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Root systems for two dimensional
complex reflection groups

Mervyn C Hughes∗ Alun O Morris†

Abstract

Root systems for all real reflection groups have been known for a long time.
A M Cohen (1976) extended the idea of root systems to complex reflection
groups: furthermore he explicitly presented root systems for all dimensions
greater than two. Here, root systems are given for the two dimensional complex
reflection groups which are generated by two reflections.

1 Introduction.

In 1954, Shephard and Todd [13] completely classified the finite complex reflection
groups. In 1967 Coxeter [8] gave presentations for all the n dimensional finite complex
reflection groups generated by n reflections. He introduced a graphical notation for
these groups as follows.

If the presentation has n generators r1, . . . , rn then the graph consists of n nodes.
If ri is of order m, then the number m is written inside the node, although if m = 2,
then by convention the number 2 may be omitted. If ri and rj commute, then the
corresponding nodes are not joined. If ri and rj do not commute then they are related
by the braid relation

rirjri . . .︸ ︷︷ ︸
e

= rjrirj . . .︸ ︷︷ ︸
e

with e factors on each side for some e ∈ N and the corresponding nodes are joined by
an edge of weight e, which is omitted (by convention) when e = 3. Coxeter shows that
if the graph is not a tree (that is, it contains no cycles), then it contains a subgraph
which is a triangle with a number k written inside (as this paper will mainly be
involved with groups generated by two generators, we will use s and t to denote the
generators (and u if a third generator is involved))
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The corresponding group has relations

(stut)k = 1, (st)e = (su)f = (tu)g = 1.

Coxeter showed that in all cases, the orders of s, t, u is 2 and that at least two of the
edges have weight 3.

Inspired by these graphs and by root systems associated with real reflection groups
(see, for example, Bourbaki [1]), in 1976 Cohen [6] defined root graphs and root
systems connected with finite complex reflection groups for dimension greater than
2. Our aim in this paper is to obtain root graphs and root systems associated with
two dimensional complex reflection groups which are generated by two reflections.

We concern ourselves with a graph with two nodes

j jm p
s t

e

with presentation

sm = tp = 1, sts . . .︸ ︷︷ ︸
e

= tst . . .︸ ︷︷ ︸
e

.

Coxeter also used the notation m[e]p for this presentation.
Although the classification of such finite reflection groups is of long standing (see,

for example, Coxeter [7] and Koster [11]), we give a new classification which simul-
taneously leads in a natural way to root graphs and root systems for these groups.
This is done by first introducing certain polynomials fl(x), l ≥ 0 and then determin-
ing which of these are admissible, that is, have all their roots in (0, 1). It turns out
that the irreducible two dimensional complex reflection groups are in one-one corre-
spondence with these polynomials; furthermore, their roots provide a natural way of
forming the corresponding root graphs and root systems.

We remark that if e is odd, then relation

sts . . .︸ ︷︷ ︸
e

= tst . . .︸ ︷︷ ︸
e

can be written as

(st)(e−1)/2s = (ts)(e−1)/2t.
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Thus, the generators s and t are conjugate and therefore of the same order. Hence
if e is odd, then p = m. We see later that this condition arises naturally in the
classification via the above polynomials.

More recently, complex reflection groups have been given more prominence
through the work of M. Broué, G. Malle and R. Rouquier [2],[3],[4] in their work
on the representation theory for reductive algebraic groups. In particular, they have
given presentations for all finite complex reflection groups in the style of those given
by Coxeter. Also, they have presented diagrams which generalise Coxeter diagrams
in an interesting way. We present our results so that they are consistent with these
recent developments.

2 Preliminaries.

In this section, the basic definitions and notation required later are given following
the approach in [6],[9].

Let V be a complex vector space of dimension n. A reflection in V is a linear
transformation of V of finite order with exactly (n − 1) eigenvalues equal to 1. A
reflection group G in V is a group generated by reflections in V . There exists a
unitary inner product ( , ) on V invariant under G. A reflection group G is said to
be r-dimensional if the dimension of the subspace V G of points fixed by G is n − r.
The group G is irreducible if the restriction to a G-invariant complement of V G in V
is irreducible.

A (unitary) root of a reflection in V is an eigenvector (of length 1) corresponding
to the unique eigenvalue not equal to 1 of the reflection. A (unitary) root of G is a
(unitary) root of a reflection in G.

