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Abstract

Various random combinatorial objects, such as mappings, trees,
forests, and subsets of a finite set, are constructed with probability
distributions related to the binomial and multinomial expansions due
to Abel, Cayley and Hurwitz. Relations between these combinatorial
objects, such as Joyal’s bijection between mappings and marked rooted
trees, have interesting probabilistic interpretations, and applications
to the asymptotic structure of large random trees and mappings. An
extension of Hurwitz’s binomial formula is associated with the proba-
bility distribution of the random set of vertices of a fringe subtree in a
random forest whose distribution is defined by terms of a multinomial
expansion over rooted labeled forests.
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1 Introduction

Recent research at the interface of probability and combinatorics [70, 24, 6, 5,
7, 3] has exposed a rich probabilistic structure associated with the binomial
and multinomial expansions due to Abel [1], Cayley [25] and Hurwitz [43].
The probabilistic meaning of these expansions is brought out by consider-
ation of suitably constructed random subsets, trees, forests, and mappings,
and by study of the relations between these various random combinatorial
objects. The purpose of this paper is to introduce this subject to combina-
torialists with some interest in probability theory, and to probabilists with
some interest in combinatorics. Combinatorialists may prefer to look first
at the condensed version [72] of this paper, written in more combinatorial
language. Section 1.1 of this paper provides a correspondence between poly-
nomial identities of Hurwitz type presented in [72] and their probabilistic
expressions in this paper. These Hurwitz identities were all first discovered
as byproducts of the solution of natural probabilistic problems discussed here.
Probabilists may find motivation in the application of some of the results of
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this paper to the theory of measure-valued and partition-valued coalescent
processes and the asymptotic structure of large random trees and random
mappings, as considered in [4, 5, 6, 24, 33, 70, 68, 14, 65, 7, 3].

This paper is organized as follows. Section 2 explains how a simple for-
mula of Burtin [23] for random mappings is equivalent to a very useful form
of Cayley’s multinomial expansion over trees, called here the forest volume
formula. This formula yields some enumerations of rooted labeled forests
which are the basis of everything that follows. Section 3 presents some con-
structions and properties of a p-forest of k trees, that is a random forest of k
rooted trees labeled by some finite set S, whose distribution is proportional
to terms in the Cayley expansion of (

∑
s∈S ps)

n−k over such forests, where p
is some arbitrary probability distribution on S. Properties of such a p-forest,
first considered in [70] in connection with the construction of a coalescent
process, are closely related to properties of a random p-mapping defined by
assigning each point s of S an image in S with distribution p, independently
as s varies, as studied in [23, 78, 48, 65, 7]. Section 4 describes the distribu-
tion of the subtree spanning a finite number of vertices of a p-tree, that is a
p-forest with a single tree component. The result of this section was applied
in [5] to describe features of the asymptotic structure of p-trees with a large
number of vertices. Section 4.1 shows how results for p-trees can be trans-
ferred to p-mappings via Joyal’s bijection [49, p. 16] whereby a p-tree with
an independent mark with distribution p corresponds to a p-mapping. As
shown in [7], this allows a large number of asymptotic results for p-mappings
to be deduced from corresponding results for p-trees obtained in [24]. Sec-
tion 5 shows how the distributions of various random subsets derived from
p-trees and p-forests are related to Hurwitz’s multinomial expansions [43].
This leads in Section 5.5 to consideration of percolation probabilities defined
by p-trees and p-forests. These probabilities are related to extensions and
variations of Hurwitz’s expansions described in [72]. Section 6 shows that for
any subset B of S, the restriction to B of a p-forest is a p(·|B)-forest, where
p(·|B) is the probability distribution p conditioned on B. Finally, Section
6.3 shows how the structure of p-forests is preserved under an operation of
independent deletion of edges, which generalizes that considered in [70].
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1.1 Correspondence with results of [72]

Polynomial identity in [72] Probabilistic expression in this paper
(2) Theorem 11 (i)-(iii) and Theorem 12
(3) Theorem 11 (iv) and Proposition 15 (ii)
(4) Proposition 18 for k = 1.
(9) Lemma 3 (i)
(11) Proposition 15 (i)
(18) Theorem 4
(19) and (20) (16)
(24) Lemma 23
(26) Proposition 18
(27) Theorem 7
(28) Proposition 14
(29) (33)

