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ABSTRACT. This paper takes up again the study of the Jacobi triple and Watson
quintuple identities that have been derived combinatorially in several manners in the
classical literature. It also contains a proof of the recent Farkas-Kra septuple product
identity that makes use only of “manipulatorics” methods.

1. Introduction

In the classical literature the Jacobi triple product appears in one of
the following two forms

(1.1)
∞∏
n=1

(1− x−1qn−1)(1− xqn) =
∞∏
i=1

1
(1− qi)

+∞∑
k=−∞

(−1)k xk qk(k+1)/2,

(1.2)
∞∏
n=1

(1− x−1 q2n−1)(1− x q2n−1) =
∞∏
i=1

1
(1− q2i)

+∞∑
k=−∞

(−1)k xkqk
2
,

while the Watson quintuple product reads

(1.3)
∞∏
n=1

(1− x−1qn−1)(1− xqn)(1− x−2 q2n−1)(1− x2 q2n−1)

=
∞∏
i=1

1
(1− qi)

+∞∑
k=−∞

q(3k2+k)/2(x3k − x−3k−1).

The letters x and q may be regarded as complex variables with |q| < 1
and x 6= 0 or as simple indeterminates. In the latter case consider the ring
Ω[x, x−1] of the polynomials in the variables x and x−1 such that xx−1 = 1
with coefficients in a ring Ω. Then the identities hold in the algebra of
formal power series in the variable q with coefficients in Ω[x, x−1].

As usual, let (a; q)n denote the q-ascending factorial

(a; q)n =
{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1;
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(a; q)∞ =
∏
n≥0

(1− aqn);

and let the classical q-binomial coefficient be denoted by:[
n

k

]
q

=
(q; q)n

(q; q)n−k(q; q)k
(0 ≤ k ≤ n).

The identities (1.1) and (1.2) have two finite versions given by

(x−1; q)n (xq; q)m =
m∑

j=−n

[
n+m

j + n

]
q

(−x)j qj(j+1)/2;(1.4)

(x−2; q2)n (x2q; q2)m =
m∑

j=−n

[
n+m

j + n

]
q2

(−x2)j qj
2
.(1.5)

Those two versions with n and m not necessarily equal are apparently due
to MacMahon ([Ma15], vol. 2, § 323). He proved (1.5) by using Sylvester’s
[Sy82] “quasi-geometrical method of demonstration” and notes that to
obtain (1.4) the variable x is to be replaced by xq and then q2 by q. With
similar substitutions (1.5) can be derived from (1.4). As those substitutions
are made within finite expressions the derivations are straightforward.

Finally, as kindly mentioned to us by Garvan [Ga99], Farkas and Kra
[Fa99] derived a septuple product identity using the algebra of k-order
theta functions. If f (resp. g) is a polynomial q (resp. in x) with integral
coefficients, let

Θ(f, g) : =
∑
n∈Z

qf(n) xg(n);

Ω(f) : =
∑
n∈Z

(−1)n qf(n);

Ω(f, g) : =
∑
n∈Z

(−1)n qf(n) xg(n).

Then Farkas and Kra [Fa99] imagined and proved the following identity

(1.6)
∏
n≥1

(1− q2n)2(1− xq2n−2)(1− x−1q2n)(1− x2q4n−2)

× (1− x−2q4n−2)(1− x2q4n−4)(1− x−2q4n)
= Ω(5n2 + n)

(
Ω(5n2 + 3n, 5n+ 3) + Ω(5n2 − 3n, 5n)

)
− Ω(5n2 + 3n)

(
Ω(5n2 + n, 5n+ 2) + Ω(5n2 − n, 5n+ 1)

)
.

Notice that with the substitutions x← x−2 and q ← q4 the triple product
identity (1.1) reads

(1.7)
∏
n≥1

(1− x2q4n−4)(1− x−2q4n)(1− q4n) = Ω(2n2 + 2n,−2n),
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while the quintuple product identity (1.3) with the substitutions q ← q2

and x← x−1 takes the form:

(1.8)
∏
n≥1

(1− xq2n−2)(1− x−1q2n)(1− x2q4n−2)(1− x−2q4n−2)(1− q2n)

= Θ(3n2 + n,−3n)−Θ(3n2 + n, 3n+ 1).