Let s be a reflection in V of order m > 1. There exists v ∈ V, v 6= 0 and a primitive
mth root of unity ζ such that

sv,mx = x− (1− ζ)(x, v)(v, v)−1v

for all x ∈ V , where s = sv,m. If t is any unitary transformation of V , we have

tsv,mt
−1 = stv,m.

Define θG : V → N by θG(v) = |GW |, where W =< v >⊥, v ∈ V . The number θG(v)
is called the order of v (with respect to G).

A vector graph is a pair (B, θ), where B is a non-empty finite subset C∞, such that
for all u, v ∈ B, |(u, v)| = 1 if and only if u = v and θ is a map from B to N\{1}. We
say that B is the set of vertices and θ(v), for v ∈ b , is the order of v. Let Γ = (B, θ)
be a vector graph. Then, we define dim Γ to be the dimension of the vector space
spanned by B, and W (Γ) to be the group generated by all the reflections sv,θ(v) for
v ∈ B. The vector graph Γ is called a root graph if

(i) dim Γ = |B|
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(ii) W (Γ) is a finite reflection group.
We say that Γ is irreducible if W (Γ) is irreducible in dim Γ (or that Γ is connected).

Thus in Section 3 we restrict ourselves to the classification of irreducible root graphs.
The vector graph Γ is said to be congruent to the vector graph Γ′ = (B′, θ′) if there is
a t ∈ Gl(C∞) such that θ′(tv) = θ(v) for v ∈ B and the elements of B are eigenvectors
of t.

In this paper we only concern ourselves with vector graphs with two nodes (since
we only consider two-dimensional reflection groups generated by two reflections).

Let B = {u, v}. To u is assigned the value θ(u) [and θ(v) to v] and to the edge is
assigned the value (u, v), together with an arrow from u to v.

For example, if θ(u) = m and θ(v) = p and (u, v) = α, then the vector graph is

j j-m p
u v

α

We adopt the following conventions.
(i) If m = 2, we may omit the number 2.

(ii) If α ∈ R, the arrow is omitted.

(iii) If l = m and α = −1/2, we may omit the value −1/2.
A pair (R, f) consisting of
(i) a finite set R of non-zero elements of C∞,

(ii) a map f : R→ N\{1} such that for all u, v ∈ R, su,f(u)R = R and f(su,f(u)v) =
f(v) is called a pre-root system. To Σ = (R, f) is associated the reflection group W (Σ)
defined by W (Σ) =< su,f(u)|u ∈ R >.

A pre-root system Σ is called a root system if in addition
(iii) αu ∈ R if and only if αu ∈ W (Σ)u for all u ∈ R, α ∈ C.
If (B, θ) is a root graph with B = {e1, . . . , en}, then det((ei, ej)) is a positive real

number.
A group G of unitary automorphisms of V is said to be imprimitive if V is a direct

sum V = V1 ⊕ · · · ⊕ Vk of non-trivial proper subspaces Vi(1 ≤ i ≤ k) of V such that
Vi is invariant under G. If such a direct splitting of V does not exist, G is said to be
primitive.

Let Sn be the (symmetric) group of all n × n permutation matrices and let
A(m, p, n) be the set of all diagonal n × n matrices with ζρi , ρi∈ Z in the (i, i) po-
sition, where ζ is a primitive mth root of unity and

∑n
i=1 ρi ≡ 0 (mod p). Define

G(m, p, n) = A(m, p, n) o Sn, then the imprimitive groups in V are of the form
G(m, p, n), where p|m.

Remark 2.1 (i) G(m,m, 2) is conjugate to W (I2(m)) (notation of [1]), the dihedral
group of order 2m.

(ii) G(1, 1, n) = W (An−1) ∼= Sn, the Weyl group of type An−1.
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(iii) G(2, 1, n) = W (Bn), the Weyl group of type Bn.

(iv) G(2, 2, n) = W (Dn), the Weyl group of type Dn.

(v) If p 6= 1, then G(m, p, n) can be defined with n + 1 generating reflections, but
for p = 1,m, n generating reflections are sufficient.

Thus when n = 2, only two of these groups, namely G(m,m, 2) and G(m, 1, 2),
are generated by two reflections.

The group G(m,m, 2) is generated by reflections of order 2 corresponding to the
root graph { 1√

2
(ε1− ε2), 1√

2
(ε1− ζε2)} and the group G(m, 1, 2) is generated by reflec-

tions of orders 2 and m respectively corresponding to the root graph { 1√
2
(ε1− ε2), ε2}.

