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Abstract

This note is a supplement to some recent work of R.B. Bapat on
Moore-Penrose inverses of set inclusion matrices. Among other things
Bapat constructs these inverses (in case of existence) forH(s, k) mod p,
p an arbitrary prime, 0 ≤ s ≤ k ≤ v − s. Here we restrict ourselves
to p = 2. We give conditions for s, k which are easy to state and
which ensure that the Moore-Penrose inverse of H(s, k) mod 2 equals
its transpose. E.g., H(s, v − s) mod 2 has this property. Furthermore
KerH(s, v − s) mod 2 is nonzero if 0 < 2s < v ≤ 3s and then there is
a decomposition

KerH(s, v − s) ≡
∑

0≤j≤s−1

2 | (v−s−jv−2s )

ImH(v − s, v − j) mod 2.

Also, refinements of this decomposition are given.

1. Let F be a field. If A is a m× n-matrix with entries in F, then a n×m-

matrix G (with entries in F) is called a generalized inverse (g-inverse) of A

if

AGA = A.

A Moore-Penrose inverse of A, denoted by A+, is a n×m-matrix G satisfying

the equations



AGA = A, GAG = G,

(AG)T = AG, (GA)T = GA.

Note that if A is square and invertible, G = A−1 is a Moore-Penrose inverse

of A. Thus A+ (if it exists) can be thought of as a substitute for the inverse

of A, even if A is non-square.

• Any real or complex matrix admits a unique Moore-Penrose inverse.

In general, the following theorem gives a necessary and sufficient condition

for a matrix to admit a Moore-Penrose inverse over an arbitrary field.

Theorem (R.B. Bapat, K.P.S. Bhaskara, K. Manjunatha, [2])

A m × n-matrix of rank r over an arbitrary field admits a Moore-Penrose

inverse if and only if the sum of the squares of the r × r minors of A is

nonzero.

Moore-Penrose inverses were introduced by Penrose for complex matrices

with a slight modification replacing in the above four defining equations the

transpose of a matrix by its complex-conjugate transpose.

However, the proof that Moore-Penrose inverses are uniquely determined (if

they exist) carries over to the definiton given above. For the convenience of

the reader we reproduce the proof. So let X, Y two Moore-Penrose inverses

of A. Then

X = XAX = X(AX)T = XXTAT = XXT (ATY TAT )

= X(AX)T (AY )T = X(AXA)Y = XAY =

= (XA)T (Y AY ) = (XA)T (Y A)TY = (ATXTAT )Y TY =

= ATY TY = (Y A)TY = Y.

Note that all four defining equations have been used in the proof.

Now we recall the definition of set-inclusion incidence matrices. In fact there

are two families of incidence matrices. Let s, k, v be in N0 and s, k ≤ v. Let

Hv(s, k) = H(s, k) denote the integer (0, 1)-matrix with rows and columns

indexed respectively by the s-subsets and k-subsets of a fixed v-set with ij-

entry equal to one if and only if the i-th s-subset is contained in the j-th

k-subset.
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By Hv(s, k) = H(s, k) we denote the integer (0, 1)-matrix with rows and

columns indexed respectively be the s-subsets and k-subsets of a fixed v-set,

with ij-entry equal to one if and only if the i-th s-subset is contained in the

complement of the j-th subset.

Here we are mainly concerned with the first family of matrices.

Both H(s, k) and H(s, k) may be zero matrices but e.g. both H(0, k) and

H(0, k) are the 1×
(
v
k

)
vector of all ones.

There are many relations between H(s, k) and H(s, k) (see for example [5],

Chapt 15, 8.2) from which we quote only one

• H(s, k) =
∑
i

(−1)iH(i, s)TH(i, k).

If p is any prime number we denote by H(s, k)p, H(s, k)p the matrices ob-

tained by reducing all entries of H(s, k) or H(s, k) respectively modulo pZ.

