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ABSTRACT

Littelmann has given a combinatorial model for the characters of representa-
tions of semisimple Lie algebras, in terms of certain paths traced in the space
of (rational) weights. From it, a description of the decomposition of tensor
products can be derived that generalises the Littlewood-Richardson rule (the
latter is valid in type An only). We present a new combinatorial construc-
tion that expresses in a bijective manner the symmetry of the tensor product
in this path model. In type An, where there is a correspondence between
paths and skew tableaux, this construction is equivalent to Schützenberger’s
jeu de taquin; in the general case the construction retains its most crucial
properties of symmetry and confluence.
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1 Introduction

§1. Introduction.

In this note we wish to present a simple construction that appears to arise
naturally in the context of Littelmann’s paths. Indeed, we found it while
trying to formulate an answer to a question asked (by Alain Lascoux) during
a lecture by Littelmann on this subject at the Séminaire Lotharingien; the
question was whether one could exhibit combinatorially the symmetry of the
tensor product in the formula given, in terms of paths, for tensor product
decompositions.

This paper is organised as follows. After recalling some of Littel-
mann’s notions in §2, we analyse the symmetry of the traditional Littlewood-
Richardson rule in §3, and translate the procedure that exhibits the symme-
try (which is essentially jeu de taquin) into the language of paths. Then in §4
we extend this construction successively to two broader classes of paths, with
instances for other types of groups than An, namely the classes of m-paths
(built from the path models of minuscule representations) and of ψ-paths
(incorporating also the path models of quasi-minuscule representations); the
latter removes any restrictions on the type of the group or the representation.
Finally in §5 we give a construction in the context of arbitrary piecewise lin-
ear paths that generalises the earlier constructions; however, we have not
(yet) established the essential connection with Littelmann’s root operations
for this general construction.

§2. Notations used.

We shall assume without explicit reference the notations and results of [Litt2].
We mention in particular the following notations. We denote by X the weight
lattice of a complex Lie algebra g, that for simplicity we shall assume to be
finite dimensional and reductive, and by Π the set of piecewise linear paths
in the space XQ = X ⊗Z Q of rational weights. All paths are parametrised
by the interval [0, 1] ⊆ Q, and start at 0, so that π(0) = 0 for all π ∈ Π, while
π(1) denotes the end point of π. For µ ∈ X, the straight path from 0 to µ is
denoted by πµ. The reverse or dual path of π ∈ Π is denoted by π∗, and π∗π′
denotes the concatenation of two paths. The set of paths π such that π(t)
is dominant for all t ∈ [0, 1], and such that π(1) ∈ X (i.e., it is an integral
dominant weight), is denoted by P+. The root operators eα and fα formally
act on the free Z-module ZΠ, but since the image of every generator π ∈ Π
of that Z-module is either another such generator or 0, we shall consider the
root operators as maps Π→ Π ∪ {0}. The subset of Π reachable from some
π ∈ P+ by repeated application of root operators is denoted by Bπ. To avoid
too deeply nested subscripts we shall write ei and fi for the root operators
eαi and fαi . For a weight λ, a path π and a simple root α, we shall write
bλ + πcα for the number mint∈[0,1] 〈λ+ π(t), α∨〉, or simply bπcα if λ = 0;
the path π is called λ-dominant if bλ+ πcα ≥ 0 for all simple roots α.
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3 Paths in type An−1, tableaux, and jeu de taquin

§3. Paths in type An−1, tableaux, and jeu de taquin.

We shall first consider the correspondence between paths in type An−1 and
Young tableaux, and the connection between the Littlewood-Richardson rule
in terms of paths and the classical one. Then we shall consider the question
of symmetry of these rules with respect to the order of the tensorands.

3.1. Paths and Littlewood-Richardson tableaux.

Let us first recall the well known correspondence between partitions with at
most n parts and dominant integral weights for g = gln. Let h ⊆ gln be the
Cartan subalgebra consisting of diagonal matrices, and b ⊆ gln the Borel
subalgebgra of upper triangular matrices. For i = 1, . . . , n let εi ∈ h∗ be the
weight that takes the (i, i) diagonal entry; then the set of simple roots with
respect to b is {αi | i = 1, . . . , n− 1 } where αi = εi − εi+1, and the set of
fundamental weights is {ωi | i = 1, . . . , n− 1 } where ωi =

∑
j≤i εj . We shall

identify any vector λ = (λ1, . . . , λn) ∈ Zn with the weight
∑n
i=1 λiεi; since

one has 〈λ, α∨i 〉 = λi−λi+1, it follows that this is a dominant integral weight
if and only if λ is a partition.

Now we shall define a correspondence between the set Tabµ of semis-
tandard Young tableaux of shape µ, and the set Bπ for a specific path π =
πc(µ) ∈ P+, which is determined as follows. Write µ as a sum of terms ωi
(so the term ωi is repeated µi − µi+1 times) ordered by (weakly) increas-
ing index i, and then replace each ωi by its expression

∑
j≤i εj as a sum of

terms εj , again ordered by increasing index. The path πc(µ) is obtained from
the resulting sum by replacing each of the |µ| terms of the form εj by the
corresponding path πεj , and addition by concatenation. We shall call any
path of the form πεj1 ∗ · · · ∗ πεjl an ε-path of length l; such paths are char-
acterised by the sequence j1, . . . , jl of indices. If fi is applied to an ε-path
and the result is not 0, then it changes one segment πεi into πεi+1 . There-
fore any path in Bπc(µ) is an ε-path of length |µ|. Inserting its sequence of
indices into a Young diagram of shape µ, proceeding by columns from right
to left and from top to bottom within each column, one obtains a tableau,
and it can be shown that this defines a bijection from Bπc(µ) to Tabµ. Note
that a subsequence of segments contributing to any one column of length i of
the tableau stems from the sequence of segments πεj corresponding (before
application of the fα) to one term ωi in the sum for µ.
Remark. In fact one could have used instead of πc(µ) another path π̄c(µ),
formed by concatenating straight line paths πωi corresponding to the terms ωi
in the first sum for µ. One then obtains a bijection between Bπ̄c(µ) and the
same set Tabµ of tableaux: every application of fα that does not yield 0
transforms one path segment into another straight segment, of the form πεI
with I an i-element subset of {1, . . . , n} and εI =

∑
j∈I εj ; that segment cor-

responds to a column with set of entries I in the Young tableau. Remarkably,
Tabµ can even be used to describe in a direct way many other sets Bπ′ , where
π′ ∈ P+ is an ε-path. For instance, if πr(µ) denotes the ε-path corresponding
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3.1 Paths and Littlewood-Richardson tableaux

to the expression µ =
∑n
i=1 µiεi (i.e., with weakly increasing indices), then

each path in Bπr(µ) is an ε-path whose sequence of indices is obtained by
listing the entries of a tableau in Tabµ by rows from right to left. We have
given prominence to πc(µ) rather than to πr(µ) because it seems to be the
preferred choice for mathematical reasons: the proof that Bπ corresponds to
Tabµ is the easiest for π = πc(µ), and the relation between Bπc(µ) and a set
of tableaux has analogues in other classical types (see [KaNa]), which is not
the case with Bπr(µ). Historically however it is (the set of sequences of indices
corresponding to) Bπr(µ) that has received more attention: for instance, the
fact that the operators eα preserve compatibility with the tableau conditions
is already assumed implicitly in [Rob], and proved in [Macd, I (9.6)]. Note
also that our choice is not of crucial importance: while the relation between
paths and tableaux was instrumental in finding the construction presented
below, that construction itself will be formulated in terms of paths, and
applicable regardless of any connection of those paths with tableaux.

By the decomposition formula of [Litt2], the multiplicity of the irre-
ducible gln-module Vν in the tensor product Vλ ⊗ Vµ equals the number of
λ-dominant paths in Bπc(µ) of weight ν − λ, i.e., paths π ∈ Bπc(µ) for which
the translated path λ+π goes from λ to ν and lies entirely within the domi-
nant chamber. Each segment of λ+π goes from one dominant integral weight
to another, so we obtain a sequence of partitions from λ to ν that we shall
call the λ-chain of π. If π was derived, as shown above, from T ∈ Tabµ, then
its λ-chain can be formed, starting from λ, by traversing T in the order indi-
cated, and for every entry i encountered forming a new partition by adding 1
to part i of the previous partition. If we extend this procedure slightly by
filling at each step the square (in row i) added to the Young diagram of
the partition with a particular number r, then this will associate to T a
Littlewood-Richardson tableaux T ′ of shape ν/λ and weight µ (as used in
the classical formulation of the Littlewood-Richardson rule). It suffices to
specify r: it is the row number in T of the entry i encountered at the current
step.