At the origin our intention was to give a combinatorial proof of
the quintuple product identity (1.3). A glance at the left-hand sides of
identities (1.1), (1.2), (1.3) shows that (1.3) must be a consequence of (1.1)
and (1.2) and the combinatorics involved, once the products on the right-
hand sides of the first two identities are properly handled. This program
was only partially fulfilled, because (1.3) is an easy consequence of both
triple product identities and changing the “manipulatorics” needed into
some combinatorial construction would have been a useless task. As will be
seen in section 3, besides the two triple product identities, we only need the
Euler pentagonal number formula (see, e.g., [An76] p. 11), another special
case of those two identities, and a simple summation manipulation.

There remains to imagine the adequate bijections to prove (1.1) and
(1.2). How can we dare construct such bijections, some 117 years after
Sylvester [Sy82]? He already derived three different combinatorial proofs,
scholarly commented by Joichi and Stanton [Jo89]. We have to admit,
indeed, that any kind of new combinatorial construction for proving (1.1)
and (1.2) can only be a slight variation of Sylvester’s method [Sy82]. He
had been the source of a long tradition of combinatorial construction
makers. Even our “rectangle-moving” method that we were proud to
discover did not escape his filiation. We have then decided to leave
our combinatorial construction on our own home pages [Fo99] and, in
the present paper, only provide with straightforward proofs for all the
identities above, i.e. (1.1)—(1.6).

The first combinatorial proofs go back to Sylvester [Sy82] and have been
the sources of inspiration of several subsequent ones, by Wright [Wr65],
Sudler [Su66], Ewell [Ew81], Lewis [Le84], Garvan [Ga86] (see § 3.2 in
his Ph.D. thesis, as it was mentioned to us by an anonymous referee).
Joichi and Stanton [Jo89] discuss the various merits of those proofs. They
are mostly interested in building natural involutions for proving partition
identities; they also compare the approaches due to Zolnowsky [79] and
Cheema [Ch64].

The other proofs are of formal nature, as in MacMahon ([Ma15], vol. 2,
§ 327), Bressoud [Br97] or of analytical nature, as in Andrews [An65],
[An74], [An84], or in the classical treatises by Hardy and Wright [Ha38],
Andrews [An76], Gupta [Gu87]. A fairly complete bibliography can be
found in Gasper and Rahman [Ga90].
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The quintuple product identity is originally due to Watson [Wa29].
Other proofs were given by Gordon [Go61], Carlitz and Subbarao [Ca72],
Subbarao and Vidyasagar [Su70]. Hirschhorn [Hi88] proposes a general-
isation of that identity and stated that there are “no fewer than twelve
proofs of the quintuple product identity,” in particular by Bailey [Ba51],
Sears [Se52], Atkin and Swinnerton-Dyer [At54], Andrews [An74] and more
recently by Alladi [Al96].

Finally, those identities are found in classical topics in Number The-
ory or Lie Algebra, as in Adiga, Berndt, Bhargava and Watson [Ad85],
Gustafson [Gu87], Kac [Ka78], [Ka85], Lepowsky and Milne [Le78], Mac-
donald [Ma82], Menon [Me65], Milne [Mi85].

The paper is organized as follows. In the next section MacMahon’s finite
versions (1.4) and (1.5) are derived and it is shown how they imply (1.1)
and (1.2). In section 3 we shall reprove (1.3) using an argument very close
to the one used by Carlitz and Subbarao [Ca72]. In the final section we
give our own proof of the new elected septuple product identity obtained by
Farkas and Kra [Fa99]. We first make use of an extended Carlitz-Subbarao
trick (that was sufficient for the quintuple case), then introduce two further
specializations of both triple and quintuple product identities to complete
the calculation. It seems that Farkas-Kra’s identity is much deeper than
its previous two sisters.

2. The finite and infinite versions of the triple product

As shown to us by Andrews [An98], and as it is well-known in the case
m = n, identity (1.4) can be proved by means of the q-binomial identity
in its finite form. Proceed as follows:

(x−1; q)n (xq; q)m=(−1)nx−nqn(n−1)/2(xq1−n; q)n (xq; q)m
=(−1)nx−nqn(n−1)/2(xq1−n; q)n+m

=(−1)nx−nqn(n−1)/2
n+m∑
j=0

[
n+m

j

]
q

(−xq1−n)jqj(j−1)/2

=
n+m∑
j=0

[
n+m

j

]
q

(−x)j−nq(j−n)(j−n+1)/2

=
m∑

j=−n

[
n+m

j + n

]
q

(−x)jqj(j+1)/2.