Binomial coefficients
(
n
m

)
are also defined if m is negative. We adopt the

convention that
(
n
m

)
= 0 if m < 0 or n < m.

2. The problem to give necessary and sufficient conditions which imply the

existence of a Moore-Penrose inverse of H(s, k)p, p an arbitrary prime, has

been solved very recently:

Theorem (R.B. Bapat [1])

Let 0 ≤ s ≤ k ≤ v − s, let p be a prime and let

N =

{
i : 0 ≤ i ≤ s, p -

(
k − i
s− i

)}
.

Then H(s, k)p has a Moore-Penrose inverse if and only if p -
(
v−i−s
k−s

)
for all

i ∈ N . Furthermore, the Moore-Penrose inverse, if it exists, is given by

H(s, k)+
p =

∑
i,j∈N

(−1)i
(
v−i−j
s−i

)(
v−i−s
k−s

)H(i, k)Tp H(j, i)Tp H(j, s)p.
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Corollary H(s, v − s)p admits a Moore-Penrose inverse for all primes p.

Now Bapat provides an example of an incidence matrix where the Moore-

Penrose inverse is just one matrix; take H6(2, 4)3. Here the set N = {2} has

minimum cardinality. After making a suitable arrangement of the 2-sets and

the 4-sets of the 6-set it is shown that H6(2, 4)+
3 = H6(2, 4)3.

We give now another example of an incidence matrix where the set N has

maximum cardinality and the Moore-Penrose inverse equals the transpose of

the given matrix. Let for a moment p be an arbitrary prime and recall

Wilson’s Rank Formula ([8])

Let 0 ≤ s ≤ k ≤ v − s, let p be a prime and let

N =

{
i : 0 ≤ i ≤ s, p -

(
k − i
s− i

)}
.

Then

rankH(s, k)p =
∑
i∈N

{(
v

i

)
−
(

v

i− 1

)}
.

Now we take k = v − s. Let s, v be so chosen, that v > 2s and N
= {0, 1, . . . , s}. Then the rank-formula yields

rankH(s, v − s)p =
s∑
i=0

{(
v

i

)
−
(

v

i− 1

)}
=

(
v

s

)
,

so H(s, v − s)p is nonsingular and therefore

H(s, v − s)+
p = H(s, v − s)−1

p .

Now we take p = 2 and claim H(s, v − s)−1
2 = H(s, v − s)T2 .

Now H(s, v − s)T H(s, v − s) = (α (L,M)) with

α (L,M) =

(
|L ∩M |

s

)
, L,M (v − s)-sets.
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Now look at Pascal’s triangle (more precisely at a part of it).
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(
v−2s

0

) (
v−2s
s

)

(
v−s−1
s−1

) (
v−s−1
s

)(
v−s
s

)
� = entry is odd,

⊗
= entry is even.

By moving in the triangle from left to right we obtain

2 |
(
v − s− i

s

)
, 1 ≤ i ≤ s,

in particular v > 3s.

Therefore

H(s, v − s)T2 H(s, v − s)2 = (α (L,M)mod 2) = I

and the claim is proved; furthermore

H(s, v − s)+
2 = H(s, v − s)T2 .

Note that we can skip the use of Wilson’s rank-formula in proving that the

Moore-Penrose inverse of H(s, v − s)2 equals its transpose.

3. In the sequel we focus on binary Moore-Penrose inverses of incidence

matrices H(s, k)2. Our main source of interest is
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• Construction of linear binary codes C of the form C = KerH(s, k)2 for

appropriate s, k.

Definition Let 0 ≤ s ≤ k ≤ v. We say that H(s, k)2 admits a special

Moore-Penrose inverse, if it admits a Moore-Penrose inverse and this equals

H(s, k)T2 .

We need some elementary number theory. Let p for a moment be an arbitrary

prime and let n ∈ N. If pα, α ≥ 1 occurs as a factor in the primary

decomposition of n, call α to be the order (= ordp (n)) of p with respect to

n. If p - n, define ordp (n) = 0.