Thus, the vector graphs are respectively, which root graphs with the following root
systems:

Σ(m,m, 2) = (R(m,m, 2), f)

where R(m,m, 2) = ±µm{ 1√
2
(ε1 − ζkε2), 1 ≤ k ≤ m} and

Σ(m, 1, 2) = (R(m,m, 2) ∪R2, f)

where R2 = µm{ε1, ε2} and f(R(m,m, 2)) = 2 and f(R2) = m and where
µm = {ζk|1 ≤ k ≤ m}. Here and later, {ε1, ε2} is the standard basis for C2.

3 Classification of two-dimensional reflection

groups.

In this section, we consider certain polynomials which are used later in the clas-
sification.

Let l,m, p ∈ N and ζ and ξ be primitive mth and pth roots of unity respectively.
A sequence of polynomials {fl(x) := fl,m,p(x) ∈ C[x]} are defined as follows:-

Put

f1(x) = f2(x) = 1.

If l is even, l ≥ 2, put

fl+1(x) = xfl(x) +
ζ

(1− ζ)(1− ξ)
fl−1(x) (3.1)

fl+2(x) = fl+1(x) +
ξ

(1− ζ)(1− ξ)
fl(x). (3.2)

It is easily seen that fl(x) is a monic polynomial of degree b(l − 1)/2c, where
bic denotes the integer part of i. For smaller values of l, these polynomials are
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calculated explicitly as these are required later in the classification we give the fl(x)
for 3 ≤ l ≤ 10.

f3(x) = x +
ζ

(1− ζ)(1− ξ)

f4(x) = x +
ζ + ξ

(1− ζ)(1− ξ)

f5(x) = x
2

+
2ζ + ξ

(1− ζ)(1− ξ)
x +

ζ2

(1− ζ)2(1− ξ)2

f6(x) = x
2

+
2(ζ + ξ)

(1− ζ)(1− ξ)
x +

ζ2 + ζξ + ξ2

(1− ζ)2(1− ξ)2

f7(x) = x
3

+
3ζ + 2ξ

(1− ζ)(1− ξ)
x

2
+

3ζ2 + 2ζξ + ξ2

(1− ζ)2(1− ξ)2
x +

ζ3

(1− ζ)3(1− ξ)3

f8(x) = x
3

+
3(ζ + ξ)

(1− ζ)(1− ξ)
x

2
+

3ζ2 + 4ζξ + 3ξ2

(1− ζ)2(1− ξ)2
x +

ζ3 + ζ2ξ + ζξ2 + ξ3

(1− ζ)3(1− ξ)3

f9(x) = x
4

+
4ζ + 3ξ

(1− ζ)(1− ξ)
x

3
+

6ζ2 + 6ζξ + 3ξ2

(1− ζ)2(1− ξ)2
x

2
+

4ζ3 + 3ζ2ξ + 2ζξ2 + ξ3

(1− ζ)3(1− ξ)3
x +

ζ4

(1− ζ)4(1− ξ)4

f10(x) = x
4

+
4(ζ + ξ)

(1− ζ)(1− ξ)
x

3
+

6ζ2 + 9ζξ + 6ξ2

(1− ζ)2(1− ξ)2
x

2
+

4ζ3 + 6ζ2ξ + 6ζξ2 + 4ξ3

(1− ζ)3(1− ξ)3
x +

ζ4 + ζ3ξ + ζ2ξ2 + ζξ3 + ξ4

(1− ζ)4(1− ξ)4
.

Easy calculations show that

ζ + ξ

(1− ζ)(1− ξ)
= −1

2

(
1 + cot

π

m
cot

π

p

)
(3.3)

ζ

(1− ζ)2
= −1

4
cosec2 π

m
,

ξ

(1− ξ)2
= −1

4
cosec2π

p
. (3.4)

Thus, for example,

f4(x) = x− 1

2

(
1 + cot

π

m
cot

π

p

)
.

We now prove some easy results concerning these polynomials which are required
later.

Lemma 3.1 (i)If l is even, l ≥ 4, then

fl+2(x) = fl(x)f4(x)− 1

16
cosec2 π

m
cosec2π

p
fl−2(x) (3.5)

fl+3(x) = x

(
fl(x)f4(x)− 1

16
cosec2 π

m
cosec2π

p
fl−2(x)

)
+

ζ

(1− ζ)(1− ξ)
fl+1(x) (3.6)

(ii)If l is even, then fl(x) ∈ R[x].