In fact this procedure defines a correspondence between the squares s
of T and the squares t of T ′, i.e., a bijection between the squares of the Young
diagram of µ and those of the skew diagram ν/λ. This bijection is such that
in T the square s contains the row number the corresponding square t, while
in T ′ the square t contains the row number of s. It follws that T can be recon-
structed from T ′ by a quite similar procedure. In fact one may consider both
T and T ′ merely as ways to represent the bijection between squares. The
bijections so occurring can be characterised by geometric properties that are
contained in the notion of pictures ([Zel1]); using this notion it becomes ob-
vious that for T ′ one finds exactly the set of Littlewood-Richardson tableaux
of shape ν/λ and weight µ. Pictures provide a very versatile means to study
these tableaux, due to the fact that many operations can be defined directly
in terms of pictures, see [vLee2] (in that paper the conditions in the definition
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3.2 Symmetry of the Littlewood-Richardson rule

of pictures are transposed; in citing results we shall adapt for this difference).
Below we shall freely use constructions defined for pictures and their prop-
erties; for the convenience of those not acquainted with pictures, we shall
also give the translations of those constructions in terms of tableaux. It is
worth noting that if one takes T to represent a path π′ ∈ Bπr(µ) rather than
π ∈ Bπc(µ), then one not only obtains the same set of admissible T (i.e., π is
λ-dominant if and only if π′ is), but for each such T the two orders of traver-
sal lead to the same picture (bijection between squares of µ and of ν/λ), and
therefore construct the same Littlewood-Richardson tableau T ′. The path π′

moreover has the property that its λ-chain gives the standardisation of the
semistandard tableau T ′, which is not the case with π.

3.2. Symmetry of the Littlewood-Richardson rule.

We now turn to the question of exhibiting the symmetry of the tensor product
combinatorially in type An−1, using Littlewood-Richardson tableaux.

We are looking for a bijection between Littlewood-Richardson tableaux
of shape ν/λ and weight µ on one side, and Littlewood-Richardson tableaux
of shape ν/µ and weight λ on the other side. In terms of pictures such a
bijection is fairly easy to construct. There is a unique picture λ → −λ,
which may be “glued” to any given picture f : ν/λ → µ, to form a picture
f̄ : ν → µ ] −λ (the operation ‘]’ is “concatenation” of skew diagrams in
the anti-diagonal direction, or more precisely of classes of skew diagrams
modulo translation in the plane). Then one can apply the Schützenberger
algorithm for pictures to obtain a picture S(f̄): ν → λ ] −µ; the image
under the inverse picture S(f̄)−1 of the factor −µ of the image is necessarily
the subdiagram µ of ν, so by restriction of S(f̄) to the complement of this
subdiagram we obtain the desired picture ν/µ → λ. The construction is
easily seen to be involutive, and hence it defines a bijection between the sets
of pictures Pic(ν/λ, µ) and Pic(ν/µ, λ).

In terms of Littlewood-Richardson tableaux such as T ′, this construction
amounts to the following. The skew tableau of shape ν/λ is extended to a
tableau of shape ν by filling each square of λ with minus its distance to the
bottom of its column in λ (so the lowest square in each column gets −1,
the square above it −2, etc.); the important property of this subtableau of
shape λ is that it corresponds under the Schützenberger involution to the
“canonical” tableau of shape and weight λ, in which each row i is filled
with entries i. One then applies the Schützenberger involution to the full
semistandard tableau of shape ν to obtain another such tableau in which the
multiset of entries is negated, so that for each of the negative entries in the
original tableau (within the Young diagram of λ) one now has a positive entry
(at some other place of course), and vice versa; the subtableau of positive
entries of the new tableau is a Littlewood-Richardson tableau of shape ν/µ
and weight λ.

This algorithm can be simplified, if one recalls that one way to compute
the Schützenberger involution applied to a Young tableau Y , is by “inflation”.
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3.3 Jeu de taquin for chains of partitions, and for paths

This is done by traversing the entries i of Y in increasing order (as usual
processing equal entries from left to right), using them to repeatedly modify
a tableau Z, initially empty, as follows: one performs an outward jeu de
taquin slide of Z into the square occupied by i in Y , after which the vacated
top-left corner of Z is filled with the value −i. Applying this algorithm to the
semistandard Young tableau extended from T ′, one sees that in a first stage
of computation the Schützenberger involution is applied to the subtableau
of shape λ; as remarked, the result is the canonical tableau of shape λ. In a
second stage outward slides are then applied to this tableau according to T ′;
the (negative) entries added at the top-left during the second stage can be
ignored, since they will be removed from the final result anyway. So the
bijection expressing the symmetry of the Littlewood-Richardson rule with
respect to the partitions λ and µ describing the tensorands is given by jeu de
taquin, rather than by the full Schützenberger algorithm; it is described in
the following proposition, whose proof is contained in the reasoning above.

3.2.1. Proposition. A bijection between Littlewood-Richardson tableaux
L of shape ν/λ and weight µ and Littlewood-Richardson tableaux M of
shape ν/µ and weight λ is given by the following algorithm: the tableau M
is obtained from the canonical tableau of shape and weight λ by applying
a series of successive outward jeu de taquin slides into the squares of ν/λ,
as ordered by increasing entries in L, where squares with equal entries are
ordered from left to right. Applying the same algorithm to M (interchanging
the values of λ and µ) will reconstruct L.

3.3. Jeu de taquin for chains of partitions, and for paths.

We shall now translate the construction above back in terms of paths, which
will result in a remarkably simple operation that can be generalised to other
types than An−1. In associating paths with tableaux such as L and M in the
proposition above, sequences of partitions are natural intermediate objects:
on one hand L is used there only to obtain an ordering of the squares within
its shape ν/λ, as represented by its standardisation, which corresponds to a
saturated increasing chain of partitions from λ to ν; on the other hand such
a chain of partitions is the λ-chain of some ε-path.

As was noted above, the λ-chain of a λ-dominant path π ∈ Bπc(µ)

does not correspond to the standardisation of the corresponding Littlewood-
Richardson tableau T ′. We can nevertheless interpret the jeu de taquin
process as operating directly on paths, in two ways. One is to pragmatically
choose to work with λ-dominant paths in Bπr(µ) rather than in Bπc(µ); as
remarked above, the λ-chain of such a path does correspond to the standard-
isation the associated Littlewood-Richardson tableau. More fundamentally,
one may observe that T ′ really represents a picture ν/λ → µ, which has
many specialisations (standard tableaux of shape ν/λ that can be associated
with it according to some “reading” of µ); one of these is the standardisation
of T ′, while the λ-chain of π ∈ Bπc(µ) corresponds to another. Moreover,
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3.3 Jeu de taquin for chains of partitions, and for paths

different specialisations of the same picture have the property that when
used to determine sequences of jeu de taquin slides, the final effect of any
of these sequences of slides on the same initial tableau is identical (this is
more generally true for tableaux that are dual equivalent). Therefore, if
in proposition 3.2.1 we take for L the Littlewood-Richardson tableau con-
structed from π ∈ Bπc(µ), then the same tableau M will be computed as in
the proposition if we apply slides according to the λ-chain of π, rather than
according to the specialisation of L.