• (Gauß) ordp(n!) =
∞∑
i=1

⌊
n

pi

⌋
.

• ordp(n!) =
n−Q(n)

p− 1
. Here Q(n) denotes the sum of the digits in the

p-adic expansion of n.

(See e.g. [6], Chapter I, Exercise 13. This can also easily be proved

with help of Gauß’ result).

Therefore

• ordp

((
n

m

))
=
Q(m) +Q(n−m)−Q(n)

p− 1
, 0 ≤ m ≤ n.

In particular

(1). . . ord2

((
n

m

))
= Q(m) +Q(n−m)−Q(n), 0 ≤ m ≤ n.

This yields also an “indirect proof” that all “p-adic” functions Q : N0 → N0

are “subadditive”, that is that

Q(l +m) ≤ Q(l) +Q(m); m, l ∈ N0,

since

0 ≤ ordp

((
l +m

m

))
=
Q(m) +Q(l)−Q(m+ l)

p− 1
.
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Theorem 1 Let 0 ≤ s < k ≤ v − s and r ∈ N0 be such that

2r ≤ k − s < 2r+1.

Assume

v ≡ s+ kmod 2r+1.

Then H(s, k)2 admits a special Moore-Penrose inverse.

Corollary H(s, v − s)2 admits a special Moore-Penrose inverse.

Proof: We use the following

Lemma 1 ([5], Chapter 15, 8.4)

Let 0 ≤ s ≤ k, 0 ≤ t ≤ k. Then

H(s, k)H(t, k)T =
∑
i

(
v − s− t
v − k − i

)
H(i, s)T H(i, t).

The proof of the lemma uses Vandermonde’s identity for binomial coefficients.

Now put in the lemma s = t, multiply the identity from the right with

H(s, k), use the well-known identity

(2). . . H(i, s)H(s, l) =

(
l − i
s− i

)
H(i, l), 0 ≤ i ≤ s ≤ l,

(see e.g. [5], Chapter 15, 8.1) and obtain

(3). . . H(s, k)H(s, k)T H(s, k) =
∑
i

(
v − 2s

v − k − i

)(
k − i
s− i

)
H(i, s)T H(i, k).

Now consider the product (
v − 2s

v − k − i

)(
k − i
s− i

)
.

Denote q := k − s. The first factor in the above product is
(
v−2s
q−s+i

)
. So we

can restrict the above sum (3) to those i ≥ 0 with i ≥ s − q. We define a

new running index j by

i = s− q + j, j ≥ q − s.
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Then the above product equals
(
v−2s
j

)(
2q−j
q

)
which is zero if j < 0 or j > q.

Therefore

(4). . .


H(s, k)H(s, k)T H(s, k) =

q∑
j=max{0,q−s}

(
v − 2s

j

)(
2q − j
q

)
·H(s− q + j, k)T ·H(s− q + j, s).

Similarly, by multiplying the identity of the lemma from the left withH(s, k)T

we obtain

(4’). . .


H(s, k)T H(s, k)H(s, k)T =

q∑
j=max{0,q−s}

(
v − 2s

j

)(
2q − j
q

)
·H(s− q + j, k)T ·H(s− q + j, s).

Claim:

(
v − 2s

j

)(
2q − j
q

)
is

{
odd, if j = q,

even, if 0 ≤ j < q.

Suppose that the claim has already been proved. Then we reduce equations

(4), (4’) modulo 2, observe that H(s, s) = I and obtain

H(s, k)2 H(s, k)T2 H(s, k)2 = H(s, k)2,

H(s, k)T2 H(s, k)2 H(s, k)T2 = H(s, k)T2 .

This already proves that H(s, k)2 admits H(s, k)T2 as a (special) Moore-

Penrose inverse, since the remaining two assertions (which define Moore-

Penrose inverses) are trivially satisfied.

Now we prove the claim, first statement. By assumption

n : v − s ≥ k − s = q ≥ 1,

n ≡ qmod 2r+1.