Now to deduce the “infinite” versions (1.1), (1.2) from the finite ones we
only have to let n and m tend to infinity. Using (1.4) for n = m the
product (x−1; q)m (xq; q)m (q; q)∞ can be expressed as

m∑
j=−m

(qm−j+1; q)m+j (qm+j+1; q)∞ (−x)j qj(j+1)/2.
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In that sum the running term is equal to (−x)j qj(j+1)/2(1− qm−|j|+1aj),
with aj a series in q, so that (x−1; q)m (xq; q)m (q; q)∞ = bm + qmc, where

bm is the series bm =
m∑

j=−m
(−x)j qj(j+1)/2 and c is a non-null series. Hence

(x−1; q)∞ (xq; q)∞ (q; q)∞ = limm bm =
∞∑

j=−∞
(−x)j qj(j+1)/2, which is

simply (1.1).
Using the same method we can derive (1.5) that, in its turn, im-

plies (1.2). The MacMahon finite versions (1.4) and (1.5) can be regarded
as the “fundamental” triple product identities and, still, they are derived
by means of the q-binomial identity in its finite form. Here we face one of
the mysteries of mathematical tradition: explain why so many proofs of
those identities can be found in the literature.

3. The quintuple product identity

To derive the quintuple product identity (1.3) it suffices to prove

∞∏
i=1

1
1− qi

∑
k∈Z

(−1)kxkqk(k+1)/2 ×
∞∏
i=1

1
1− q2i

∑
k∈Z

(−1)kx2kqk
2

=
∞∏
i=1

1
1− qi

∑
k∈Z

q(3k2+k)/2(x3k − x3k−1),

or by using the Euler pentagonal number identity (see [An76], p. 11)∏
i≥1

(1− qi) =
∑
k∈Z

(−1)k q(3k2−k)/2,

to prove the identity∑
k∈Z

(−1)kxkqk(k+1)/2 ×
∑
l∈Z

(−1)lx2lql
2

=
∑
n∈Z

(−1)n q3n2−n ×
∑
m∈Z

q(3m2+m)/2(x3m − x−3m−1).

Write the product of the two series of the left-hand side as the sum of
three series denoted by S0, S1, S2:∑
k,l

(−1)k+l xk+2lqk(k+1)/2+l2 =
∑
m

x3m
∑

k+2l=3m

(−1)k+l qk(k+1)/2+l2

+
∑
m

x3m−1
∑

k+2l=3m−1

(−1)k+l qk(k+1)/2+l2

+
∑
m

x3m−2
∑

k+2l=3m+2

(−1)k+l qk(k+1)/2+l2

= S0 + S1 + S2.
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For S0 notice that k + 2l = 3m and l−m = n imply: k + l = 2m− n and
k(k + 1)/2 + l2 = (3m2 +m)/2 + 3n2 − n. Hence

S0 =
∑
m

q(3m2+m)/2 x3m
∑
n

(−1)n q3n2−n.

For S1 the change of indices k + 2l = 3m − 1 et l − m = n imply:
k + l = 2m − n − 1 and k(k + 1)/2 + l2 = (3m2 − m)/2 + 3n2 + n.
Hence

S1 = −
∑
m

q(3m2−m)/2 x3m−1
∑
n

(−1)n q3n2+n

= −
∑
m

q(3m2+m)/2 x−3m−1
∑
n

(−1)n q3n2−n.

Finally, for S2 make the change of indices k+ 2l = 3m− 2 and l−m = n,
so that k+ l = 2m−n−2 et k(k+1)/2+ l2 = (3m2−3m+2)/2+3n2 +3n.
Hence

S2 =
∑
m

x3m−2 q(3m2−3m+2)/2
∑
n

(−1)n q3n2+3n.

But
∑
n∈Z

(−1)n (q3)n(n+1) = 0, and S2 = 0. The sum S0 + S1 is exactly the

right-hand side of the quintuple product identity (1.3).

4. The septuple product identity

Let E be the left-hand side of identity (1.6), i.e.,

E :=
∏
n≥1

(1− q2n)2(1− xq2n−2)(1− x−1q2n)(1− x2q4n−2)

× (1− x−2q4n−2)(1− x2q4n−4)(1− x−2q4n)

Taking both identities (1.7) and (1.8) into account and using the identity∏
m≥1

(1− q4m) =
∏
m≥1

(1− q2m)(1 + q2m),

we may write:∏
m≥1

(1+q2m)E = Ω(2n2 +2n,−2n)
(
Θ(3n2 +n,−3n)−Θ(3n2 +n, 3n+1)

)
.