We arrive at describing jeu de taquin in terms of chains of partitions. It
is not necessary that the initial tableau to which we apply outward slides is a
Young tableau; therefore we shall admit chains that start in an arbitrary par-
tition κ. Given a saturated increasing chain of partitions from κ to λ (for in-
stance, with κ = (0), the 0-chain of πc(λ)) corresponding to a (semi)standard
tableau C, and a similar chain from λ to ν (the λ-chain of a λ-dominant ε-
path) corresponding to a tableau L, the question is to describe the chain of
partitions corresponding to the skew tableau M resulting from the applica-
tion of successive outward jeu de taquin slides to C into the squares added
in the chain of L. This has been done in [vLee1, §2] (for the Schützenberger
algorithm, but it applies also to jeu de taquin), see also [vLee4, §2.1]. The
family of partitions λ[i,j], defined by the fact that λ[i,0], . . . , λ[i,l] is the chain
corresponding to the tableau obtained after applying i slides to C, satisfies
a local condition that allows λ[i+1,j] to be determined when λ[i,j], λ[i,j+1],
and λ[i+1,j+1] are given:

3.3.1. Rule. One has λ[i,j+1] = λ[i+1,j] if and only if the two squares of
λ[i+1,j+1] \ λ[i,j] are adjacent.

Note that in the case that the mentioned squares are non-adjacent,
λ[i+1,j] is the unique partition strictly between λ[i,j] and λ[i+1,j+1] that differs
from λ[i,j+1]. This rule allows all partitions λ[i,j] to be computed when they
are initially given only for pairs (i, j) with i = 0 (by means of C) or j = l
(by means of L). The same rule also allows λ[i,j+1] to be determined when
λ[i,j], λ[i+1,j], and λ[i+1,j+1] are given. This reaffirms that the construction
of proposition 3.2.1 is its own inverse. Note that in the proposition we take C
to be the canonical tableau of shape λ; this is possible since we know that
M must be a Littlewood-Richardson tableau, and therefore be reducible by
jeu de taquin to this canonical tableau. In order to define a similar con-
struction in terms of paths however, it will be necessary to explicitly supply
data corresponding to C: if we want to construct from a λ-dominant path
p ∈ Bπ a corresponding µ-dominant path p′ (where µ = π(1)), then we must
specify the path π′ ∈ P+ such that µ ∈ Bπ′ ; similiarly the inverse operation
requires π to be specified. Therefore the path analogue of the bijection of
proposition 3.2.1 will be a bijective correspondence (p, π′)↔ (p′, π).

We shall now reformulate the rule above in terms of ε-paths. With
respect to chains of partitions there are some minor differences. First of
all, partitions are limited to those with at most n parts. Second, we are
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3.3 Jeu de taquin for chains of partitions, and for paths

interested primarily in the vertical and horizontal difference vectors vi,j =
λ[i+1,j] − λ[i,j] and hi,j = λ[i,j+1] − λ[i,j], which lie in the set {ε1, . . . , εn},
and represent segments of ε-paths; indeed, they are equal to εr where r
is the row number of the square λ[i+1,j] \ λ[i,j] respectively of the square
λ[i,j+1] \ λ[i,j]. Now in case the two squares mentioned in rule 3.3.1 are
non-adjacent, the square λ[i+1,j] \ λ[i,j] is equal to λ[i+1,j+1] \ λ[i,j+1], and
similarly the square λ[i,j+1] \ λ[i,j] is equal to λ[i+1,j+1] \ λ[i+1,j]; in this case
we therefore certainly have vi,j = vi,j+1 and (equivalently) hi+1,j = hi,j .
These two equalities remain valid in case the squares mentioned in rule 3.3.1
are horizontally adjacent, i.e., they both lie in the same row r, since in that
case vi,j = vi,j+1 = hi+1,j = hi,j = εr. Therefore, the only case where vi,j 6=
vi,j+1, and where hi+1,j 6= hi,j , is when the two squares of λ[i+1,j+1] \ λ[i,j]

are vertically adjacent; in that case, if the rows containing these squares
are r and r + 1, one has hi,j = εr = vi,j and vi,j+1 = εr+1 = hi+1,j .
Given these values of hi,j and vi,j+1 (or of vi,j and hi+1,j), the condition
that there is indeed vertical adjacency can be expressed as λ[i,j]

r = λ
[i,j]
r+1,

or equivalently as 〈λ[i,j], α∨r 〉 = 0. Note that with this condition satisfied
it would not even be possible to have vi,j = vi,j+1, since that would make
〈λ[i,j+1], α∨r 〉 = −1, contradicting the fact that λ[i,j+1] is a partition, and
corresponds to a dominant weight. We arrive at the following rule that
describes how vi,j and hi+1,j are determined by the values of hi,j , vi,j+1 and
λ[i,j].

3.3.2. Rule. One has vi,j = vi,j+1 and hi+1,j = hi,j , unless for some r one
has hi,j = εr, vi,j+1 = εr+1, and 〈λ[i,j], α∨r 〉 = 0, in which case vi,j = εr and
hi+1,j = εr+1.

We can now reformulate jeu de taquin in terms of ε-paths. A strict
translation of proposition 3.2.1 into this language would give a statement
that only applies to ε-paths that correspond to semistandard Young tableaux,
but as explained above we remove that restriction by supplying an extra
parameter π′. To recover that proposition one should take κ = (0), and π′

equal to the ε-path corresponding to the canonical tableau of shape λ, i.e.,
to πc(λ) or πr(λ), depending on the chosen correspondence between paths
and tableaux.

3.3.3. Construction (jeu de taquin for ε-paths). Let κ, λ, ν be dom-
inant integral weights for gln, π′ a κ-dominant ε-path of length l with
π′(1) = λ− κ, and p a λ-dominant ε-path of length k with p(1) = ν − λ. We
construct a dominant integral weight µ, a κ-dominant ε-path π of length k
with π(1) = µ−κ, and a µ-dominant ε-path p′ of length l with p′(1) = ν−µ
in the following steps.
◦ Set h0,0, . . . , h0,l−1 according to the sequence of segments of π′, and
v0,l, . . . , vk−1,l according to the sequence of segments of p;
◦ Set λ[0,j] := κ+

∑
j′<j h0,j′ for 0 ≤ j ≤ l, and λ[i,l] := λ+

∑
i′<i vi′,l for

0 ≤ i ≤ k;
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3.3 Jeu de taquin for chains of partitions, and for paths

◦ Determine the values hi,j for 0 < i ≤ k and l > j ≥ 0, as well as vi,j for
0 ≤ i < k and l > j ≥ 0 using rule 3.3.2, setting λ[i,j+1] := λ[i,j] + vi,j =
λ[i+1,j+1] − hi+1,j after each application of the rule;
◦ Return π = πv0,0 ∗ · · · ∗ πvk−1,0 and p′ = πhk,0 ∗ · · · ∗ πhk,l−1 .

Note that the relations between the parameters of the construction allow
all of them to be deduced if κ, π′, and p are given; we shall therefore consider
the construction to be parametrised by (κ, π′, p), and to return the pair
(π, p′). The following theorem is obvious, both from the symmetry of the
construction, and from the fact that that construction is just a reformulation
of jeu de taquin.

3.3.4. Theorem (symmetry of jeu de taquin for ε-paths). The
construction 3.3.3 is its own inverse: if when applied to (κ, π′, p) it returns
(π, p′), then applied to (κ, π, p′) it will return (π′, p). Moreover, it is
symmetric with respect to dualisation of paths: when applied to (ν, p∗, π′∗)
it will return (p′∗, π∗).

Despite its somewhat technical formulation, the following lemma is just
an expression of the trivial fact that jeu de taquin consists of consecutive
application of slides: performing inward slides according to a path π′2 followed
by performing inward slides according to π′1 amounts to performing inward
slides according to the concatenation π′1 ∗ π′2.

3.3.5. Lemma. Let construction 3.3.3 be applicable to (κ, π′, p). If π′ is of
the form π′1 ∗π′2, then the construction is applicable to (κ+π′1(1), π′2, p), and
calling the result of this application (q, p′2), it is also applicable to (κ, π′1, q);
calling the result of this second application (π, p′1), the result of applying
the construction to (κ, π′, p) will be (π, p′1 ∗ p′2). A similar composition
formula holds if p is of the form p1 ∗ p2.

The following theorem establishes the fundamental link between jeu de
taquin and Littelmans’s root operators eα and fα. It is not an entirely new
result: the fact that the definition of eα and fα corresponds to jeu de taquin
on tableaux of two rows is well known to experts; a discussion of this relation
including a proof of a statement equivalent to the theorem can be found in
in [vLee4, §3.1]. We shall give another proof here that is formulated in terms
of paths, so that generalisation to other types will be straightforward.

3.3.6. Theorem. In the situation of construction 3.3.3 the path π can be
obtained from p by application of a sequence of operators ei, and similarly the
path p′ can be obtained from π′ by application of a sequence of operators fi.
In particular, if κ = 0, one has p ∈ Bπ and p′ ∈ Bπ′ .