2 Random mappings and the forest volume

formula

First, a brief review of probabilistic terms used in this paper. A probability
distribution on a finite set S is a non-negative real-valued function p :=
(ps, s ∈ S) with

∑
s∈S ps = 1. The definition of p is extended to subsets

A of S by p(A) := pA :=
∑

s∈A ps. Throughout the paper, P denotes a
probability distribution on a suitable finite set Ω. A function X : Ω → S
is called a random element of S. The distribution of X is the probability
distribution p on S defined by

ps := P (X = s) := P ({ω ∈ Ω : X(ω) = s}) (s ∈ S).

If elements of S are for instance subsets of another set, or trees, or mappings,
a random elementX of S may called a random set, a random tree, or a random
mapping, as the case may be, whether or not the distribution of X is uniform,
meaning P (X = s) = 1/|S| for all s ∈ S, where |S| is the number of elements
of S. Subsets of Ω are called events. For an event B ⊆ Ω with P (B) > 0
and a random element X of S, the conditional distribution of X given B is
the probability distribution on S defined by

P (X = s |B) := P ({ω ∈ B : X(ω) = s})/P (B) (s ∈ S).
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For X with distribution p, and A ⊆ S with pA > 0, the distribution of X
given X ∈ A may be denoted p(·|A). So p(s|A) = psχ(s ∈ A)/pA, where
χ(· · ·) is the indicator function which has value 1 if · · · and 0 else. For further
background, and definitions of other probabilistic terms such as independence
and expectation, see [34] or [67].

Random Mappings. Given some probability distribution p on a finite set
S, let M := (Ms, s ∈ S) be a p-mapping of S. That is to say, the Ms, s ∈ S
are independent random variables with common probability distribution p,
defined on some probability space (Ω, P ). See [27, 79, 35, 36] for combinato-
rial background. There is a large probabilistic literature on the stucture of
random mappings for uniform p. See e.g. [56, 4, 41, 64, 3] and papers cited
there. The case when all of the ps but one are equal is studied in [83, 63, 18].
Random p-mappings for general p are studied in [23, 78, 48, 65, 7]. See also
[23, 31, 44, 45, 16, 17, 19, 50, 13, 74, 40] regarding various other models for
random mappings.

For each subset B of SS, the probability

P (M ∈ B) =
∑
m∈B

∏
s∈S

pms (1)

is the usual enumerator polynomial of B in variables ps, s ∈ S, as discussed
in [27, p. 72], but with the constraints ps ≥ 0 and

∑
s ps = 1. A formula for

P (M ∈ B) as a function of p = (ps, s ∈ S) therefore amounts to evaluation
of an enumerator polynomial. Such probabilistic evaluations are typically
simpler than a general expression for the enumerator polynomial of B, be-
cause the use of ps subject to

∑
s∈S ps = 1 instead of general variables xs

typically eliminates some factors of xS :=
∑

s∈S xs. But such factors can
always be recovered by scaling: take ps = xs/xS in the probabilistic identity,

and multiply both sides by x
|S|
S where |S| is the number of elements of S.

To give an example of this translation between probabilistic and combina-
torial language, let D(M) ⊆ S×S be the usual functional digraph associated
with a mapping M of S. So D(M) := {(s,Ms), s ∈ S} has a directed edge
s → Ms for each s ∈ S. According to a result of Burtin [23], if M is a
p-mapping then

P [no cycle of D(M) is contained in S −R ] = pR (R ⊆ S). (2)

In combinatorial language: the enumerator of the set

{M ∈ SS : no cycle of D(M) is contained in S −R}
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is the polynomial xRx
|S|−1
S in variables xs, s ∈ S. See [12] for six different

proofs of (2) with |R| = 1. The result for general R follows from this special
case by replacing M by φ ◦M where φ : S → (S −R)∪{r} collapses R onto
some r ∈ R, and leaves S −R fixed.