We now use the method of the previous section. However this time each
product of the right-hand side of the previous formula is transformed into
a sum of five products of two Ω-series. We may write:

(4.1) Ω(2n2 + 2n,−2n) Θ(3n2 + n,−3n) = S0 + S1 + S2 + S3 + S4,

where for each k = 0, 1, 2, 3, 4 we let

Sk :=
∑
a

z5a+k
∑

−2i−3j=5a+k

(−1)iq2i2+2i+3j2+j .
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In the second summation of each expression Sk we make a change of
variables indicated in Table 1 below. For instance, as shown in the first
row of the table, when −2i − 3j = 5a (first column), we let a + j = −2n
(second column) noting that a + j is necessarily even. Hence i ≡ a + n
(mod 2) (third column). Finally, the exponent of q is transformed into
30n2 + 4n+ 5a2 − 3a (fourth column).

−2i− 3j a+ j i ≡ (mod 2) 2i2 + 2i+ 3j2 + j
5a −2n a+ n 30n2 + 4n+ 5a2 − 3a

5a+ 1 −2n− 1 a+ n+ 1 30n2 + 28n+ 6 + 5a2 − a
5a+ 2 2n a+ n+ 1 30n2 + 8n+ 5a2 + a
5a+ 3 −2n− 1 a+ n 30n2 + 16n+ 2 + 5a2 + 3a
5a+ 4 2n a+ n 30n2 + 20n+ 4 + 5a2 + 5a

Table 1

With those changes of variables we get

(4.2) Ω(2n2 + 2n,−2n) Θ(3n2 + n,−3n)
= Ω(5n2 − 3n, 5n) Ω(30n2 + 4n)

− Ω(5n2 − n, 5n+ 1) Ω(30n2 + 28n+ 6)
− Ω(5n2 + n, 5n+ 2) Ω(30n2 + 8n)
+ Ω(5n2 + 3n, 5n+ 3) Ω(30n2 + 16n+ 2)
+ Ω(5n2 + 5n, 5n+ 4) Ω(30n2 + 20n+ 4).

In the same manner, let

(4.3) Ω(2n2 + 2n,−2n) Θ(3n2 + n, 3n+ 1) = T0 + T1 + T2 + T3 + T4,

where for each k = 0, 1, 2, 3, 4 we let

Tk :=
∑
a

z5a+k
∑

−2i+3j+1=5a+k

(−1)iq2i2+2i+3j2+j .

Again, the changes of variables made in each Tk are indicated in Table 2.

−2i− 3j + 1 a− j i ≡ (mod 2) 2i2 + 2i+ 3j2 + j
5a 2n+ 1 a+ n+ 1 30n2 + 16n+ 2 + 5a2 − 3a

5a+ 1 −2n a+ n 30n2 + 8n+ 5a2 − a
5a+ 2 2n+ 1 a+ n 30n2 + 28n+ 6 + 5a2 + a
5a+ 3 2n a+ n+ 1 30n2 + 4n+ 5a2 + 3a
5a+ 4 −2n− 1 a+ n 30n2 + 20n+ 4 + 5a2 + 5a

Table 2
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Those changes of variables yield:

(4.4) Ω(2n2 + 2n,−2n) Θ(3n2 + n, 3n+ 1)
= −Ω(5n2 − 3n, 5n) Ω(30n2 + 16n+ 2)

+ Ω(5n2 − n, 5n+ 1) Ω(30n2 + 8n)
+ Ω(5n2 + n, 5n+ 2) Ω(30n2 + 28n+ 6)
− Ω(5n2 + 3n, 5n+ 3) Ω(30n2 + 4n)
+ Ω(5n2 + 5n, 5n+ 4) Ω(30n2 + 20n+ 4).

In particular, we notice that S4 = T4. When taking the difference
(4.2)− (4.4) we simply get:

(4.5)
∏
m≥1

(1 + q2m)E =
(
Ω(5n2 + 3n, 5n+ 3) + Ω(5n2 − 3n, 5n)

)
×
(
Ω(30n2 + 4n) + Ω(30n2 + 16n+ 2)

)
−
(
Ω(5n2 + n, 5n+ 2) + Ω(5n2 − n, 5n+ 1)

)
×
(
Ω(30n2 + 28n+ 6) + Ω(30n2 + 8n)

)
.

Now if we compare the last identity with the septuple identity (1.6) we
see that the latter is the consequence of the next Lemma.