Proof. By symmetry (theorem 3.3.4) it suffices to prove the first statement
(about p and π). By lemma 3.3.5, it will suffice to prove the case where
π′ has length 1, which we therefore assume henceforth. In order to proceed
by induction on the length of p, it is necessary to strengthen the statement
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3.3 Jeu de taquin for chains of partitions, and for paths

being proved as follows: there exists a sequence of indices i1, . . . , in (with
n ≥ 0), and a sequence of paths p = pn, pn−1, . . . , p0 = π, such that
for j = n, . . . , 1, one has pj−1 = eij (pj) and bκ + pjcαij = −1 (which
shows that pj is not κ-dominant for j > 0). If p is of length 0 we take
n = 0 and there is nothing to prove; assume therefore that p has positive
length. Let v = λ[1,1] − λ[0,1] in construction 3.3.3, so that we can write
p = πv ∗ q; similarly put v′ = λ[1,0] − λ[0,0] and π = πv′ ∗ ρ. With κ′ = λ[1,0]

we consider the construction applied to (κ′, πh1,0 , q), which by lemma 3.3.5
returns (ρ, p′). By the induction hypothesis there exist indices i1, . . . , im and
paths q = qm, . . . , q0 = ρ with qj−1 = eij (qj) and bκ′ + qjcαij = −1 for
0 < j ≤ m. For j ≤ m we put pj = πv′ ∗ qj (so that in particular p0 = π).
Then for 0 < j ≤ m one has bκ + pjcαij = bκ′ + qjcαij = −1, since the
path πv′ is κ-dominant with πv′(1) = v′ = κ′ − κ. We see moreover that
the minimum taken in the first expression is attained only in the second part
of the concatentation pj = πv′ ∗ qj ; from the definition of ei we therefore
have ei(pj) = πv′ ∗ ej(qj) = πv′ ∗ qj−1 = pj−1. Now if v′ = v, we have
p = πv ∗ q = πv′ ∗ qm = pm so that we take n = m and we are done.
Otherwise we are in the exceptional case of rule 3.3.2 for (i, j) = (0, 0),
so that π′ = πv′ = πεr , πv = πεr+1 , and 〈κ, α∨r 〉 = 〈λ[1,1], α∨r 〉 = 0 for
some r. Since the path q is λ[1,1]-dominant, this implies 〈q(t), α∨r 〉 ≥ 0
for all t, so that bκ + pcαr = −1, which minimum is first attained at the
point of concatenation of p = πv ∗ q; consequently, we have by the definition
of er that er(p) = πεr ∗ q = πv′ ∗ qm = pm. In this case we therefore put
n = m+1 and in = r, and we have established all that needs to be proved.
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4 Jeu de taquin for other types of groups

§4. Jeu de taquin for other types of groups.

Now the stage has been set in type An−1, we may consider possible generali-
sations to other types of groups. While the traditional planar form of jeu de
taquin does not seem to be easily generalised, the situation is quite different
for the formulation in terms of paths, since there are only a few points in the
discussion above that are specific for type An−1, and need replacement for
other types. Firstly, one needs a replacement for the set {πεi | i = 1, . . . , n }
of elementary path segments, and hence for the class of ε-paths; secondly,
rule 3.3.2 will need to be adapted to this new class of paths. Once this is
done, a counterpart of the construction 3.3.3 can be defined with only the
most obvious adaptations. Provided the replacement for rule 3.3.2 preserves
its symmetry, the analogue of theorem 3.3.4 will be valid, with an equally sim-
ple proof; the analogue of lemma 3.3.5 remains a triviality. Having succeeded
so far, we shall have a involutive construction that operates on pairs (p, π′)
of paths; then in order that we can use this construction to define, for any
paths π, π′ ∈ P+ (in the chosen class) with π(1) = µ and π′(1) = λ, a bijec-
tive correspondence between λ-dominant paths in Bπ and µ-dominant paths
in Bπ′ , it is essential that the analogue of theorem 3.3.6 holds. Most of its
proof will remain valid without modification, but the final argument involv-
ing a single configuration governed by (an analogue of) rule 3.3.2 needs to
be verified. Each time we establish these points, we obtain a combinatorial
analogue of jeu de taquin that shares two of its most fundamental properties:
symmetry (theorem 3.3.4) and confluence, i.e., the fact that, for κ = 0, the
correspondence p → π is independent of the choice of π′ ∈ P+ (this will be
a consequence of the analogue of theorem 3.3.6 and the fact that from any
path p at most one path π ∈ P+ can be obtained by applications of root
operators eα). The combinatorial constructions that we shall find have a
common generalisation to arbitrary piecewise linear paths, and maybe even
to continuous paths; however, in this generality the combinatorial nature of
the construction will be lost.

4.1. Minuscule representations and m-paths.

Let W be the Weyl group of g. A non-trivial irreducible representation of g is
called minuscule if its set of weights forms a single W -orbit; these weights are
called minuscule weights. The following representations are minuscule: all
fundamental representations in type An, the natural (defining) representation
in types Cn and Dn, the spin representation in type Bn, the half-spin rep-
resentations in type Dn, the two 27-dimensional representations in type E6,
and the 56-dimensional representation in type E7; there are no minuscule
representations in types G2, F4 and E8, since, as the weight lattice coincides
with the root lattice in these types, all representations contain the weight 0.
For any minuscule weight m and any root α one has 〈m,α∨〉 ∈ {−1, 0, 1},
since otherwise m+ Zα would intersect the weight system in more than two
points. Therefore one has Bπλ = {πm | m ∈Wλ } for any dominant minus-
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4.1 Minuscule representations and m-paths

cule weight λ. This makes the class of paths obtained by concatenation of
segments πm for m minuscule a good candidate to replace the class of ε-
paths. We shall call any concatenation of l segments of the form πm, with
m minuscule, an m-path (pun not intended) of length l.

In order to formulate an analogue of rule 3.3.2 for m-paths, we are led
to consider the following situation. Let κ, λ and µ be dominant integral
weights such that πλ−κ and πν−λ are m-paths of length 1; the question is
to find a dominant weight µ such that πµ−κ can be obtained from πν−λ
by a series of applications of operators eα with 〈κ, α∨〉 = 0, and such that
the argument πvi to which the operator is applied satisfies 〈vi, α∨〉 = −1
(there is a similar condition for the transformation πλ−κ → πν−µ, which
involves operators fα). The main difference with the situation for ε-paths
is that, whereas in that case at most one application of er suffices (which
transforms πν−λ = πεr+1 into πµ−κ = πεr ), a series of applications may
be needed for m-paths. This phenomeneon already occurs in type An−1:
if one takes κ = ν = 0, and λ = ωi, so that λ − κ = ωi = ε{1,...,i}, and
ν − λ = −ωi = ε{i+1,...,n}, then the only possibility is to have µ = ωn−i,
so that µ − κ = ωn−i = ε{1,...,n−i} and ν − µ = −ωn−i = ε{n−i+1,...,n};
the transformation of πε{i+1,...,n} into πε{1,...,n−i} requires a total of i(n − i)
applications of operators εα (some operators may be applied more than once,
but never twice in succession).

We see in this example that the seqence of operators applied may
not be unique (unlike in the proof of theorem 3.3.6), but the final re-
sult is. In fact it is not difficult to see that this is true in general. Let
S = { i | 〈κ, α∨i 〉 = 〈ν, α∨i 〉 = 0 }, and put v0 = ν − λ, h0 = λ − κ; these
are the initial candidates for µ − κ and ν − µ (the sum of these candidates
will always be ν − κ). In order that µ be dominant, it is necessary that
〈µ− κ, α∨i 〉 = 〈µ− ν, α∨i 〉 ≥ 0 for all i ∈ S. Therefore, while there exists
for the current candidates vj and hj for µ − κ and ν − µ an i ∈ S with
〈vj , α∨i 〉 = 〈−hj , α∨i 〉 = −1 we choose such an i and replace the candidates
by vj+1 = sαi(vj) = vj + αi and hj+1 = sαi(hj) = hj − αi. After a finite
number of steps this process terminates, and we set µ = κ+ vl = ν − hl for
the final values vl, hl. Writing Wκ,ν for the subgroup of W stabilising κ and ν
(it is generated by { sαi | i ∈ S }), and domWκ,ν

for the map that sends any
weight to the Wκ,ν-dominant representative of its Wκ,ν-orbit, we clearly have
µ − κ = domWκ,ν

(ν − λ) and µ − ν = domWκ,ν
(κ − λ), which shows that

these values are independent of the choices made of the indices i. We have
achieved 〈µ, α∨i 〉 ≥ 0 for all i ∈ S; to prove that µ is dominant it suffices to
establish the same for i /∈ S. For such i we have 〈κ, α∨i 〉 ≥ 1 or 〈ν, α∨i 〉 ≥ 1
(possible both); since 〈µ− κ, α∨i 〉 and 〈ν − µ, α∨i 〉 lie in {−1, 0, 1}, either of
these inequalities implies 〈µ, α∨i 〉 ≥ 0. From this description we see that in
fact µ = domW (κ + ν − λ). We can therefore formulate a generalisation of
rule 3.3.2 simply as follows.