Let n = λ · 2r+1 + q, λ ∈ N0, q < 2r+1. Therefore

Q(n) = Q(λ · 2r+1) +Q(q)
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and

ord2

((
v − 2s

q

))
= ord2

((
n

q

))
= Q(q) +Q(n− q)−Q(n) =

= Q(q) +Q(λ · 2r+1)− (Q(λ · 2r+1) +Q(q)) = 0

To prove the second statement of the claim it is sufficient to show:

If for some j, 0 ≤ j < q,

(
2q − j
q

)
is odd, then

(
n

j

)
is even.

By assumption

(5). . . 0 = ord2

((
2q − j
q

))
= Q(q) +Q(q − j)−Q(2q − j).

Since n− j = λ · 2r+1 + (q − j), 1 ≤ q − j < 2r+1,

an easy calculation shows

ord2

((
n

j

))
= Q(j) +Q(q − j)−Q(q).

Combine this with Eq (5) and obtain

ord2

((
n

j

))
= Q(j) + 2Q(q − j)−Q(2q − j).

Now we use the subadditivity of Q and Q(2l) = Q(l), l ∈ N0 and obtain

ord2

((
n

j

))
= Q(j) + (Q(2q − 2j) +Q(q − j))−Q(2q − j)

= (Q(j) +Q(2q − 2j)) +Q(q − j)−Q(2q − j)

≥ Q(2q − j) +Q(q − j)−Q(2q − j) = Q(q − j) > 0.

This proves the claim. �

Remark In the theorem the condition 0 ≤ s < k ≤ v − s can in some

cases (with more work) be weakened. For example take k = s + 1. Then

according to the theorem H(s, s+1)2 admits a special Moore-Penrose inverse

provided

v odd , s ≤ v − 1

2
.
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However, this is true for v odd and all s, 0 ≤ s ≤ v − 1.

4. In this section we come to an application. Let F be any field. We associate

to the integer matrix H(s, k) a linear map H(s, k)F of F-vectorspaces as

follows. Let Ci, 0 ≤ i ≤ v the F-vectorspace with base {T}, where T runs

through all i-subsets of the v-set and let the linear map

H(s, k)F : Ck → Cs

induced by

H(s, k)F (T ) =

|S|=s∑
S⊂T

S, |T | = k.

In case F = Fp we write again H(s, k)F = H(s, k)p.

Theorem (A. Bjerhammar [4], R. Penrose [7]) Let F be a field and A,G be

m×n resp. n×m matrices with entries in F such that AGA = A. Then the

system of linear equations Ax = b has a solution if and only if

AGb = b

in which case the most general solution is

x = Gb+ (I −GA)y, y arbitrary.

In particular KerA = Im (I −GA).

Let p be an arbitrary prime and suppose that H(s, k)p admits a Moore-

Penrose inverse. Then

(6). . . KerH(s, k)p = Im (I −H(s, k)+
p H(s, k)p).

On the other side it is straightforward to exhibit a subspace of KerH(s, k)p
(regardless whether H(s, k)p admits a Moore-Penrose inverse or not). Ac-

cording to eq. (2)

(7). . . Up
s,k :=

∑
0≤j≤v−(k+1)

p | (v−s−jk−s )

ImH(k, v − j)p
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is a subspace of KerH(s, k)p (of course, the above sum may be empty). We

make the following

Conjecture Let 0 < s < k < v, and let p be a prime. Then

KerH(s, k)p = Up
s,k.

We give an example where the conjecture is true and take k = s+ 1, p = 2.

Then H(s+1, v−j)2 is a subspace of U2
s,s+1 iff v−j−s is even. But according

to eq. (2) then

H(s+ 1, s+ 2)2 ·H(s+ 2, v − j)2 = (v − j − s− 1) · 1 ·H(s+ 1, v − j)2

= H(s+ 1, v − j), 1 ∈ F2, s+ 2 ≤ v − j.