(iii)If l is odd and ξ = ζ, then fl(x) ∈ R[x].

6



Proof. From (3.1),(3.2) and (3.4), we obtain

fl+2(x) = xfl(x) +
ζ

(1− ζ)(1− ξ)
fl−1(x) +

ξ

(1− ζ)(1− ξ)
fl(x)

= fl(x)f4(x)− ζ

(1− ζ)(1− ξ)
(fl(x)− fl−1(x))

= fl(x)f4(x)− ζξ

(1− ζ)2(1− ξ)2
fl−2(x)

= fl(x)f4(x)− 1

16
cosec2 π

m
cosec2π

p
fl−2(x)

which proves (3.5). Formula (3.6) now follows directly from (3.2) and (3.4). The
proof of (ii) and (iii) follows from (3.3) by induction on l.

Lemma 3.2 (i) The coefficient of xn−1 in f2n+2(x) is

n(ζ + ξ)

(1− ζ)(1− ξ)
= −n

2

(
cos( π

m
− π

p
)

sin π
m
sinπ

p

)

= −n
2

(
1 + cot

π

m
cot

π

p

)
.

(ii) If l is odd and if ξ = ζ the constant term in fl(x) is

(ζ(1− ζ)−2)l−2 =

(
−1

4
cosec2 π

m

)l−2

∈ R.

Proof. The proofs are simple induction arguments and we give a sketch of the proof
only.

(i) If l = 2n, from (3.5) we have

f2n+2(x) = f2n(x)f4(x)− 1

16
cosec2 π

m
cosec2π

p
f2n−2(x).

Since f2n−2(x) and f2n(x) have degrees n−2 and n−1 respectively, the result follows
by induction on n and noting the form of f4(x) given above.

(ii) If l is odd and ξ = ζ, then if we put x = 0 in (3.6), the result follows by
induction.

Lemma 3.3 If l is even and if fl(a) = 0, fl−2(a) > 0 for some a ≥ 1, then there
exists b > 1 such that fm(b) = 0 for even m > l.

Proof. Since

fl+2(a) = fl(a)f4(a)− 1

16
cosec2 π

m
cosec2π

p
fl−2(a).

and since fl(a) = 0, we have fl+2(a) < 0. As the fl(x) are monic, there exist a1 > a
such that fl+2(a1) = 0 and fl(a1) > 0. Thus, by induction there exist b > 1 such that
fm(b) = 0 for even m > l.
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Lemma 3.4 If p = m and fl−1(a) > 0 and fl(a) = 0 for some a ≥ 1, then there exist
b > 1 such that fm(b) = 0 for all m > l.

Proof Whether l is odd or even, since fl(a) = 0, from (3.1) and (3.2) we have

fl+1(a) = −1

4
cosec2 π

m
fl−1(a)

and so fl+1(a) < 0. Thus there exist a1 > a with fl+1(a1) = 0 and fl(a1) > 0. Hence,
by induction there exist b > 1 such that fm(b) = 0 for all m > l.

Motivated by the requirements of the classification problem, we now make the
following definition.

Definition 3.5 If l,m, p ∈ N,m ≤ p, we say the triple (m, p; l) is
(i) admissible if all the roots of fl(x) = 0 are in (0, 1),

(ii) semi-admissible if all the roots of fl(x) = 0 are in [0, 1] with one root equal to
1,

(iii) inadmissible if fl(x) = 0 has at least one root not in [0, 1].

We now classify the admissible and semi-admissible triples; we do this in a series
of lemmas.

Lemma 3.6 If (m, p; l) is admissible then
(i) for l odd, m = p < 6;

(ii) for l even, (m, p) ∈ {(2,m), (3, 3), (3, 4), (3, 5)}, where m ≤ p.

Proof. (i) If l is odd, then f(x) ∈ R[x] only if p = m; thus fl(x) = 0 can only have
real roots if p = m. Put ξ = ζ, then from Lemma 3.2(ii) we have 0 ≤ |1

4
cosec2 π

m
| ≤ 1,

which implies that m < 6 as required.
(ii) If l is even, then from Lemma 3.2(i), the sum of the roots of fl(x) = 0 is

k
2
(1 + cot π

m
cotπ

p
), where k is the degree of fl(x). Since (m, p; l) is admissible, all the

roots are in (0, 1) and so

k

2

(
1 + cot

π

m
cot

π

p

)
< k,

that is, tan π
m
tanπ

p
> 1, which gives the required result.