4.1.1. Rule. λ[i+1,j] = domW (λ[i,j] + λ[i+1,j+1] − λ[i,j+1]).
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4.1 Minuscule representations and m-paths

4.1.2. Lemma. For fixed values of λ[i,j] and λ[i+1,j+1], the correspondence
between λ[i,j+1] and λ[i+1,j] determined by rule 4.1.1 is symmetrical. More-
over the rule is symmetrical in λ[i,j] and λ[i+1,j+1].

Proof. From the considerations above it follows that µ = w(κ + ν − λ)
for some w ∈ W that fixes κ and ν; this implies λ = w−1(κ + ν − µ),
and since λ is dominant, this establishes the first symmetry. The second
symmetry is obvious.

As the path segments hi,j and vi,j are absent from the formulation of
the rule 4.1.1, we can formulate a construction that is in the spirit of the
original formulation of jeu de taquin in term of chains of partitions, in that
only a doubly indexed family of partitions is considered. It should be noted
however that paths were used to find rule 4.1.1, and they will play a rôle in
proofs concerning the construction as well.

4.1.3. Construction (jeu de taquin for m-paths). Let κ, λ, ν be dom-
inant integral weights for g, π′ a κ-dominant m-path of length l with
π′(1) = λ − κ, and p a λ-dominant m-path of length k with p(1) = ν − λ;
we assume for each of π′ and p that their segments are traversed at equal
speeds. We construct a dominant integral weight µ, a κ-dominant m-path π
of length k with π(1) = µ− κ, and a µ-dominant m-path p′ of length l with
p′(1) = ν − µ in the following steps.
◦ Set λ[0,j] := κ + π′(j/l) for 0 ≤ j ≤ l, and λ[i,l] := λ + p(i/k) for

0 ≤ i ≤ k;
◦ Determine the values λ[i,j] for 0 < i ≤ k and l > j ≥ 0 using rule 4.1.1;
◦ Return π = πv1∗· · ·∗πvk and p′ = πh1∗· · ·∗πhl , where vi = λ[i,0]−λ[i−1,0]

and hj = λ[k,j] − λ[k,j−1].

4.1.4. Theorem (symmetry of jeu de taquin for m-paths). The con-
struction 4.1.3 is its own inverse: if when applied to (κ, π′, p) it returns (π, p′),
then applied to (κ, π, p′) it will return (π′, p). Moreover, it is symmetric with
respect to dualisation of paths: when applied to (ν, p∗, π′∗) it will return
(p′∗, π∗).

Proof. This is immediate from lemma 4.1.2.

4.1.5. Lemma. Lemma 3.3.5 remains valid when construction 3.3.3 is
replaced by construction 4.1.3.

4.1.6. Theorem. In the situation of construction 4.1.3 the path π can be
obtained from p by application of a sequence of operators ei, and similarly the
path p′ can be obtained from π′ by application of a sequence of operators fi.
In particular, if κ = 0, one has p ∈ Bπ and p′ ∈ Bπ′ .

Proof. The proof of theorem 3.3.6 can be followed literally, with the obvious
replacement of references by their counterparts for m-paths, up to and
including the proof that ei(pj) = pj−1 for 0 < j ≤ m; after that we
continue as follows. Let v = v0, . . . , vl = v′ be the sequence of vectors in
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4.2 Quasi-minuscule weights and ψ-paths

the discussion preceding the statement of rule 4.1.1; put n = m + l and
pn−i = πvi ∗ q for i = 0, . . . , l (this agrees with the previous definition of pm,
and we have pn = p). It was established there that for all i < l there exists
a simple root α such that 〈κ, α∨〉 = 〈λ[1,1], α∨〉 = 0, 〈vi, α∨〉 = −1, and
vi+1 = sα(vi), so that πvi+1 = eα(πvi). Since the path q is λ[1,1]-dominant
we have 〈q(t), α∨〉 ≥ 0 for all t, so that bκ + pn−icα = −1, and eα(pn−i) =
eα(πvi∗q) = πvi+1∗q = pn−i−1; this establishes all that needs to be proved.

4.2. Quasi-minuscule weights and ψ-paths.

We can extend the class of paths for which our construction works beyond
that of m-paths by allowing path segments that correspond to the weights
of representations slightly larger than the minuscule ones, which will in par-
ticular allow us to treat paths for groups of the types G2, F4, and E8 that
do not possess minuscule representations. As we shall see, the extra freedom
will lead to a considerable increase in the number of situations that need to
be treated.

An irreducible representation is called quasi-minuscule if its set of
weights consists of two W -orbits, one of which is {0}; the weights in the
other orbit are called quasi-minuscule weights. The orbit of quasi-minuscule
weights is contained in the root lattice, and its dominant representative is
a minimal non-zero element of the intersection of the dominant chamber
with the root lattice; in particular quasi-minuscule weights are roots. One
checks easily that for every simple type there is a unique quasi-minuscule
representation: this is the adjoint representation for the simply laced types
An, Dn and En, and the representation whose non-zero weights are the short
roots for the other types Bn, Cn, F4, and G2 (for type Bn this is the natu-
ral representation). For similar reasons as mentioned for minuscule weights,
one has for any root α and any quasi-minuscule weight m /∈ {−α, α} that
〈m,α∨〉 ∈ {−1, 0, 1}. It follows that if λ is a dominant quasi-minuscule
weight, then the only paths in Bπλ that are not of the form πm for m ∈Wλ
are those of the form eα(π−α) = fα(πα) = π−α/2∗πα/2 for the simple roots α
occurring in Wλ; we shall denote such a path by ψα. We define a ψ-path of
length l to be a concatenation of l segments that occur in the union of the sets
Bπλ for the dominant weights λ that are either minuscule or quasi-minuscule.

Now we consider the question of extending rule 4.1.1 to deal with any
pair of ψ-paths of length 1. As before we consider dominant integral weights
κ, λ, ν, and we put S = { i | 〈κ, α∨i 〉 = 〈ν, α∨i 〉 = 0 }. Since the paths involved
are no longer necessarily linear, it does not suffice to consider just the differ-
ences λ− κ and ν − λ; therefore let p and q be ψ-paths of length 1 such that
p(1) = ν − λ and q(1) = λ− κ. Our goal is to find paths p′ and q′, obtained
from p and q respectively by applications of operators eα and fα, such that
µ = κ+p′(1) = ν−q′(1) is dominant, and moreover p′ is κ-dominant and q′ is
µ-dominant (this is an extra condition only when p′ or q′ is of the form ψα).

We consider first the case that both p and q are linear (i.e., not of the
form ψα), which includes the case of m-paths treated above. Like in that

14



4.2 Quasi-minuscule weights and ψ-paths

case we perform an iteration, but now on a pair of paths, which we initialise
by p0 = p, q0 = q. The iteration is the following one:
(∗) As long as there exists for the current pair pj , qj some i ∈ S with
〈pj(1), α∨i 〉 = 〈−qj(1), α∨i 〉 = −1, we choose such an i and put pj+1 =
eαi(pj) and qj+1 = fαi(qj).

All the paths so obtained are linear, since we could only have pj+1 = ψα if
αi = α and pj = π−α, which would violate 〈pj(1), α∨i 〉 = −1. It follows also
that this iteration cannot make a transition from negative to positive roots:
if any pj is of the form πβ for a negative root β, then the same is true for
all pj ’s; a similar statement holds when pj = πβ for a positive root β, and
also for the qj ’s in place of the pj ’s.

