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Abstract. We compute 2–enumerations of certain halved alternating sign matrices.
In one case the enumeration equals the number of perfect matchings of a halved Aztec
diamond. In the other case the enumeration equals the number of perfect matchings
of a halved fortress graph. Our results prove three conjectures by Jim Propp.

An alternating sign matrix is a square matrix with entries 0, 1,−1 where the entries
1 and −1 alternate in each row and column and the sum of entries in each row and
column is equal to 1. An example of an alternating sign matrix of order 6 is















0 0 1 0 0 0
1 0 −1 0 1 0
0 0 1 0 −1 1
0 1 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0















.

Given a k × k alternating sign matrix with entries aij , 1 ≤ i, j ≤ k, we form the

corresponding height matrix h with hij = i+ j − 2
∑i

l=1

∑j

r=1 alr, 0 ≤ i, j ≤ k.
The height matrix for the above alternating sign matrix looks as follows:

h =



















0 1 2 3 4 5 6
1 2 3 2 3 4 5
2 1 2 3 4 3 4
3 2 3 2 3 4 3
4 3 2 3 2 3 2
5 4 3 4 3 2 1
6 5 4 3 2 1 0



















.

A height matrix has first row and column (0, 1, . . . , k), last row and column (k, . . . , 1, 0)
and adjacent entries differing by one.

Now we look at halved alternating sign matrices of order 2n, i.e., n× 2n–rectangles
with entries 0, 1,−1 where the non–zero entries alternate in each row and column, the
row sums equal 1 and the first non–zero entry in each column is 1 if there is any. There
is a corresponding (n+1)×(2n+1)–rectangle of heights. In this article we only consider
halved alternating sign matrices corresponding to height matrices of the form
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. (1)

In [4], Propp states conjectures regarding weighted enumerations of halved alternating
sign matrices with height matrices of the form (1). We prove some of these conjectures
in the following theorems.

Theorem 1. The weighted enumeration with weight 2N−
(A) of halved alternating sign

matrices A of order 2n with height matrix of the form (1) is 2n
2

, where N−(A) is the
number of (−1)’s in the halved alternating sign matrix A.

Remark. The halved alternating sign matrices corresponding to height matrices of the
form (1) are exactly the alternating sign matrices with U–turn boundary (UASM’s)
defined in Greg Kuperberg’s paper [3]. Therefore, Theorem 1 is in fact a direct con-
sequence of [3, Theorems 3 and 4]. Theorem 1 has also been independently proved by
Robin Chapman (private communication), using again a different approach.

Theorem 2. The weighted enumeration with weight 2N−
(A, even)+N+(A, odd) of halved

alternating sign matrices A of order 2n with height matrix of the form (1) is 3n5(
n

2),
where N−(A, even) is the number of (−1)’s in the halved alternating sign matrix A

in even position (i.e., the sum of the row index and the column index is even) and
N+(A, odd) is the number of 1’s in odd position.

Remark. If we use the weight 2N−
(A, odd)+N+(A, even), we get the same result because

reflecting a halved alternating sign matrix corresponding to a height matrix of the
form (1) with respect to a vertical symmetry axis gives a matrix of the same form and
interchanges even and odd positions of entries.

Remark. The weighted enumeration of all alternating sign matrices A of order n with

weight 2N−
(A) gives 2(

n

2), the number of perfect matchings of an Aztec diamond of order
n− 1, see [2].

The weighted enumeration of all alternating sign matrices of order 2n with weight
2N−

(A, even)+N+(A, odd) gives 5n
2

, the number of perfect matchings in a 2n × 2n fortress
graph, see [6, Ch.3].

Theorem 3. The weighted enumeration with weight 2N−
(A, even)+N+(A, odd) of halved

alternating sign matrices A of order 2n with height matrix of the form (1) with the

additional constraint that ci = n + 1 for all i equals 5(
n

2) for even n and 2n5(
n

2) for odd

n. If ci = n− 1 for all i, it equals 2n5(
n

2) for even n and 5(
n

2) for odd n.