Lemma 3.7 If (m,m; l − 1) is admissible and (m,m; l) is semi-admissible then
(m,m; r) is inadmissible for r > l.

Proof. As (m,m; , l − 1) is admissible and (m,m; l) is semi-admissible we have
fl−1(1) > 0 and fl(1) = 0. The result now follows from Lemma 3.4.
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Lemma 3.8 If m > 2, then
(i) The triple (m,m; l) is admissible if and only if (m,m; l) = (3, 3; l), (l =

3, 4, 5), (4, 4, 3),
(5, 5; 3);

(ii) The triple (m,m; l) is semi-admissible if and only if (m,m; l) = (3, 3; 6),
(4, 4; 4), (6, 6; 3)

Proof. If l = 3, then f3(x) = x − 1
4
cosec2 π

m
and 0 < 1

4
cosec2 π

m
< 1 if and only if

m = 2, 3, 4, 5. Furthermore, for m = 6, f3(1) = 0 and so (6, 6; 3) is semi-admissible.
If l = 4, then f4(x) = x− 1

2
cosec2 π

m
, and we see that

1

2
cosec2 π

m


< 1 if m=2 or 3

= 1 if m=4

> 1 if m ≥ 5,

which proves that (2, 2; 4) and (3, 3; 4) are admissible, (4, 4; 4) is semi-admissible and
that (m,m; 4) is inadmissible if m ≥ 5.

If l = 5, then

f5(x) = x2 +
3ζ

(1− ζ)2
x+

ζ2

(1− ζ)4
,

whose two roots are 1
8
(3 ±

√
5)cosec2 π

m
. Consideration of these roots shows that

(m,m; 5) is admissible only if m = 2, 3 and is never semi-admissible.
If l = 6, then

f6(x) = x2 +
4ζ

(1− ζ)2
x+

3ζ2

(1− ζ)4

=

(
x+

ζ

(1− ζ)2

)(
x+

3ζ

(1− ζ)2

)
,

and the corresponding roots are 1
4
cosec2 π

m
and 3

4
cosec2 π

m
. Both of these roots are in

(0, 1) only for m = 2. For m = 3, both these roots are in [0,1] with one of these
roots equal to 1. Thus (m,m; 6) is admissible if m = 2 and semi-admissible if m = 3.
Furthermore, for m > 3, there is always a root outside [0, 1] and so (m,m; 6) is
inadmissible for m > 3. By Lemma 3.7, (3, 3; l) is inadmissible for l > 6. Thus, the
proof of this lemma is complete.

Remark 3.9 Note that (2, 2; l) is admissible for all l.

We have now classified all the admissible (m,m; l) for both l even and l odd. We
now proceed towards the classification of all admissible triples (m, p; l) for l even.
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Lemma 3.10 Let l be even.
(i) If (m, p; l− 2) is admissible and (m, p; l) is either semi-admissible or inadmis-

sible, then (m, p; k) is inadmissible for k > l.

(ii) If (m, p; l) is admissible, then so is (m, p; l − 2) for l > 2.

Proof. (i) If (m, p; l − 2) is admissible and (m, p; l) is either semi-admissible or
inadmissible, then for some a ≥ 1, fl−2(a) > 0 and fl(a) = 0. Thus, the result follows
from Lemma 3.3.

(ii) This is a consequence of (i).

Lemma 3.11 (i) The triple (m, p; 4),m < p is admissible if and only if (m, p) =
(2,m),m > 3, (3, 4), (3, 5).

(ii) The triple (m, p; 4),m < p is semi-admissible if and only if (m, p) = (3, 6).

Proof. We first note that the only root of f4(x) = 0 is 1
2
(1 + cot π

m
cotπ

p
).

(i) We see that 1
2
(1 + cot π

m
cotπ

p
) < 1 if and only if tan π

m
tanπ

p
> 1 which implies

that if m < p, (m, p) = (2,m), (m ≥ 3), (3, 4), (3, 5) as required.
(ii) Similarly, tan π

m
tanπ

p
= 1 if and only if (m, p) = (3, 6).