If for the final paths pk, qk obtained after the iteration, the weight µ̃ =
λ + pk(1) = ν − qk(1) is dominant, then we put p′ = pk and q′ = qk.
Otherwise, let i be such that 〈µ̃, α∨i 〉 < 0. Suppose first that i /∈ S; then
since either 〈κ, α∨i 〉 > 0 or 〈λ, α∨i 〉 > 0, we must have pk = π−αi or qk = παi
(possibly both). We put p′ = pk+1 = eαi(pk) and q′ = qk+1 = fαi(qk);
since µ = λ + p′(1) = ν − q′(1) is equal to κ or ν, it is dominant, and
one has 〈µ, α∨i 〉 = 1, from which it follows that p′ is κ-dominant and q′ is
µ-dominant. Now suppose i ∈ S; since the iteration (∗) has terminated, it
must be that 〈pk(1), α∨i 〉 = −2, so pk = π−αi and qk = παi . We then put
pk+1 = qk+1 = ψαi and pk+2 = πα, qk+2 = π−α (so that pj+1 = eαi(pj) and
qj+1 = fαi(qj) for j = k, k+ 1), after which we resume the iteration (∗), and
set p′ and q′ respectively to the final paths pl, ql so obtained. From the fact
that the iteration cannot make a transition between negative and positive
roots it follows that this time µ = λ+ p′(1) = ν − q′(1) must be dominant.

Next we consider the case that p = ψα and q = ψβ for simple roots α, β.
If α 6= β or if α = β and 〈λ, α∨〉 > 1 then we put p′ = p and q′ = q, so
that µ = κ = λ = ν. If α = β and 〈κ, α∨〉 = 1 we put p1 = eα(p) = πα
and q1 = fα(q) = π−α and then perform iteration (∗). We set p′ and q′

respectively to the final paths pl, ql obtained; as in the case above we see
that µ = λ+ p′(1) = ν − q′(1) is dominant.

We are left with the possibility that exactly one of p and q is linear.
We shall only treat the case that this is q, as the other case is symmetric
(by interchange of κ and ν and dualisation of the paths); let p = ψα. If
〈κ, α∨〉 > 0, then we put p′ = p and q′ = q, so that µ = κ is dominant
and p′ is κ-dominant; we assume henceforth that 〈κ, α∨〉 = 0. If q = πα
then we put p′ = eα(p) = πα and q′ = fα(q) = ψα. Otherwise we put
p1 = eα(p) = πα and q1 = fα(q), after which perform iteration (∗), calling
the final paths obtained pk, qk. As in the case of linear p and q it is possible
that for µ̃ = λ+ pk(1) = ν − qk(1) there is some i for which 〈µ̃, α∨i 〉 < 0, but
this time only for i /∈ S and qk = παi , since pk 6= π−αi . If this is the case
we put p′ = pk+1 = eαi(pk) and q′ = qk+1 = fαi(qk) = ψαi , and otherwise
(µ̃ is dominant) we put p′ = pk and q′ = qk; both cases are just like the
corresponding ones for linear p and q.
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4.2 Quasi-minuscule weights and ψ-paths

This concludes the description of the determination of p′ and q′. We
shall now try to formulate the result as concisely as possible. To this end we
shall use the fact that µ determines either of p′ and q′ if the path in question
is linear, i.e., if µ differs from κ respectively from ν; if not, then the path is
of the form ψα, and it suffices to specify in addition to µ the simple root α.
We also simplify the formulation by using the fact that if λ equals either κ
or ν, then the other one can be expressed as κ + ν − λ. Since like before
the rule stated will be used in a larger construction, we give the weights and
path segments in the construction as elements of doubly indexed families.
We leave it to the reader to verify that the results computed above satisfy
the description below.

4.2.1. Rule. Let κ = λ[i,j], λ = λ[i,j+1], ν = λ[i+1,j+1], p = vi,j+1, and
q = hi,j ; the weight µ = λ[i+1,j] and the paths p′ = vi,j and q′ = hi+1,j are
determined according to the following cases.
(a) If p and q are linear, then µ = domW (κ+ν−λ); in case µ equals κ or ν,

the corresponding path is equal to ψα, where α = µ−domWκ,ν
(κ+ν−λ).

(b) If 〈λ, α∨〉 = 1 and ψα ∈ {p, q} for some simple root α, and either p = q
or 〈κ+ ν − λ, α∨〉 = 0, then µ = domW (κ+ν−λ+α); in case µ equals κ
or ν, the corresponding path is equal to ψα′ , where α′ = µ−domWκ,ν (κ+
ν − λ+ α).

(c) If ψα ∈ {p, q} for some simple root α, with 〈λ, α∨〉 = 2 and
〈κ+ ν − λ, α∨〉 = 0, then p′ = q, q′ = p, and µ = λ.

(d) If either {p, q} = {ψα, ψβ} for simple roots α 6= β, or ψα ∈ {p, q} for
some simple root α and 〈κ+ ν − λ, α∨〉 > 0, then p′ = p, q′ = q,
and µ = κ+ ν − λ.

4.2.2. Lemma. For fixed values of λ[i,j] and λ[i+1,j+1], the correspon-
dence determined by rule 4.2.1 between λ[i,j+1] and λ[i+1,j], and between
(hi,j , vi,j+1) and (vi,j , hi+1,j), is symmetrical.

Proof. This follows from a careful analysis of the different cases that can
arise. In cases (c) and (d) of rule 4.2.1, replacement of λ by the indicated
value of µ leads to the same case, and gives back the original value of λ
for µ. We may therefore assume that one of cases (a) and (b) applies.
Define weights µ0, µ1, µ2, µ3 by µ0 = κ + ν − λ, µ1 = µ0 in case (a) and
µ1 = µ0 + α in case (b), µ2 = domWκ,ν

(µ1), and µ3 = µ; replacing λ by µ,
call the corresponding weights λ0, λ1, λ2, λ3. One then proves successively
that λi = κ+ ν−µ3−i for i = 0, 1, 2, 3 in a straightforward manner in all the
cases, using the details that were given before the statement of rule 4.2.1.

4.2.3. Construction (jeu de taquin for ψ-paths). Let κ, λ, ν be dom-
inant integral weights for g, π′ a κ-dominant ψ-path of length l with
π′(1) = λ−κ, and p a λ-dominant ψ-path of length k with p(1) = ν−λ. We
construct a dominant integral weight µ, a κ-dominant ψ-path π of length k
with π(1) = µ−κ, and a µ-dominant ψ-path p′ of length l with p′(1) = ν−µ,
in the following steps.
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4.2 Quasi-minuscule weights and ψ-paths

◦ Let π′ = h0,0 ∗ · · · ∗ h0,l−1 and p = v0,l ∗ · · · ∗ vk−1,l, where the hi,j and
vi,j are ψ-paths of length 1;
◦ Set λ[0,j] := κ+

∑
j′<j h0,j′(1) for 0 ≤ j ≤ l, and λ[i,l] := λ+

∑
i′<i vi′,l(1)

for 0 ≤ i ≤ k;
◦ Determine the weights λ[i+1,j] and the paths hi+1,j and vi,j for 0 ≤ i < k

and l > j ≥ 0, using rule 4.2.1;
◦ Return π = v0,0 ∗ · · · ∗ vk−1,0 and p′ = hk,0 ∗ · · · ∗ hk,l−1.

4.2.4. Theorem (symmetry of jeu de taquin for ψ-paths). The con-
struction 4.2.3 is its own inverse: if when applied to (κ, π′, p) it returns (π, p′),
then applied to (κ, π, p′) it will return (π′, p). Moreover, it is symmetric with
respect to dualisation of paths: when applied to (ν, p∗, π′∗) it will return
(p′∗, π∗).

Proof. This is immediate from lemma 4.2.2.

4.2.5. Lemma. Lemma 3.3.5 remains valid when construction 3.3.3 is
replaced by construction 4.2.3.

4.2.6. Theorem. In the situation of construction 4.2.3 the path π can be
obtained from p by application of a sequence of operators ei, and similarly the
path p′ can be obtained from π′ by application of a sequence of operators fi.
In particular, if κ = 0, one has p ∈ Bπ and p′ ∈ Bπ′ .