Rooted forests. Let D̂R(M) denote the digraph with vertex set S derived
from D(M) by first deleting the edges r → Mr for all r ∈ R, then replacing
each of the remaining edges s → Ms for s ∈ S − R by its reversal Ms → s.
Obviously

[no cycle of D(M) is contained in S −R] ⇔ [D̂R(M) ∈ FS,R] (3)

where FS,R is the set of all forests F of rooted trees labeled by S, whose set
of root vertices is R, with edges of F directed away from the roots. Call the
set

Fs := {x : s→ x is an edge of F}
the set of children of s in the forest F . For each F ∈ FS,R the Fs, s ∈ S form
a collection of disjoint, possibly empty sets with union S − R, and s /∈ Fs
for all s. Note that |Fs| is the out-degree of vertex s in the forest F , that
each F ∈ FS,R has |R| tree components, some of which may be trivial (i.e.
a root vertex with no edges), and that the total number of edges of F is∑

s |Fs| = |S| − |R|. For each subset B of the set

FS := ∪R⊆SFS,R

of all rooted forests labeled by S, the enumerator polynomial in variables
xs, s ∈ S

VS[F ∈ B] := VS[F ∈ B](xs, s ∈ S) :=
∑
F∈B

∏
s∈S

x|Fs|s (4)

is called here the volume of B, to emphasise that B 7→ VS[F ∈ B] is a
measure on subsets B of FS, for each fixed choice of (xs, s ∈ S) with xs ≥ 0.
This notion of forest volumes includes both the probabilistic interpretations
developed in [70, 68, 69] and in this paper, and Kelmans’ notion of the forest

volume of a graph [54, 52, 53]. The previous formula xRx
|S|−1
S for the mapping

enumerator corresponding to (2) amounts, by cancellation of a common factor

of x
|R|
S , to the following generalization of Cayley’s [25] multinomial expansion

over trees, which is used repeatedly throughout this paper:
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The forest volume formula.

VS[roots(F ) = R] = xR x
|S|−|R|−1
S where xB :=

∑
s∈B

xs (5)

and roots(F ) denotes the set of root vertices of a forest F ∈ FS.
Cayley [25] gave the special case of (5) for |R| = 1, call it the tree volume

formula, as well as the special case xs ≡ 1 of the forest volume formula, that
is

|FS,R| = |R| |S||S|−|R|−1.

See [72] for some alternate derivations and history of the forest volume for-
mula and its consequences. For each subset R of S with |R| = k ≤ n = |S|
and each vector c := (cs, s ∈ S) of non-negative integers with

∑
s cs = n− k,

the identity of coefficients of Πsx
cs
s in (5) reads

|{F ∈ FS,R : |Fs| = cs for all s ∈ S}| = cR (n− k − 1)!∏
s∈S cs!

(6)

which summed over R with |R| = k gives the number of forests with out-
degree vector c:

|{F ∈ FS : |Fs| = cs for all s ∈ S}| = (n− 1)n−k∏
s∈S cs!

(7)

with the notation for falling factorials (x)m :=
∏m−1

i=0 (x − i). Formula (7)
is the identity of coefficients of Πsx

cs
s in the result of summing the forest

volume formula (5) over all subsets R of S of size k, which gives the volume
of all forests of k trees labeled by S with |S| = n, as found in [70, (39)], [69,
Theorem 1.6], [82, Theorem 5.3.4]:

VS[F with k tree components] =

(
n− 1

k − 1

)
xn−kS . (8)

There is also the following generalization of (8), obtained in [68, Lemma 13]
and [72, Theorem 3], which reduces to (8) when G is the trivial forest with n
singleton components and no edges: for each G ∈ FS with g tree components

VS[F with k trees and F ⊇ G] =

(
g − 1

k − 1

)
xg−kS

∏
s∈S

x|Gs|s . (9)
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Yet another extension of the forest volume formula can be made as follows.
Write r

F
; s if there is a directed path from r to s in F , that is a sequence

of one or more edges r
F→ · · · F→ s, where s1

F→ s2 means (s1, s2) ∈ F . Then
for all R ⊂ S, and each fixed choice of an r ∈ R and an s ∈ S −R,

VS[roots(F ) = R and r
F
; s] = xr x

|S|−|R|−1
S . (10)

Since for each fixed s ∈ S − R and each F ∈ FS,R there is is a unique

r ∈ R with r
F
; s, the forest volume formula (5) is recovered from (10) by

summation over r ∈ R. A probabilistic formulation and proof of (10) are
given later around (32). See also [72, Theorem 2] for a combinatorial proof
of (10).