Below we give a proof of Theorem 1 which is not based on Kuperberg’s results in [3].
Our proof of Theorem 2 starts on page 4. Finally, we sketch a proof of Theorem 3 on
page 11.
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Figure 1. A 2× 3 Aztec rectangle with no vertices missing.

0 0 1 0 0 0

1 0 −1 0 1 0

0 0 1 0 −1 1

Figure 2. The set of perfect matchings corresponding to a halved
alternating sign matrix.

= +

Figure 3.

Proof of Theorem 1. Since adjacent entries in the height matrix differ by one, each ci
is either n− 1 or n + 1.

There is a well–known 1 to 2N−
(A) correspondence between (halved) alternating sign

matrices and perfect matchings of (halved) Aztec diamonds (cf. [1]). An m× k Aztec
rectangle is a graph composed of m×k squares (see Figure 1). A halved Aztec diamond
is an Aztec rectangle with the shape of half a square, with some vertices in the two
bottom rows missing (see Figure 4). A perfect matching (1–factor) of a graph is a set
of edges such that every vertex of the graph lies on exactly one of these edges. In the
remainder of this paper we will use the term matching instead of perfect matching.

We write the entries of the halved alternating sign matrix in the squares of the halved
Aztec diamond as shown in Figure 2. The corresponding 2N−

(A) matchings can be found
by demanding that a square surrounding a −1, 0 or 1 contains exactly 2, 1 or 0 edges
of the matching, respectively. The edges in the squares containing a 0 can be found by
joining the two vertices lying in the direction of the next 1’s in the same row and column
(if there is no 1 in the column we take the bottom vertex). There are two choices for
the squares containing −1 as shown in Figure 3. This accounts for the weight 2N−

(A).
Close inspection of the correspondence reveals that the condition on the last row of

the height matrix determines which of the vertices of the halved Aztec diamond are
missing. The halved Aztec diamond is an n × (2n − 1) Aztec rectangle with missing
last row of vertices and missing vertices in the next row in positions a1, . . . , an, say. It
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Figure 4.

is easy to see that we have either ai = 2i− 1 or ai = 2i corresponding to ci = n− 1 or
n + 1, respectively. Therefore, we have to sum over 2n different boundary conditions.
Fortunately, we can add pairs of vertices in the last two rows as shown in Figure 2
and just count all matchings of the emerging new region (see Figure 4). The vertices
in the bottom row can be matched either to the northeast or to the northwest. This
corresponds to the possible choices for the ai.

Now we can apply the following lemma (cf. [2, p.18]).

Lemma 4. The number of perfect matchings of an m×k Aztec rectangle, where all the
vertices in the bottom row have been removed except for the x1st, the x2nd, . . . , and the
xmth vertex equals

2(
m+1

2 )
∏m

i=1(i− 1)!

∏

1≤i<j≤m

(xj − xi).

To apply the lemma to our case, we have to set k = 2n− 1, m = n and xi = 2i− 1.
We obtain that our 2–enumeration of halved alternating sign matrices equals

2(
n+1

2 )
∏n

i=1(i− 1)!

∏

1≤i<j≤n

(2j − 2i) = 2(
n+1

2 )2(
n

2) = 2n
2

,

as desired. �

Proof of Theorem 2. Now we have the weight 2N−
(A, even)+N+(A, odd). We will illustrate

all steps of the proof by the example of halved alternating sign matrices of order 6 (cf.
Figure 5). From there it will be clear what happens in the general case.

The first step is another well–known bijection between alternating sign matrices and
a family of graphs called fortresses. These are squares arranged in a rectangular shape
separated by single edges. On the right, the left and the upper side of the rectangle
edges are appended to every other square (see Figure 5 for a 3× 6 fortress graph with
some extra edges appended to the squares in the bottom row). We have the following
replacement rules:

• 1’s in even places and −1’s in odd places translate to
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0 0 1 0 0 0

1 0 −1 0 1 0

0 0 1 0 −1 1

Figure 5. The corresponding matchings of the fortress graph.

a d

cb

A

C

B D

11

1

1

a′ d′

c′b′

A

C

B D
→

Figure 6. Urban Renewal, a′ = c
ac+bd

, b′ = d
ac+bd

, c′ = a
ac+bd

, d′ = b
ac+bd

.