Proof. By symmetry (theorem 4.2.4) it suffices to prove the first statement
(about p and π). By lemma 4.2.5, it will suffice to prove the case where
π′ has length 1, which we therefore assume henceforth. In order to proceed
by induction on the length of p, it is necessary to strengthen the statement
being proved as follows. There exists a sequence of indices i1, . . . , in (with
n ≥ 0) and a sequence of paths p = pn, pn−1, . . . , p0 = π, such that for
j = n, . . . , 1, one has eij (pj) = pj−1, and moreover bκ + pjcαij < 0 except
when π′ = ψα for some simple root α and j = n, in which case one has
αin = α and bκ+ pjcα = 0. To this we add one more detail: if π′ = ψα and
bκ+ pcα = 0, then n > 0.

If p is of length 0 we take n = 0 and there is nothing to prove; assume
therefore that p has positive length. Let v = v0,1 in construction 3.3.3, so that
we can write p = v ∗ q; similarly put v′ = v0,0 and π = v′ ∗ ρ. Put κ′ = λ[1,0]

and λ′ = λ[1,1]; we consider the construction applied to (κ′, h1,0, q), which by
lemma 4.2.5 returns (ρ, p′). By the induction hypothesis there exist indices
im, . . . , i1 and paths q = qm, . . . , q0 = ρ with qj−1 = eij (qj) for j = m, . . . , 1.
Let v = v0, . . . , vl = v′ be the sequence of paths called p0, . . . , pl in the
discussion preceding the statement of rule 4.2.1; put n = m + l. It was
established there that for all j < l there exists a simple root α such that
vj+1 = eα(vj); let the index of this root be in−j , thus extending our sequence
of indices to in, . . . , i1. We shall say that we are in the exceptional case if
m > 0, l > 0, and h1,0 = ψα for some simple root α; otherwise we are in
the regular case. Define a sequence of paths p = pn, . . . , p0 = π as follows:
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4.2 Quasi-minuscule weights and ψ-paths

set pj = vn−j ∗ q for n ≥ j > m and pj = v′ ∗ qj for m > j ≥ 0; finally set
pm = v′ ∗ q in the regular case, and pm = vl−1 ∗ qm−1 in the exceptional case.

We shall first show that the only possibility to have fij (v
′∗qj−1) 6= v′∗qi

for 0 < j ≤ m occurs for j = m in the exceptional case, and that we then
have fim(v′∗qm−1) = vl−1∗qm−1; this will establish eij (pj) = pj−1 for j ≤ m.
Putting α = αij , the operator fα will only apply to the left factor of v′ ∗ qj−1

if
bκ′ + v′∗cα < bκ′ + qj−1cα. (1)

Since v′∗ is κ′-dominant, the left hand side is non-negative, so (1) can only
hold if its right hand side, which equals bκ′+ qjcα + 1 since qj−1 = eα(qj), is
strictly positive; by the induction hypothesis this only happens when h1,0 =
ψα and j = m, and the right hand side then equals 1. Therefore the left
hand side must be 0, which excludes case (d) of rule 4.2.1, so that we have
l > 0 and are in the exceptional case. It can be seen from rule 4.2.1 that
h1,0 = ψα and l > 0 imply that αim+1 = α and bκ + vlcα = 0; therefore the
left hand side of (1) is indeed 0 in this case and fα(v′) = vl−1, so that we
have fα(v′ ∗ qm−1) = vl−1 ∗ qm−1 as claimed.

We proceed to show similarly that the only possibility to have ein−j (vj ∗
q) 6= vj+1∗q for 0 ≤ j < l occurs for j = l−1 in the exceptional case, and that
we then have eim+1(vl−1 ∗ q) = vl−1 ∗ qm−1; this will establish eik(pk) = pk−1

for k > m. Putting α = αin−j , the operator eα will only apply to the right
factor of vj ∗ q if

bλ′ + v∗j cα > bλ′ + qcα. (2)

Since q is λ′-dominant, the right hand side is non-negative, so (2) can only
hold if its left hand side is strictly positive, and in particular 〈λ′, α∨〉 > 0.
Since we have eα(vj) = vj+1, it can be seen from rule 4.2.1 that we must
have j = 0 or j = l − 1; however if j = 0 6= l − 1, we would be in case (b) of
that rule with v0 = v = ψα, and the left hand side of (2) would be 0, which
allows us to conclude j = l − 1. Now whichever of the cases (a), (b), or (c)
gives vl = eα(vl−1) with 〈λ′, α∨〉 > 0, it also gives h1,0 = ψα, and makes the
left hand side of (2) equal to 1. By the induction hypothesis (including the
detail added) the right hand side of (2) will now be 0 if and only if m > 0,
which means we are in the exceptional case; we then have moreover αim = α,
so that indeed eα(vl−1 ∗ q) = vl−1 ∗ eα(q) = vl−1 ∗ qm−1, as claimed.

It remains to establish the statements involving bκ+pjcαij needed for the
induction. If 0 < j < m, or if j = m in the regular case, one has pj = v′ ∗ qj ;
as v′ is κ-dominant with v′(1) = κ′−κ this implies bκ+pjcαij = bκ′+qjcαij .
Everything then follows immediately from the corresponding part of the
induction hypothesis (if l = 0 one uses h1,0 = π′). This covers all cases with
l = 0, so from now on assume l > 0. If m < j < n, or if j = n and π′ is linear,
then we have bλ+vn−jcαij < 0 by the construction of the sequence v0, . . . , vl,
and since pj = vn−j ∗ q this implies bλ + pjcαij < 0. If on the other hand
π′ = ψα (so that κ = λ), then we see from cases (b) and (c) of rule 4.2.1 that
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5 Generalisation of jeu de taquin to piecewise linear paths

αin = α and bκ+ vcα = 0, which implies bκ+ pcα = 0 since p is λ-dominant.
The only case left is j = m in the exceptional case; put α = αim+1 = αim ,
so that h1,0 = ψα. One can show bκ + pmcα = −1 in various ways, as the
minimum is attained at both sides of the concatenation pm = vl−1 ∗ qm−1.
For instance, we have seen that bκ + vlcα = 0 in this case, which implies
bκ + vl−1cα = −1 since vl = eα(vl−1). This completes our proof.

§5. Generalisation of jeu de taquin to piecewise linear paths.

We shall now generalise the constructions considered so far to a much larger
class of paths than that of the ψ-paths, namely for the entire class Π of piece-
wise linear paths in the space of rational weigths. The rule that describes
the construction in the elementary cases will become simpler than rule 4.2.1,
and in fact resembles rule 4.1.1, yet we shall see that the global construction
contains construction 4.2.3 as a special case. Given this circumstance, it may
seem silly that we went through all the complications of the preceding sub-
section. There is however an important price that we pay for the simplicity
and generality of the new construction: it gives us no direct control over
integrality, and therefore does not allow a direct connection to be made with
the root operators eα and fα.

It turns out that the simplest way to describe the jeu de taquin construc-
tion for piecewise linear paths is not using doubly indexed families of paths,
or collections of “horizontal” and “vertical” path segments, but using “2-
dimensional” paths, that is to say, piecewise linear maps f : [0, 1]×[0, 1]→ XQ

(here piecewise linear means there is a finite triangulation of [0, 1]×[0, 1] such
that the restriction of f to each of the triangles is linear). For these maps we
do not require (as was done for paths) that they must always “start at 0”,
but we shall require that their image is contained in the dominant cham-
ber. Then instead of conditions like rule 4.2.1, we shall impose the following
somewhat curious functional equation.

5.1. Rule. For every pair of intervals [s0, s1], [t0, t1] ⊆ [0, 1] such that f is
linear on each of the line segments {s0} × [t0, t1] and [s0, s1]× {t1}, one has
f(s, t) = domW

(
f0(s, t)

)
for (s, t) ∈ [s0, s1] × [t0, t1], where f0 is the linear

function given by f0(s, t) = f(s0, t) + f(s, t1)− f(s0, t1).