3 Random Forests

Let Fk denote a random forest of k trees labeled by S with |S| = n, say
Fk = (Fk,s, s ∈ S) where Fk,s is the random set of children of s in the forest
Fk. Since the random vector of out-degree counts

counts(Fk) := (|Fk,s|, s ∈ S)

is subject to the constraint
∑

s |Fk,s| = n− k, the expectation of |Fk,s| must
equal (n−k)ps for some probability distribution p on S. For given (ps, s ∈ S),
the simplest way to construct such a random forest Fk is to suppose that Fk
satisfies conditions (i) and (ii) of the following proposition, which extends
[70, (36) and (38)]:

Proposition 1 For each probability distribution p on S with |S| = n, the
probability distribution of a random forest Fk with k trees, call it a p-forest
of k trees, is defined by the formula

P (Fk = F ) =

(
n− 1

k − 1

)−1∏
s∈S

p|Fs|s (11)

for every forest F of k trees labeled by S. A random forest Fk has this
distribution if and only if both
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(i) the distribution of the out-degree count vector is multinomial with pa-
rameters n − k and (ps, s ∈ S), meaning that for each vector of counts
c = (cs, s ∈ S) with

∑
s cs = n− k,

P (counts(Fk) = c) =
(n− k)!∏
s∈S cs!

∏
s∈S

pcss (12)

and
(ii) for each such vector of counts c the conditional distribution of Fk given
counts(Fk) = c is uniform on the set of all forests with the given out-degrees,
as enumerated in (7).

Proof. The fact that the probabilities (11) sum to 1, over all F with k
tree components, is a probabilistic expression of (8) which was noted in [70,
Theorem 11]. The equivalence of (i) and (ii) with (11) follows easily from
the enumeration (7). 2

If p is uniform on S, a p-forest of k trees has uniform distribution on the
set of all rooted forests of k trees labeled by S. See [70, §4] for a review of
exact combinatorial results and asymptotic distributions known in this case,
and their applications to random graphs. See also [10, 57, 66, 59] concerning
other models of random trees and forests and their applications.

Constructions of p-trees. Call a p-forest of one tree a p-tree. So a p-tree is
a random element of the set TS of all rooted trees labeled by S. The following
two constructions of p-trees are based on a sequence of independent random
variables X0, X1, X2, . . . with common distribution p on S with |S| = n.
(i) Let T : Sn−1 → TS be the bijection defined by a Prüfer code [75, 27, 62]
such that T (s1, . . . , sn−1) is a tree in which the number of children of s equals
the number of j such that sj = s, for every s ∈ S. Then T (X1, . . . , Xn−1) is
evidently a p-tree.
(ii) [21, Theorem 1],[58, §6.1] Assuming ps > 0 for every s ∈ S, the random
set

{(Xj−1, Xj) : j ≥ 1, Xj /∈ {X0, . . . , Xj−1}} ⊆ S × S
defines a p-tree. See [24] for applications of this construction, which is related
to the classical birthday problem.

See also (19) and (23) in Section 3.2, which for R = {r} show how to
construct a p-tree conditioned to have root r by appropriate conditioning
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of a p-mapping. The effect of conditioning a p-tree on its root is discussed
further in Lemma 5.

Coalescent construction of p-forests. To review a construction from
[70], define a coalescing sequence of forests F(0),F(1), . . . ,F(n − 1) as fol-
lows, by adding edges one by one in such a way that F(j) has j edges (and
hence n− j tree components) for each 1 ≤ j ≤ n− 1. Let F(0) be the trivial
forest labeled by S with no edges. Given that F(0), . . . ,F(j − 1) have been
defined for some 1 ≤ j ≤ n − 1, define F(j) by adding the edge (Xj, Yj)
to F(j − 1), where the Xj are independent with distribution p on S, and
given Xj and the (Xi, Yi) for 1 ≤ i < j, the random variable Yj has uniform
distribution on the set of n − j roots of tree components of F(j − 1) other
than the component containing Xj. Then F(j) is a p-forest of n− j trees for
every 0 ≤ j ≤ n− 1. In particular, F(n− 1) is a p-tree.

As remarked in [70], this coalescent construction can be reversed to re-
cover a p-forest of k trees by deleting k−1 edges picked uniformly at random
from the |S| − 1 edges of a p-tree. See Section 6.3 for a generalization.