• −1’s in even places and 1’s in odd places translate to

= +

• 0’s translate to

or the rotations of this graph.

The edges of the squares corresponding to ±1 determine uniquely which of the four
possibilities should be chosen for each 0. An example of the correspondence is shown
in Figure 5. The reader should note that there are two choices of edges for −1’s in even
places and for 1’s in odd places. This accounts for the weight.

It is not difficult to see that the restriction on the last row of the height matrix
corresponds to a condition on the extra pending edges at the bottom row of the resulting
graph. Either both edges in the positions 2i and 2i − 1 are contained in the graph or
neither.
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In the following we will repeatedly use a well–known local modification of a graph
called urban renewal, which changes the enumeration of perfect matchings only by a
global factor (see [5]). The modification is shown in Figure 6. Before we can explain
this modification, we have to make a few definitions. Let G be a graph with weights
assigned to its edges. Then the weight of a matching is the product of the weights of
the edges it contains. The weighted enumeration of matchings M(G) is now defined as
the sum of the weights of all possible matchings of the graph G.

Urban renewal can now be described as follows. We start with a graph G which looks
locally like the left–hand–side of Figure 6. Then we contract the four edges of weight 1
and change the weights a, b, c, d to a′, b′, c′, d′. We obtain a graph G′ which looks locally
like the right–hand–side of Figure 6 and like G everywhere else. The new edge weights
a′, b′, c′, d′ of the resulting G′ are defined by a′ = c

ac+bd
, b′ = d

ac+bd
, c′ = a

ac+bd
, d′ = b

ac+bd
,

whereas all other weights stay the same.
The weighted enumerations of matchings M(G) and M(G′) of the two graphs are

related in the following way:

Lemma 5. Let G be a graph which looks locally like the left–hand–side of Figure 6 and
let G′ be the graph which looks locally like the right–hand–side and like G elsewhere.
Then the weighted enumeration of matchings of the new graph G′ equals the weighted
enumeration of matchings of the graph G multiplied by ac+ bd, i.e.,

M(G) = M(G′)(ac + bd).

We want to apply urban renewal to all squares in even position in the graph in Fig-
ure 5. First, we append two vertical edges to squares in the last row in even position
which have no downward–pointing edge appended. In the example in Figure 5, this
happens to the fifth square in the bottom row, resulting in the upper graph in Figure 7
(at this point, the dotted circles should be ignored). This does not change the enumer-
ation of perfect matchings since there is only one possibility for the new vertices to be
paired. We obtain an n × 2n fortress with some edges appended. Now, we can apply
urban renewal to every square in even position (the circled squares in Figure 7). There

are n2 of these squares with ac + bd = 2, which yields a factor of 2n
2

. The resulting
graph is an n× 2n Aztec rectangle where every other square has edges of weight 1

2
(see

the dotted lines in the bottom graph in Figure 7) and some downward–pointing edges
appended to the last row of squares. It is easy to see that the original restriction on
the last row of the height matrix now translates to the restriction that for each i there
is exactly one edge in the position 2i− 1 or 2i. Similar to the proof of Theorem 1, we
can interpret the sum of the corresponding 2n terms as the number of matchings of the
weighted halved Aztec diamond Gn in Figure 8 because every vertex in its last row can
be either matched to the left or to the right.

Therefore, we have to determine 2n
2

×M(Gn).
We will use urban renewal repeatedly to reduce the graph Gn to the graph Gn−1.

The first step consists of replacing every vertex of Gn by a line of three vertices so that
the weighted enumeration of matchings remains unchanged. The resulting graph in our
example is shown in Figure 9. Now we are in the position to apply urban renewal to all
squares in the graph. The factor ac+ bd equals 1

2
· 1
2
+ 1

2
· 1
2
= 1

2
for half of the squares

and 1 · 1 + 1 · 1 = 2 for the other half. Thus, the factors resulting from urban renewal
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↓ 2n
2

Figure 7. The dotted lines have weight 1
2
.

