue of independence and thus to develop a free
probability theory.

One should emphasize that for a couple of years there was no real
progress on the problem of free group factors, it was absolutey unclear
whether this approach via free probability theory would in the end
yield something for the original operator algebraic problem. But slowly
connections between freeness and other fields emerged and these really
had a big impact on the operator algebraic side: Although the problem
of the isomorhpism of the free group factors is still open, there has been
a lot of progress on the structure of these algebras. Let me just mention
as one result in this direction the following (according to Dykema [5]
and Radulescu [15], building on results of Voiculescu): Either all L(Fn)
are isomorhpic or all of them are different. (One can even extend the
definition of L(Fn) in a consistent way to non-integer n.)

This progress on the original problem relied essentially on the dis-
covery of Voiculescu [27] that freeness has also a canonical realization
in terms of random matrices.

9.2. Freeness and random matrices. Probably the most important
link of freeness with another, apriori totally unrelated, context is the
connection with random matrices. Let me just state the basic version
of this theorem

Theorem (Voiculescu [27], cf. [22]). 1) Let

X(N) = (a
(N)
ij )Ni,j=1 and Y (N) = (b

(N)
ij )Ni,j=1 (156)

be symmetric N ×N-random matrices with

i) a
(N)
ij (1 ≤ i ≤ j ≤ N) are independent and normally distributed

(mean zero, variance 1/N)

ii) b
(N)
ij (1 ≤ i ≤ j ≤ N) are independent and normally distributed

(mean zero, variance 1/N)
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iii) all a
(N)
ij are independent from all b

(N)
kl

Then X(N) and Y (N) become free in the limit N →∞ with respect to

ϕ(·) :=
1

N
〈tr(·)〉ensemble. (157)

2) Let A(N) and B(N) be symmetric deterministic (e.g. diagonal) N ×
N-matrices whose eigenvalue distribtutions tend to some fixed proba-
bility measures µ and ν, respectively, in the limit N → ∞. Consider
now

X(N) := A(N) and Y (N) := UB(N)U∗, (158)

where U is a random unitary N ×N-matrix from the ensemble

U ∈ ΩN = (U(N), Haarmeasure). (159)

Then X(N) and Y (N) become free in the limit N →∞ with respect to

ϕ(·) :=
1

N
〈tr(·)〉ΩN . (160)

Note that part 2 of this theorem is much more general than part 1.
In the first part, X(N) and Y (N) are Gaussian random matrices and
thus, by a celebrated result of Wigner, their eigenvalue distributions
tend, for N → ∞, towards the so-called semi-circle distribution. We
can also say that (in the sense of convergence of all moments)

lim
N→∞

(X(N), Y (N)) = (X, Y ), (161)

where X and Y are free and both have a semi-circular distribution (cf.
Sect. 8.1).

In part 2 of the theorem, however, we are not restricted to semi-
circular distributions, but we can prescribe in the limit any distribution
we want. In this case we can rephrase the statement in the form

lim
N→∞

(X(N), Y (N)) = (X, Y ), (162)

where X and Y are free and have the prescribed distributions

µX = µ and µY = ν. (163)

As a conclusion one can say that ‘freeness’ can also be considered as
the mathematical structure of N ×N -random matrices which survives
in the limit N → ∞, or that ‘freeness’ is the right concept for the
description of ∞×∞-random matrices.

As mentioned before, this connection resulted in some deep results
on the von Neumann algebras of the free groups. But it opens also
the possibility for using the concept ‘freeness’ in physical applications.
Random matrices are quite frequently introduced in physics, usually in
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connection with some approximations. In such a context, the concept
‘freeness’ promises to give a mathematical rigorous frame for otherwise
ad hoc approximations.

One example for such results is my joint work with P. Neu, where
we could show that a physically well-established approximation – called
CPA – consists in replacing independent by free random variables in the
underlying Hamiltonian. This did not only clarify the mathematical
structure of this approximation but explained also the hitherto badly
understood connection between CPA and so-called Wegner models. For
more information in this direction one might consult my survey [23].
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