Lemma. We have:∏
m≥1

(1 + q2m) Ω(5n2 + n) = Ω(30n2 + 16n+ 2) + Ω(30n2 + 4n);(4.6)

∏
m≥1

(1 + q2m) Ω(5n2 + 3n) = Ω(30n2 + 28n+ 6) + Ω(30n2 + 8n).(4.7)

The proof of the Lemma has very much the flavor of the proofs derived
by our friend Mike Hirschhorn [Hi88] when he masterly plays with the
triple product identity for various specializations. Here the quintuple
identity also gets into the picture. In the sequel, the range of the index m
(resp. n) is N \ {0} (resp. Z).

Proof of the Lemma. The triple product (1.1) with q := q10 and
x := q−4 reads∏

m

(1− q10m)(1− q10m−4)(1− q10m−6) = Ω(5n2 + n),(4.8)

while with q := q10 and x := q−2 yields∏
m

(1− q10m)(1− q10m−2)(1− q10m−8) = Ω(5n2 + 3n).(4.9)
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Next the quintuple product (1.3) with q := q20 and x := −q−2 reads

(4.10)
∏
m

(1− q20m)(1 + q20m−18)(1 + q20m−2)(1− q40m−16)(1− q40m−24)

= Ω(30n2 + 16n+ 2) + Ω(30n2 + 4n),

that is, the right-hand side of (4.6). In the same manner the quintuple
product with q := q20 and x := −q−6 takes the form

(4.11)
∏
m

(1− q20m)(1 + q20m−14)(1 + q20m−6)(1− q40m−8)(1− q40m−32)

= Ω(30n2 + 28n+ 6) + Ω(30n2 + 8n),

which is the right-hand side of (4.7).
The two identities (4.6) and (4.7) may then rewritten as:∏

m

(1 + q2m)× (l.-h. s. of (4.8)) = l.-h. s. of (4.10),(4.6′) ∏
m

(1 + q2m)× (l.-h. s. of (4.9)) = l.-h. s. of (4.11).(4.7′)

As∏
m

(1+q2m)=
∏
m

(1+q10m)(1+q10m−2)(1+q10m−4)(1+q10m−6)(1+q10m−8),

the left-hand side of (4.6′) is equal to∏
m

(1− q20m)(1− q20m−8)(1− q20m−12)(1 + q10m−2)(1 + q10m−8).

Now as∏
m

(1 + q10m−2)(1 + q10m−8)

=
∏
m

(1 + q20m−2)(1 + q20m−12)(1 + q20m−8)(1 + q20m−18),

we see that the left-hand side of (4.6′) is equal to∏
m

(1− q20m)(1− q20m−8)(1− q20m−12)
× (1 + q20m−2)(1 + q20m−12)(1 + q20m−8)(1 + q20m−18)

=
∏
m

(1− q20m)(1 + q20m−2)(1 + q20m−18)
× (1− q20m−8)(1− q20m−12)(1 + q20m−12)(1 + q20m−8)

=
∏
m

(1− q20m)(1+ q20m−2)(1+ q20m−18)(1− q40m−16)(1− q40m−24),

which is the left-hand side of (4.10). Hence (4.6) is proved.

9
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In the same manner, the left-hand side of (4.7′) is equal to∏
m

(1− q20m)(1− q20m−4)(1− q20m−16)(1 + q10m−4)(1 + q10m−6).

As∏
m

(1 + q10m−4)(1 + q10m−6)

=
∏
m

(1 + q20m−4)(1 + q20m−6)(1 + q20m−14)(1 + q20m−16),

we also see that the left-hand side of (4.7′) is equal to∏
m

(1− q20m)(1− q20m−4)(1− q20m−16)
× (1 + q20m−4)(1 + q20m−6)(1 + q20m−14)(1 + q20m−16)

=
∏
m

(1− q20m)(1 + q20m−6)(1 + q20m−14)
× (1− q20m−4)(1− q20m−16)(1 + q20m−4)(1 + q20m−16)

=
∏
m

(1− q20m)(1 + q20m−6)(1 + q20m−14)(1− q40m−8)(1− q40m−32),

which is the left-hand side of (4.11). This achieves the proof of (4.7) and
then of the Lemma.

Acknowledgements: We should like to thank George Andrews for the
interest he has constantly showed in our struggle with those very classical
identities and Frank Garvan for drawing our attention to the paper by
Farkas and Kra.
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7, rue René-Descartes
F-67084 Strasbourg
foata@math.u-strasbg.fr

Guo-Niu Han
I.R.M.A. et C.N.R.S.
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