Therefore

U2
s,s+1 ⊇ ImH(s+ 1, s+ 2)2 ⊇ ImH(s+ 2, v − j)2

and U2
s,s+1 = ImH(s+ 1, s+ 2)2. It has been remarked in [7], Prop. 7, that

KerH(s, s+ 1)2 = ImH(s+ 1, s+ 2)2 (= U2
s,s+1). –

This example also shows that the sum in eq. (7) might be “redundant”.

We give a second example which at least gives some evidence that the con-

jecture might be true.

Let 0 < s < k = v − s and p a prime. Then

detH(s, v − s) =
s−1∏
j=0

(
v − s− j
v − 2s

)(vj)−( v
j−1)

(see [9], Theorem 2 or [7], Corollary 1 to Theorem 1). Then obviously

KerH(s, v − s)p 6= (0) iff p | detH(s, v − s) iff Up
s,v−s 6= (0).−

In the sequel we stick to this example in the binary case. First we derive a

criterion that ensures that KerH(s, v− s)2 is nonzero, making no use of the

formula for detH(s, v − s) just given.
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According to the Corollary to Theorem 1 and eq. (6) we have

(8). . . KerH(s, v − s)2 = Im (I +H(s, v − s)T2 H(s, v − s)2).

Proposition Let 0 < 2s < v and assume that

H(s, v − s)2 : Cv−s → Cs

is an isomorphism. Then 3s < v. In particular, if 0 < 2s < v ≤ 3s then

KerH(s, v − s)2 is nonzero.

Proof: By assumption KerH(s, v − s)2 = (0). Then eq. (8) yields

I = H(s, v − s)T2 H(s, v − s)2 =

((
|L ∩M |

s

)
mod 2

)
.

Now if L,M vary through all (v − s)-sets,
(|L∩M |

s

)
takes all values(

v−s−j
s

)
=: αj, 0 ≤ j ≤ s. Now we have α0 > 1 (and α0 odd) and αj

even if 0 < j. This implies v − 2s > s. �

At the same time we have proved the

Corollary Assume that 0 < 2s ≤ v and that H(s, v−s)2 is nonsingular.

Then H(s, v − s)−1
2 = H(s, v − s)T2 .

From now on we assume 0 < 2s < v ≤ 3s. To prove the conjecture for

H(s, v − s)2 it is sufficient to show that

(9). . . Im (I +H(s, v − s)T2 H(s, v − s)2) ⊆ U2
s,v−s =: Us.

We first describe briefly the lines of the proof. Now KerH(s, v − s)2 is

generated by the elements

σM := M +

|L|=v−s∑ (
|M ∩ L|

s

)
· 1 · L, |M | = v − s, 1 ∈ F2.

Now we put v − 2s =: q, 1 ≤ q ≤ s. Furthermore |L ∩M | = v − s − j iff

|L ∪M | = v − s+ j. We define

SMv−l =
∑
|L|=v−s
|L∪M |=v−l

L, 0 ≤ l ≤ s.
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(Observe that SMv−s = M). Then we rewrite the generators σM of

KerH(s, v − s)2:

(10). . . σM =

((
s+ q

s

)
· 1 + 1

)
·M +

s−1∑
l=0

(
l + q

s

)
· 1 · SMv−l, 1 ∈ F2.

Observe that all σM are nonzero.

If X is a subset of the v-set denote by {X the complement of X.

Lemma 2 Let M be a (v − s)-subset of the v-set. Then for 0 ≤ t ≤ s

one has

τMt :=
T∑

|T |=t,T⊂{M

H(v − s, v − t)2 ({T ) =
s∑
l=0

(
l

t

)
· 1 · SMv−l.

Furthermore if
(
v−s−t
s−t

)
is even then all τMt are contained in KerH(s, v− s)2.

Proof: Let L be a (v−s)-set and |L∪M | = v−l, 0 ≤ l ≤ s and R := {(M∪L).