We now consider the case l = 6. By Lemma 3.10 and Lemma 3.11, (m, p; 6) can
only be admissible if (m, p) = (2,m), (m ≥ 3), (3, 4), (3, 5)(m < p). We prove

Lemma 3.12 (i) The triple (m, p; 6) is admissible if and only if (m, p) = (2, 3), (2, 4),
(2, 5).

(ii) The triple (m, p; 6),m < p is semi-admissible if and only if (m, p) = (2, 6).

Proof. From (3.5), we have

f6(x) = f4(x)2 − 1

16
cosec2 π

m
cosec2π

p
,

from which we deduce that the two roots of f6(x) = 0 are

1

2

(
1 + cot

π

m
cot

π

p

)
± 1

4
cosec

π

m
cosec

π

p
.

If m = 2, the two roots are 1
2
± 1

4
cosecπ

p
, from which we see that (2, p; 6) is admissible

only if p = 3, 4, 5 and semi-admissible if p = 6.
Ifm = 3, the two roots are 1

2
(1+ 1√

3
(cotπ

p
±cosecπ

p
)), from which an easy calculation

shows that one of the roots is > 1 for all p ≥ 4.

We now consider the case l = 8. By Lemma 3.10 and Lemma 3.12, (m, p; 8) can
only be admissible if (m, p) = (2, 3), (2, 4), (2, 5). We prove
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Lemma 3.13 (i) The triple (m, p; 8) is admissible if and only if (m, p) = (2, 3).
(ii) The triple (m, p; 8) is semi-admissible if and only if (m, p) = (2, 4).

Proof. From (3.5), we see that

f8(x) = f4(x)

(
f6(x)− 1

16
cosec2 π

m
cosec2π

p

)
.

We need only concern ourselves with the roots of f6(x)− 1
16
cosec2 π

m
cosec2 π

p
= 0. If

m = 2, a simple calculation shows that this reduces to x2−x+ 1+ξ2

4(1−ξ)2 = 0, from which

we deduce that (m, p; 8) is admissible if and only if (m, p) = (2, 3) and semi-admissible
if (m, p) = (2, 4).

Similar calculations now show that we have the following lemma.

Lemma 3.14 (i) The triple (m, p; 10) is admissible if and only if (m, p) = (2, 3)
(ii) The triple (m, p; 12) is inadmissible except for (m, p) = (2, 3)

Proof. We see this by considering the appropriate entries in Table 2.

We have therefore proved the following theorem.

Theorem 3.15 (i) The admissible triples (m, p; l) are
(2, 2; l)(l ≥ 2), (3, 3; 3), (3, 3; 4), (3, 3; 5), (4, 4; 3), (5, 5; 3), (2,m; 4)(m ≥ 3), (3, 4; 4),

(3, 5; 4), (2, 3; 6), (2, 4; 6), (2, 5; 6), (2, 3; 8), (2, 3; 10).

(ii) The semi-admissible triples (m, p; l) are
(6, 6; 3), (4, 4; 4), (3, 6; 4), (2, 6; 6), (3, 3; 6), (2, 4; 8), (2, 3; 12).

We now show that this not only leads to a classification of two dimensional complex
reflection groups but we also easily obtain the corresponding root graphs and root
systems.

Let G be a reflection group with root graph B = {u, v}, where u and v are
unitary roots. Let s and t denote the corresponding reflections whose orders are m
and p respectively. Then, it can be proved (see, for example, Koster [11]) that for
some positive integer l

. . . sts︸ ︷︷ ︸
l

= . . . tst︸ ︷︷ ︸
l

(3.7)

From Section 2, since B is linearly independent, we have

det

(
(u, u) (u, v)

(v, u) (v, v)

)
> 0,

11



from which it follows that

0 < (u, v)(v, u) = |(u, v)|2 < 1.

Now, put a = |(u, v)|2 ∈ (0, 1) and let v′ = (1 − ξ)(u, v)v and let u(l) = . . . tstu︸ ︷︷ ︸
l

.