3.1 Distribution of the roots of a p-forest

For 1 ≤ k < n := |S| let Sk be the set of all subsets R of S with |R| = k.
It is easily seen that for each a non-negative function w = (ws, s ∈ S) with
wS > 0, the formula

P (Rk = R) =

(
n− 1

k − 1

)−1
wR
wS

(R ∈ Sk) (13)

defines the probability distribution of a random element Rk of Sk, call it the
w-distribution on Sk. For each fixed subset A of S with |A| = a, formula
(13) implies

P (Rk ⊇ A) =

(
n−a
k−a

)
wA +

(
n−a−1
k−a−1

)
(wS − wA)(

n−1
k−1

)
wS

. (14)

Proposition 2 Let roots(Fk) be the random set of k root vertices of a p-
forest of k trees labeled by S with |S| = n. Then
(i) the distribution of roots(Fk) is the p-distribution on Sk; in particular, the
root of a p-tree has distribution p on S;
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(ii) the conditional distribution of roots(Fk) given counts(Fk) = c is the c-
distribution on Sk, for each count vector c with cS = n− k.

Proof. This is just a probabilistic translation of the forest volume formulae
(5), (6) and (7), obtained by using the definition (11) of the distribution of
Fk and canceling some factorials. 2

In particular, according to part (i) of the proposition and (14) forA = {r},
for each r ∈ S

P [r ∈ roots(Fk)] =
(n− k)pr
n− 1

+
k − 1

n− 1
. (15)

Formula (10), derived later in Theorem 4, allows the two terms on the right
side of (15) to be interpreted as follows: for each fixed s ∈ S with s 6= r,
these terms are

P [r
Fk
; s and r ∈ roots(Fk)] and P [r

Fk
6; s and r ∈ roots(Fk)] (16)

respectively. See [72, §3] for an alternative proof and further discussion.
Similarly, part (ii) of the proposition and (14) yield

P [r ∈ roots(Fk) | counts(Fk) = c] =
cr

n− 1
+
k − 1

n− 1
(17)

where the two terms can again be interpreted like (16). According to part
(ii) of Proposition 1, the conditional probability displayed in (17) is just
the fraction of forests F of k trees labeled by S with the given out-degrees
(cs, s ∈ S) such that r is the root of some tree component of F . As a
check, (15) can be recovered from (17) and the multinomial distribution of
counts(Fk) described in Proposition 1, because cr in (17) is the given value
of the binomial(n− k, pr) variable |Fk,r| whose expectation is (n− k)pr.

3.2 Conditioning on the set of roots.

For a subset R of S with pR > 0, call a random forest FR a p-forest with
roots R if FR is distributed like a p-forest of |R| trees conditioned to have
root set R. That is, according to the forest volume formula (5) and (11)

P (FR = F ) = p−1
R

∏
s∈S

p|Fs|s (F ∈ FS,R). (18)

Two alternative constructions from p-mappings can be given as follows.
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Conditioning a p-mapping to have no cycles within a given set Re-
call from around (3) that D(M) is the usual functional digraph with vertex
set S associated with a mapping M of S, and that D̂R(M) for R ⊆ S is ob-
tained from D(M) by first deleting all edges leading out of R, then reversing
all remaining edges. As a consequence of (3), for R ⊆ S with pR > 0, if M
is a p-mapping then

D̂R(M) is a p-forest with roots R, given D̂R(M) ∈ FS,R. (19)

Conditioning a p-mapping on its set of cyclic points For a mapping
M of S and v ∈ S define the set of predecessors of v induced by M by

pred(v,M) := {s ∈ S : M i
s = v for some i ≥ 1} (20)

where s 7→M i
s is the ith iterate of M . The set of all cyclic points of M is

cyclic(M) := {s ∈ S : s ∈ pred(s,M)}.