If we prescribe f on each of the segments {s0} × [t0, t1] and [s0, s1] ×
{t1} by functions that are linear and everywhere dominant, then f(s, t) =
domW

(
f0(s, t)

)
(with f0 as in the rule) defines an extension of f to [s0, s1]×

[t0, t1] that is piecewise linear and everywhere dominant. In particular this
extension determines piecewise linear paths on the edges [s0, s1] × {t0} and
{s1} × [t0, t1] of the rectangle [s0, s1] × [t0, t1] opposite to those on which f
was prescribed. We shall call this operation of extending f across a rectangle
[s0, s1]× [t0, t1] an elementary extension of f . We still need to show that the
condition of rule 5.1 is satisfied for any applicable subintervals of [s0, s1]
and [t0, t1], so let [s′0, s

′
1] ⊆ [s0, s1] and [t′0, t

′
1] ⊆ [t0, t1] be such that f is
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5 Generalisation of jeu de taquin to piecewise linear paths

linear on L1 = {s′0} × [t′0, t
′
1] and on L2 = [s′0, s

′
1] × {t′1}. We first show

that the weights f0(s′0, t
′
0) and f0(s′1, t

′
1) are not separated by any wall, i.e.,

that there is no root β (positive or negative) for which the linear functional
φ(x, y) = 〈f0(x, y), β∨〉 has φ(s′0, t

′
0) < 0 and φ(s′1, t

′
1) > 0. If there were such

a root β, then φ(s′0, t
′
1) 6= 0 would contradict the linearity of f either on L1 or

on L2, whereas φ(s′0, t
′
1) = 0 would imply by linearity that φ(s0, t0) < 0 and

φ(s1, t1) > 0, contradicting the fact that both f0(s0, t0) and f0(s1, t1) are
dominant. Therefore, there exists a w ∈W such that f(s, t) = w(f0(s, t)) on
L1 ∪ L2. Being linear, f0 satisfies f0(s, t) = f0(s′0, t) + f0(s, t′1) − f0(s′0, t

′
1);

hence the validity of rule 5.1 is established by the following computation for
(s, t) ∈ [s′0, s

′
1]× [t′0, t

′
1]:

f(s, t) = domW

(
w(f0(s, t))

)
= domW

(
w
(
f0(s′0, t) + f0(s, t′1)− f0(s′0, t

′
1)
))

= domW

(
f(s′0, t) + f(s, t′1)− f(s′0, t

′
1)
)
.

Because of the way the rule is formulated, there is no need for a counter-
part of construction 4.2.3: a piecewise linear function f defined on [0, 1]×[0, 1]
that satisfies the rule must match any function constructed by repeated el-
ementary extensions from the restriction of f to the edges {0} × [0, 1] and
[0, 1] × {1} of the unit square. However, it is not immediately obvious that
repeated elementary extensions suffice to cover all of the unit square. To see
the difficulty, imagine that every elementary extension would result at each of
the opposite edges of the rectangle in a path consisting of two different linear
parts; then infinitely many elementary extensions could be applied, but they
would fail to define f beyond a certain subset with fractal boundary. We shall
show that this cannot happen; to do so we need to consider the directions of
the segments of the paths obtained by elementary extension. For a dominant
weight λ and weight µ in its orbit Wλ, the set {w ∈W | µ = w(λ) } is a
coset in W/Wλ, and it does not change when µ is multiplied by a positive
scalar. We define this coset to be the direction of πµ, or of any translate
of a positive multiple of πµ, and endow W/Wλ with the Bruhat order, and
the associated length function l. Then the following lemma is an immediate
consequence of the definition of elementary extensions.

5.2. Lemma. Let f satisfy rule 5.1 on [s0, s1] × [t0, t1] and be linear on
{s0} × [t0, t1] and [s0, s1] × {t1}; let the direction of the path defined by f
along [s0, s1]× {t1} be τ , and let the path defined by f along [s0, s1]× {t0}
be π0 ∗ · · · ∗ πn where the πi are linear paths with differenct directions τi.
Then τ ≤ τ0 < · · · < τn, and consequently n ≤ l(τ). Similar statements
hold for the other two edges.

5.3. Theorem/construction (jeu de taquin for piecewise linear
paths). Let κ, λ, ν be dominant integral weights for g, π′ a κ-dominant
piecewise linear path with π′(1) = λ − κ, and p a λ-dominant piecewise
linear path with p(1) = ν − λ. There is a unique piecewise linear func-
tion f : [0, 1] × [0, 1] → XQ with f(0, t) = κ + π′(t) and f(t, 1) = λ + p(t)
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5 Generalisation of jeu de taquin to piecewise linear paths

for t ∈ [0, 1] that satisfies rule 5.1. Putting µ = f(1, 0), we may define a κ-
dominant piecewise linear path π with π(1) = µ−κ by π(t) = f(t, 0)−κ, and
a µ-dominant piecewise linear path p′ with p′(1) = ν−µ by p(t) = f(1, t)−µ.

Proof. We shall show that by repeatedly applying elementary extensions
to f we succeed after a finite number of step in finding an extension of f to all
of [0, 1]× [0, 1], which is then automatically unique. By a trivial induction on
the number of linear segments from which p is concatenated, we may reduce
to the case that p is linear. We cannot continue with a similar induction on
the number of segments of π′ however; instead we apply induction on the
length l(τ) of the direction τ of the path p. For l(τ) = 0, which is equivalent
to p ∈ P+, the function f given by f(s, t) = κ + π′(t) + p(s) is everywhere
dominant, and is therefore the unique function satisfying the conditions in
the theorem. Now suppose l(τ) = l > 0. For each fixed value of l we apply
induction on the number of linear segments from which π′ is concatenated. If
π′ is linear, elementary extension suffices to define f uniquely on [0, 1]× [0, 1].
Otherwise we apply elementary extension to p and the final linear segment
of π′. Let the piecewise linear path obtained at the side opposite to p be
p0 ∗ · · · ∗ pn; let the segment pi give the values of f on [si, si+1] × {t1} and
have direcion τi (i = 0, . . . , n). Because of lemma 5.2 we have l(τ0) ≤ l and
l(τi) < l for i > 0. In case l(τ0) = l we can extend f to [s0, s1] × [0, t1]
by induction on the number of segments of π′; for the remaining segments
pi (including p0 if l(τ0) < l) we can apply the hypothesis of induction
with respect to l(τ), and conclude that we can extend f successively to
the rectangles [si, si+1] × [0, t1]; this defines f uniquely on [0, 1] × [0, 1].

It is not difficult to see that the rules 4.1.1 and 4.2.1 can obtained as
instances of construction 5.3; as a consequence, that construction generalises
the constructions 4.1.3 and 4.2.3. The symmetries of those constructions are
preserved, since one can show with similar arguments as we gave to show
that the function obtained by elementary extension satisfies rule 5.1, that
the transpose function f ′(s, t) = f(t, s) also satisfies that rule.

5.4. Theorem (symmetry of jeu de taquin for piecewise linear
paths). If a piecewise linear function f satisfies rule 5.1, then the transpose
function f ′ defined by f ′(s, t) = f(t, s) satisfies that rule as well. In
particular, the construction 5.3 is its own inverse: if when applied to (κ, π′, p)
it returns (π, p′), then applied to (κ, π, p′) it will return (π′, p). Moreover,
construction 5.3 is symmetrical with respect to dualisation of paths: when
applied to (ν, p∗, π′∗) it will return (p′∗, π∗).

Since construction 5.3 is does not refer to any integrality condition at
all, it is not easy to relate it directly to the root operators eα and fα. It
is for instance not true that the paths π and p are related by a sequence
of applications of such operators, not even in the case of an elementary
extension. What one gets instead is a sequence of applications of fractional
powers exα or fxα of root operators with x ∈ Q; here exα maps a path p to a
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non-zero value if and only if bpcα ≤ −x, in which case one has

exα(p)(s) = p(s) + max
(

0, x+ bpcα − min
t∈[0,s]

〈p(t), α∨〉
)
α.

A relation with root operators which seems plausible, and which we hope to
establish in further work, can be formulated as follows. Let us call a path
p ∈ Π of integral shape if p ∈ Bπ for some π ∈ P+. Then if κ ∈ X, and if π′

and p are of integral shape, then so are the paths π and p′ obtained from κ, π′,
and p by construction 5.3; moreover π can be obtained from p by a sequence
of applications of operators eα, and p′ from π′ by applications of operators
fα. This would imply in particular that if κ = 0 then p ∈ Bπ and p′ ∈ Bπ′ ,
and that the construction defines, for any fixed pair of paths π, π′ ∈ P+ with
π′(1) = λ and π(1) = µ, a bijection between the λ-dominant paths p ∈ Bπ
and the µ-dominant paths p′ ∈ Bπ′ , with moreover λ + p(1) = µ + p′(1). It
would also imply that any class of paths of integral shape, that is closed under
the root operators (such as for instance the class of Lakshmibai-Seshadri
paths), would also be closed under construction 5.3, which would therefore
give rise to a special instance of it, similar to constructions 4.1.3 and 4.2.3.
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