Furthermore, let
u(l) = α(u(l),u)u+ α(u(l),v′)v

′,

where α(u(l),u), α(u(l),v′) ∈ C. If l is even, then u(l) = tst . . . stu︸ ︷︷ ︸
l

and so

u(l+1) = su(l) = (1− ζ)(1− ξ)
{

ζ

(1− ζ)(1− ξ)
α(u(l),u) − aα(u(l),v′)

}
u+ α(u(l),v′)v

′;

thus

α(u(l+1),u) = (1− ζ)(1− ξ)
{

ζ

(1− ζ)(1− ξ)
α(u(l),u) − aα(u(l),v′)

}
(3.8)

and
α(u(l+1),v′) = α(u(l),v′). (3.9)

Similarly,

u(l+2) = tu(l+1) = α(u(l+1),u)u+ (ξα(u(l),v′) − α(u(l+1),u))v
′

from which we obtain

α(u(l+2),v′) = ξα(u(l),v′) − α(u(l+1),u) (3.10)

and
α(u(l+2),u) = α(u(l+1),u). (3.11)

Now, for l even l ≥ 2, define

gl−1(a) =

(
1

(1− ζ)(1− ξ)

) l−2
2

α(u(l),u) (3.12)

gl(a) = −
(

1

(1− ζ)(1− ξ)

) l−2
2

α(u(l),v′) (3.13)

Then, we can prove the following theorem.

Theorem 3.16 (i) If l is even, l ≥ 2, then

gl+1(a) = agl(a) +
ζ

(1− ζ)(1− ξ)
gl−1(a) (3.14)

gl+2(a) = gl+1(a) +
ξ

(1− ζ)(1− ξ)
gl(a), (3.15)

where gl−1(a) and gl(a) are monic polynomials in a.

12



Proof. The proof is by induction on l. An easy verification shows that u(1) = u, u(2) =
u− v′ and

u(3) = (1− ζ)(1− ξ)
(
a+

ζ

(1− ζ)(1− ξ)

)
u− v′.

Substitution of (3.12) and (3.13) in (3.8) and (3.11) now gives (3.14), and similarly
in (3.9) and (3.10) to give (3.15).

We note that these are precisely the defining relations of the polynomials fl(x)
given in (3.1) and (3.2). We will exploit this now in order to classify two dimensional
root graphs and root systems.

Using the relation (3.7), we find that

u(l+1) = . . . tstu︸ ︷︷ ︸
l+1

= . . . stsu︸ ︷︷ ︸
l+1

= ζ(. . . stu︸ ︷︷ ︸
l

).

This implies that if l is even,
su(l) = ζu(l)

that is, u(l) is a multiple of u. Hence, the coefficient of v, and thus of v′, in u(l) is zero.
This means that α(u(l), v′) = 0, and so, gl(a) = 0, that is, a is a root of gl(x) = 0,
where a ∈ (0, 1). However, this is precisely the requirement for a triple (m, p; l) to be
admissible. Thus, the two dimensional complex reflection groups which are generated
by two reflections correspond to the admissible triples listed in Theorem 3.15(i). We
have therefore recovered the following well known theorem.

Theorem 3.17 The two dimensional complex reflection groups which are generated
by two reflections correspond to the Coxeter graphs

j j3 33 j j3 34 j j3 35 j j4 43 j j5 53

j j3 44 j j3 54 j j2 36 j j2 46 j j2 56

j j2 38 j j2 310 j j2 2l j j2 m
4

Similarly, using the classification of semi-admissible triples given in Theorem
3.15(ii) we obtain all the infinite two-dimensional complex reflection groups gener-
ated by two reflections.

Theorem 3.18 The infinite two-dimensional complex reflection groups generated by
two reflection groups correspond to the Coxeter graphs

j j6 63 j j4 44 j j3 64 j j2 66 j j3 36

13



j j2 48 j j2 312

However, what is far more significant, the roots a = |(u, v)|2 of fl(x) = 0 corre-
sponding to the admissible triples listed in Theorem 3.15 can be calculated. These are
listed in Table 1. In the first column of that table, we denote these groups using the
numbering given in the original classification by Shephard and Todd [13]. Further-
more, we can determine a value for (u, v) in each case: this is clearly not unique. In
Table 2, we give the order of each group, the number of elements in the corresponding
root system and the number of reflections of each order. In Table 3, we choose a (u, v)
to be real in each case; indeed, for consistency with what occurs in the case of real
reflection groups, we choose the root to be negative. We note, however, that if we
had chosen (u, v) ∈ C \R, then by replacing u with ζu for a suitable ζ ∈ C, |ζ| = 1,
then we obtain a congruent vector graph {ζu, v}, where (ζu, v) ∈ R.