The usual forest derived from M is F(M) := D̂cyclic(M)(M). So F(M) is a
forest of rooted trees labeled by S, with edges directed away from

roots(F(M)) := cyclic(M). (21)

If cyclic(M) = R, then M is determined by its restriction MR to R, which
is a permutation of R, and its forest F(M) with roots(F(M)) = R. So for
each forest F ∈ FS,R and each permutation π of R,

P (F(M) = F,MR = π) =

(∏
s∈S

p|Fs|s

) ∏
r∈R

pr. (22)

Hence for each non-empty subset R of S,

F(M) is a p-forest with roots R, given cyclic(M) = R; (23)

MR is a uniform random permutation of R, given cyclic(M) = R; (24)

F(M) and MR are conditionally independent, given cyclic(M) = R. (25)

Note that the two constructions (19) and (23) of a p-forest with roots R are
quite different. In (19) the digraph D̂R(M) may contain some edges from
cycles of D(M), which cannot appear in F(M).
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By summing (22) over all possible π, the distribution of F(M) for a
p-mapping M is given by

P [F(M) = F ] = |roots(F )|!

 ∏
r∈roots(F )

pr

(∏
s∈S

p|Fs|s

)
(26)

where F ranges over the set FS of all (|S| + 1)|S|−1 rooted forests labeled
by S. By application of (21), (26) and the forest volume formula (5), the
distribution of the random subset cyclic(M) derived from a p-mapping of S
is determined by the formula

P (cyclic(M) = R) = |R|! pR
∏
r∈R

pr (R ⊆ S). (27)

Hence for 1 ≤ k ≤ |S| the probability that a p-mapping M of S has exactly
k cyclic points is

P (|cyclic(M)| = k) = k!
∑
|R|=k

pR
∏
r∈R

pr (28)

where the sum is over all subsets R of S with |R| = k. Jaworski [48, Theorem
2] found an alternative expression for the same probability which can be
recast as

P (|cyclic(M)| ≥ k) = k!
∑
|R|=k

∏
r∈R

pr. (29)

As a check, either of these formulae (28) and (29) can be deduced from the
other. See [24] regarding the asymptotic behaviour of this distribution for
large |S|, and [65, 7] for related asymptotic results about p-mappings.

Descriptions of a p-forest with roots R. For a forest F labeled by S
with roots(F ) = R, and v ∈ S − R let Mv(F ) ∈ S be the mother of v in F ,

that is the unique s ∈ S such that s
F→ v. For A ⊆ S the restriction of F to

A is the forest FA labeled by A whose set of edges is the intersection with
A×A of the set of edges of F . The following lemma summarizes some basic
distributional properties of a p-forest with root set R, which follow easily
from these definitions, (11) and (18):
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Lemma 3 Let H1 := ∪r∈RFR,r, that is the random set of all vertices of
height 1 (children of the roots) in a p-forest FR with roots R. Then
(i) the distribution of H1 is given by the formula

P (H1 = B) = pB p
|S−R−B|−1
S−R p

|B|−1
R (B ⊆ S −R) (30)

(ii) for each non-empty B ⊆ S − R, the restricted forest FS−RR conditioned
on H1 = B is a p(· |S −R)-forest labeled by S −R with roots B.
(iii) Conditionally given H1 = B, the restricted forest FS−RR is independent
of the random variables Mb(FR), b ∈ B, which are independent with common
distribution p(· |R).
(iv)

the distribution of |H1| − 1 is binomial(|S| − |R| − 1, pR) (31)

(v) given |H1| = k the restricted forest FS−RR is a p(· |S−R)-forest of k trees
labeled by S −R, with roots(FS−RR ) = H1.

The following consequence of the previous lemma is the basis for the
calculation of various oriented percolation probabilities in Section 5.5. The

notation r
FR
; s was defined around (10).

Theorem 4 For FR a p-forest labeled by S with roots R ⊂ S,

P (r
FR
; s) = pr/pR (r ∈ R, s ∈ S −R) (32)

and for all such r and s the event (r
FR
; s) is independent of the restriction

of FR to S −R.