Figure 8. Gn for n = 3.



8 THERESIA EISENKÖLBL

Figure 9. Each vertex is split into three.

Figure 10. The graph obtained by applying urban renewal to all
squares in Figure 9.

cancel each other. Square edges of weight 1 become edges of weight 1
2
and vice versa

and in our example we obtain the graph shown in Figure 10.
The pending edges along the border of the graph have to be in every perfect matching

and can be removed together with the two endpoints without changing the enumeration
of perfect matchings. For the same reason, we can fill the “dents” in the bottom row
by adding some edges which have to be in every perfect matching. The resulting graph
is shown in Figure 11.

Now we (almost) repeat the last two steps. We replace each vertex by three vertices
to obtain the graph in Figure 12. Note that the squares in the bottom row contain only
one edge of weight 1

2
each.

The next step is to apply urban renewal to all squares. The product of the factors

ac+ bd is easily seen to be
(

5
4

)(n−1)(2n−1) (3
2

)2n−1
. The new edge weights are 2

3
, 1

3
, 2

5
and
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Figure 11. Remove and add some forced edges of weight 1.

Figure 12. The graph obtained by replacing all vertices in Figure 11
by three vertices.

4
5
(only the forced appended edges have still weight 1). The resulting graph is shown

in Figure 13.
Now we mark every other vertex in the bottommost row with a dotted circle starting

with the second vertex (see Figure 13). Similarly, we mark all vertices immediately
above and to the left of the dotted circles with an unbroken circle. We divide the
weight of the edges incident to one of the n − 1 points marked by an unbroken circle
by two and multiply the weight of the edges incident to the n− 1 points marked by a
dotted circle by two. This does not change the weighted enumeration of matchings.

Then we strip off all the forced edges (i.e., edges that must be contained in every
perfect matching) and obtain the graph shown in Figure 14. It is easy to see that every
matching contains exactly 2n−2 of the edges with weight 1

3
or 2

3
(the double edges and

dotted double edges) and exactly 2(n− 1)2 edges with weight 2
5
or 4

5
. If we now divide

the weights of all double edges and dotted double edges by 2
3
and the weights of all the
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Figure 13. The double edges have weight 2
3
, the dotted double edges

have weight 1
3
, the dotted edges have weight 2

5
, the pending edges have

weight 1 and the remaining edges have weight 4
5
.

Figure 14. The double edges have weight 2
3
, the dotted double edges

have weight 1
3
, the dotted edges have weight 2

5
and the remaining edges

have weight 4
5
.

Figure 15. The dotted edges have weight 1
2
, the other edges have

weight 1.

other edges by 4
5
, we obtain a graph with edges of weight 1 and 1

2
only. This changes

the weighted enumeration by a factor of
(

2
3

)2n−2 (4
5

)2(n−1)2
.

The resulting graph is shown in Figure 15. It is clearly the mirror image of Gn−1

(compare Figure 8).
Therefore, we obtain for the weighted enumeration of matchings of Gn:
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Figure 16.

M(Gn) =

(

5

4

)(n−1)(2n−1) (
3

2

)2n−1(
2

3

)2n−2(
4

5

)2(n−1)2

M(Gn−1) =
3 · 5n−1

22n−1
M(Gn−1).

Since M(G1) is easily seen to be 3
2
, we get for our weighted enumeration of halved

alternating sign matrices

2n
2

M(Gn) = 2n
2 3n5(

n

2)

2n2
= 3n5(

n

2).

�

Sketch of the proof of Theorem 3. The proof is analogous to the proof of Theorem 2.
For example, in the case ci = n− 1 for all i, we use the bijection to fortress graphs and
apply urban renewal to all the squares. We obtain a weighted halved Aztec diamond
of order 2n (see Figure 16 for the case n = 3). Imitating the steps in the proof of
Theorem 2, we can reduce it to the weighted halved Aztec diamond of order 2n− 2. In
this way, we again obtain a simple recursion which gives the results stated in Theorem 3.

�
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