Shephard and admissible fl(x) roots

Todd type triple

G4 (3, 3; 3) x− 1
4
cosec2 π

3
1
3

G5 (3, 3; 4) x− 1
2
(1 + cot2 π

3
) 2

3

G20 (3, 3; 5) x2 − x+ 1
16
cosec4 π

3
4
3
cos2 kπ

5
(k = 1, 2)

G8 (4, 4; 3) x− 1
4
cosec2 π

4
1
2

G16 (5, 5; 3) x− 1
4
cosec2 π

5
1
2
(1 + 1√

5
)

G10 (3, 4; 4) x− 1
2
(1 + cotπ

3
cotπ

4
) 1

2
(1 + 1√

3
)

G18 (3, 5; 4) x− 1
2
(1 + cotπ

3
cotπ

5
) 1

2
(1 + 1√

3
cotπ

5
)

G6 (2, 3; 6) x2 − x+ 1
4
(1− 1

4
cosec2 π

3
) 1

2
(1± 1√

3
)

G9 (2, 4; 6) x2 − x+ 1
4
(1− 1

4
cosec2 π

4
) 1

2
(1± 1√

2
)

G17 (2, 5; 6) x2 − x+ 1
4
(1− 1

4
cosec2 π

5
) 1

2
(1± 1

2
cosecπ

5
)

G14 (2, 3; 8) (x− 1
2
)(x2 − x+ 1

12
) 1

2
, 1

2
(1±

√
2
3
)

G21 (2, 3; 10)
∏2

k=1(x2 − x+ 1
3
cos2 kπ

5
) 1

2
(1± 2√

3
coskπ

5
)(k = 1, 2)

G(m, 1, 2) (2,m; 4) x− 1
2
(1 + cotπ

2
cot π

m
) 1

2

G(m,m, 2) (2, 2;m)
∏b(m−1)/2c

k=1 (x− cos2 kπ
m

) cos2 kπ
m

Table 1: The polynomials fl(x) and their roots

In Table 3, a complete list of the (u, v) is given. We give simultaneously in the
form j jm p

s t

e
αn
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Shephard admissible order of number of number of

and Todd triple Gn elements in reflections

type Rn of order

2 3 4 5

G4 (3, 3; 3) 24 24 8

G5 (3, 3; 4) 72 48 16

G20 (3, 3; 5) 360 120 40

G8 (4, 4; 3) 96 48 6 12

G16 (5, 5; 3) 600 120 48

G10 (3, 4; 4) 288 168 6 16 12

G18 (3, 5; 4) 1800 960 40 48

G6 (2, 3; 6) 48 72 6 8

G9 (2, 4; 6) 192 144 18 12

G17 (2, 5; 6) 1200 840 30 48

G14 (2, 3; 8) 144 120 12 16

G21 (2, 3; 10) 720 600 30 40

Table 2: Statistics about rootsystems

both the Coxeter graph and the root graph in each case, where αn = (u, v) for the
group Gn. Furthermore, α′n =

√
1− α2

n. In addition, we give the corresponding root
system Rn, where these are expressed in terms of the positive systems Pn as defined
by Hughes [9],[10] and Can [5]. Here µn denotes the group of nth roots of unity and
ω, i, ζ, ξ and η denote respectively primitive cube, fourth, fifth, eighth and twentieth
roots of unity.

As mentioned above, these root systems are not unique. More ’symmetric’ root
systems may be obtained by either selecting a non-real complex value for the inner
product αn or by embedding the root system in R3. For example,

µ6

{
ε1,−

1√
3

(ωkε1 + ε2 + ε3), 0 ≤ k ≤ 2

}
is an alternative root system for G4 and

µ12

{
ε1, ε2,−

1√
3

(ωkε1 + ε2 + ε3),
1√
3

(−ωkε1 − ωkε2 + ε3), 0 ≤ k ≤ 2

}
is an alternative root system for G5, where {ε1, ε2, ε3} is the natural basis for C3.
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Also, for example,

µ10

{
ε1, ε2,−

1

1− ζ
(ζkε1 + (ζ2 + ζ4)ε2),

1

1− ζ
((1 + ζ3)ε1 − ζkε2), 0 ≤ k ≤ 4

}
is an alternative root system for G16.

We are grateful to Tom McDonough for all the assistance that he so readily gave
in producing the MAGMA programmes for the computational work involved.
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