Proof. Given H1 = B say let X ∈ B be the root of the subtree containing
s in the restriction of FR to S −R. There is a path from r to s in FR if and
only if MX = r where MX ∈ R is the mother of X in FR. But according to
part (iv) of Lemma 3, given the restricted forest FS−RR , which together with
s determines X, the random variables Mb for b ∈ B are independent with
common distribution p(· |R). Therefore, the conditional distribution of MX

given FS−RR is p(· |R), as claimed. 2
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Distribution of level sets. For a random forest F labeled by S let Hh(F )
denote the random subset of S defined by the vertices of F at height h from
the root. So H0(F ) = roots(F ), and for each h ≥ 1 the set Hh(F ) is the
set of all children of vertices in Hh−1(F ). Repeated application of Lemma 3
gives a simple formula for the joint distribution of (Hi(FR), 1 ≤ i ≤ h) for
any fixed h. In particular, for FR a p-forest with roots R, for each sequence
of m non-empty subsets (Bh, 1 ≤ h ≤ m) whose union is S −R,

P (Hh(FR) = Bh for all 1 ≤ h ≤ m) = p
|B1|−1
R

m∏
h=2

p
|Bh|
Bh−1

. (33)

This is a generalization of a formula of Katz [51] for p uniform and FR derived
by conditioning F(M) on cyclic(M) = R for M a uniform random mapping.
See [32, 71] regarding asymptotics of the height profile defined by counts of
vertices at various levels in a uniform random forest.

4 Spanning Subtrees

Following the approach of Aldous [9, 10, 11] to the asymptotic structure of
large random trees, the problem arises of describing the distribution of the
subtree spanned by some subset B of the set of vertices of a p-tree T . This
problem is most simply treated in terms of the unrooted tree derived from
T , whose basic properties are summarized by the following lemma.

Lemma 5 Let U be the unrooted tree obtained by ignoring the direction of
edges in a random rooted tree T labeled by S. Then the following two condi-
tions are equivalent:
(i) The rooted tree T is a p-tree, meaning

P (T = T ) =
∏
s∈S

p|Ts|s (T ∈ TS) (34)

where TS is the set of |S||S|−1 rooted trees T labeled by S, with edges directed
away from root(T ).
(ii) The distribution of the unrooted tree U is given by the formula

P (U = U) =
∏
s∈S

pDsU−1
s (U ∈ US), (35)
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where US is the set of |S||S|−2 unrooted trees labeled by S and

DsU := |{v : s
U←→ v}|

is the degree of s in U ∈ US, and U is independent of root(T ) which has
distribution p:

P [root(T ) = r] = pr (r ∈ S). (36)

Proof. This follows easily from the tree volume formula, that is (5) for
|R| = 1, using the well known bijection between US and the set T S,r of all
trees T ∈ TS with root(T ) = r, for any fixed r ∈ S. 2

The fact that the probabilities in (35) sum to 1 over all U ∈ US amounts
by scaling to Cayley’s multinomial expansion over unrooted trees [25, 76, 70]

∑
U∈US

∏
s∈S

xDsU−1
s =

(∑
s∈S

xs

)|S|−2

(37)

which for xs ≡ 1 reduces to the Cayley’s formula |US| = |S||S|−2.
Let U be an unrooted p-tree labeled by S, meaning that U has distribution

(35). For an undirected graph G with vertex set S, the probability P (U ⊆ G)
is the sum of probabilities (35) over all spanning trees U of G. Kelmans [54]
obtained some results about this polynomial in (ps, s ∈ S), which he called
the spanning tree volume of the vertex-weighted graph (G, p). See also [52]
for some generalizations which can be interpreted in terms of random rooted
forests, as indicated in [72]. Part (iii) of the following theorem yields a
formula for P (U ⊇ G) for the only graphs G for which this probability is
non-zero, that is unrooted forests G. Parts (i) and (ii) of the theorem are the
key to the construction in [5] of a model for random trees with edge lengths
related to the asymptotics of p-trees with a large number of vertices.

Theorem 6 Let U be an unrooted p-tree labeled by S.
(i) For each unrooted tree U with vertex set V (U) ⊆ S,

P (U ⊇ U) = pV (U)

∏
v∈V (U)

pDvU−1
v (38)

where DvU is the degree of vertex v in the tree U .