Then

L ⊂ {T iff {R = M ∪ L ⊂ {T iff R ⊃ T.

In particular l ≥ t. So if l < t (this condition is vacuous if t = 0) L appears

with coefficient 0 in all
(
s
t

)
summands of the L.S. of the formula. If l ≥ t

then L appears with coefficient 1 in exactly
(
l
t

)
summands in the L.S. of the

formula (we remind the reader of our convention on binomial coefficients).

The last assertion follows from eq. (2). �

Now we will show that all generators σM of KerH(s, v − s)2 are sums of

elements τMt for appropriate t all of which are contained in KerH(s, v− s)2,

thereby proving eq. (9). At the same time, we obtain more precise assertions

on “generating” subspaces of Us.–

To state the next result we define on N0 a partial order “≺” as follows. If

j, q ∈ N0 and

j =
∑
i≥0

ai2
i, q =

∑
i≥0

bi2
i
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are the 2-adic expansions of j resp. q, we define

j ≺ q if ai ≤ bi for all i ≥ 0.

Then put M(q) = {j : j ∈ N0, j ≺ q} and M(q)∗ =M(q) \ {0}.

So, for example for t ≥ 1

M(2t − 1) = {0, 1, 2, . . . , 2t − 1},
M(2t) = {0, 2t},

M(2t + 1) = {0, 1, 2t, 2t + 1}.

Theorem 2 Assume 0 < 2s < v ≤ 3s. Then KerH(s, v−s)2 is nonzero

and

KerH(s, v − s)2 =
∑

0≤i≤s−1

2 | (v−s−iv−2s )

ImH(v − s, v − i)2.

Moreover it already holds that

KerH(s, v − s)2 =
∑

j∈M(v−2s)∗

ImH(v − s, v − s+ j)2.

So the theorem states for example that

in case v − 2s = 2t − 1, t ≥ 1,

KerH(s, v − s)2 =
2t−1∑
j=1

ImH(v − s, v − s+ j)2,

in case v − 2s = 2t, t ≥ 0,

KerH(s, v − s)2 = ImH(v − s, v − s+ 2t)2,

in case v − 2s = 2t + 1, t ≥ 1,

KerH(s, v − s)2 =

ImH(v−s, v−s+1)2 +ImH(v−s, v−s+2t)2 +ImH(v−s, v−s+2t+1)2.–
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Proof of the theorem: We use the notations introduced above.

We apply on the binomial coefficient
(
l+q
s

)
, q = v−2s, 0 ≤ l ≤ s, q-times the

relation
(
n
m

)
=
(
n−1
m

)
+
(
n−1
m−1

)
, n ∈ N, m ∈ Z. Note that we use the relation

even in the trivial cases m < 0 or n ≤ m. At each time we cancel binomial

coefficients which appear with factor 2. So for example if q = 2,(
l + 2

s

)
=

(
l + 1

s

)
+

(
l + 1

s− 1

)
=

((
l

s

)
+

(
l

s− 1

))
+

((
l

s− 1

)
+

(
l

s− 2

))
=

(
l

s

)
+ 2

(
l

s− 1

)
+

(
l

s− 2

)
≡
(
l

s

)
+

(
l

s− 2

)
mod 2.

So we reach a congruence

(11). . .

(
l + q

s

)
≡
∑

i∈M(q)

(
l

s− i

)
mod 2,

with a certain subset M(q) of {0, 1, 2, . . . , q} which contains 0 and q. To

determine this subset we consider the F2-vectorspace

V = F
(Z)
2 = {f : f : Z→ F2, almost all f(m) = 0, m ∈ Z}.

Let Supp f = {m : f(m) 6= 0}. Define the basis {em : m ∈ Z} of V by

em(r) =

{
1, r = m,

0, otherwise.

Finally we define the linear map ϕ : V → V to be induced by

ϕ(em) = em + em−1, m ∈ Z.

Now we rewrite eq. (11) as follows:

(12). . .

(
l + q

s

)
≡

∑
r∈Suppϕq(es)

(
l

r

)
mod 2.

Lemma 3 If m ∈ Z and q ∈ N, then

Suppϕq(em) = {m− j : j ∈M(q)}.
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Proof: First we prove that the assertion is true if q = 2t, t ≥ 0, by induction

on t. If t = 0, then

Suppϕ(em) = Supp (em + em−1) = {m− j : j ∈M(1)}.

Suppose the claim is true for q = 2t. Then

ϕ2t+1
(em) = ϕ2t(ϕ2t(em) = ϕ2t(em + em−2t)

= (em + em−2t) + (em−2t + em−(2t+2t) = em + em−2t+1 ,

so the claim is true for q = 2t+1.

Now we suppose that the assertion is true for all q ∈ N and q ≤ 2t. Then we

show now that the assertion is true for all q ∈ N and q ≤ 2t+1 (this will finish

the proof). We may now assume 2t < q < 2t+1, so q = 2t + u, 1 ≤ u < 2t.

Then by hypothesis

ϕq(em) = ϕu(ϕ2t(em)) = ϕu(em + em−2t) =
∑

i∈M(u)

em−i +
∑

i∈M(u)

em−2t−i.

Since M(q) =M(2t + u) =M(u) ∪ {2t + i : i ∈M(u)} we obtain

ϕq(em) =
∑

j∈M(q)

em−j as claimed. �

We conclude from eq. (12) and the lemma

(13). . .

(
l + q

s

)
≡

∑
j∈M(q)

(
l

s− j

)
mod 2. –

Now we show that all τMs−j, j ∈ M(q)∗ are contained in KerH(s, v − s)2.

According to Lemma 2 it is sufficient to show that(
v − s− (s− j)

j

)
=

(
q + j

j

)
, j ∈M(q)∗

are even. But since j ≺ q, 1 ≤ j, we have

Q(q + j) < Q(q) +Q(j),

whence ord2

((
q+j
j

))
> 0 as claimed.–
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Finally we claim that

(14). . . σM =
∑

j∈M(q)∗

τMs−j =
∑

j∈M(q)∗

s∑
l=0

(
l

s− j

)
· 1 · SMv−l.

In fact the coefficient of SMv−s = M with respect to σm is
(
s+q
s

)
· 1 + 1 and

with respect to the R.S. of eq. (14) is
∑

j∈M(q)∗

(
s
s−j

)
·1. Both coefficients agree

by eq. (13).

Furthermore the coefficient of SMv−l, 0 ≤ l < s with respect to σM is
(
l+q
s

)
· 1

(according to eq. (10)) and with respect to the R.S. of eq. (14) is
∑

j∈M(q)∗

(
l

s−j

)
·

1 which is
∑

j∈M(q)

(
l

s−j

)
· 1 since l < s and

(
l
s

)
= 0. Again both coefficients

coincide according to eq. (13). This proves eq. (14).

Now we have the following chain of inclusions

Us ⊆ KerH(s, v − s)2 ⊆
∑

j∈M(q)∗

ImH(v − s, v − s+ j)2 ⊆ Us.

Therefore throughout equality must hold.

This proves the theorem. �

Remark We look at eq. (2) the other way round, that is we keep H(s, l)

fixed and let H(i, s) vary, obtaining an inclusion of Fp-vectorspaces.

ImH(s, l)p ⊆
⋂
i<s

p|(l−is−i)

KerH(i, s)p, p prime.

Here equality holds. This result (which is of course much more general than

ours) has been proved in [3] using Wilson’s techniques [9]. That we could

dismiss these techniques here is due to the fact that the distribution of even

and odd entries in Pascal’s triangle is well known. If one is willing to follow

the lines used here to prove (parts of) the Conjecture for an arbitrary prime

p, an analysis of the distribution of the residue-classes mod p in Pascal’s

triangle should be made first. We shall return to this topic in a subsequent

paper.
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