16



(ii) Let B be a subset of S of size two or more, and let UB denote the subtree
of U spanning B. Then for every unrooted tree U labeled by V (U) with
B ⊆ V (U) ⊆ S, such that the set of vertices of U of degree one is contained
in B, P (UB = U) = P (U ⊇ U) as given in (38).
(iii) For each sequence of unrooted trees Ui, 1 ≤ i ≤ m with disjoint sets of
vertices V (Ui) ⊆ S, the events (U ⊇ Ui) are mutually independent:

P (∩ni=1(U ⊇ Ui) =
m∏
i=1

P (U ⊇ Ui). (39)

Proof. Fix a tree U with V (U) = R ⊆ S. Given that U ⊇ U , let FR denote
the forest with roots(FR) = R derived from U by first deleting all the edges
of U , (which are contained in R × R) then directing the remaining edges
away from R. In view of the obvious way that U can then be recovered from
U and FR, it is easily checked that for each F ∈ FS,R

P (U ⊇ U,FR = F ) =

(∏
s∈S

p|Fs|s

) ∏
v∈R

pDvU−1
v (40)

and (38) follows by summation over all F ∈ FS,R, using the forest volume
formula (5) and pS = 1. This proves (i), and (ii) follows easily. An alternate
proof of (i) can be given by appealing to formula (9), and this argument
yields (iii) as well. 2

As the notation of the above proof is intended to suggest, formula (40)
implies that for each tree U with V (U) = R ⊆ S,

FR is a p-forest with roots R, given U ⊇ U, (41)

hence also FR is a p-forest with roots R given that the restriction of U to R
is a tree. Compare with the alternate constructions from p-mappings given
by (19) and (23).

Corollary 7 For distinct u, v ∈ S let Ru,v := V (U{u,v}) be the random set
of vertices along the path in a p-tree U from u to v, including u and v. Then
the distribution of Ru,v is determined by the formula

P (Ru,v = R) = (|R| − 2)! pR
∏

r∈R−{u,v}

pr ({u, v} ⊆ R ⊆ S). (42)
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Proof. For B = {u, v} with u 6= v, the subtree U{u,v} is determined by
its set of vertices Ru,v and the order of these vertices along the path from
u to v in U . For each R ⊇ {u, v} with |R| = k, and each permutation
(r1, . . . , rk) : {1, . . . , k} → R with r1 = u and rk = v, formula (40) shows that
the path from u to v in U equals (r1, . . . , rk) with probability pR

∏
v∈R−{u,v} pv.

Since there are (k− 2)! possible paths, each with this same probability, (42)
follows. 2

Since u
U←→ v if and only if Ru,v = {u, v}, the particular case of (42)

with R = {u, v} gives for u 6= v

P (u
U←→ v) = pu + pv. (43)

If U is defined by unrooting a rooted p-tree T , then obviously

P (u
U←→ v) = P (u

T→ v) + P (v
T→ u) (44)

so (43) is implied by the simpler formula

P (u
T→ v) = pu (45)

which can be read from (9). A later formula (91) gives the generalization of
(45) for a p-forest F instead of a p-tree T . Another extension of (43), which
can be read from (38) and (37), is the following formula, valid for arbitrary
V ⊆ S:

P (the restriction of U to V is a tree) = p
|V |−1
V , (46)

and given that this event occurs, the restricted tree is a p(· |V )-tree. See
Section 6 for more about restrictions of p-trees and p-forests. As a check, for
uniform p formula (43) reduces to the well known result [60],[62, Th. 6.1]
that for n ≥ 2 the number of unrooted trees labeled by a set of n vertices
which contain a particular edge is 2nn−3. As remarked by Stone [84] this
number can be computed in another way to yield an instance of one of Abel’s
binomial identities [37]. A variation of this argument, indicated in [72], yields
Hurwitz’s generalization of Abel’s identity stated as (55) in the next section,
and its multivariate form expressed probabilistically in Proposition 15.

Some useful variations of formula (42) can be formulated as follows, in
terms of a rooted p-tree T . See also [24] for closely related formulae.
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Corollary 8 For T ∈ TS and v ∈ S let R(T, v) denote the range of the
directed path in T from root(T ) to v. In particular, R(T, v) = {v} if
root(T ) = v. Let T be a p-tree with vertex set S. Then
(i) for each fixed v ∈ S

P [R(T , v) = R] = (|R| − 1)! pR
∏

r∈R−{v}

pr (v ∈ R ⊆ S); (47)

(ii) if V is a random vertex with distribution p on S, independent of T , then

P [R(T , V ) = R] = |R|! pR
∏
r∈R

pr (R ⊆ S). (48)

Proof. (i) Formula (47) can be deduced like (42) from a variant of (40)
with rooted trees, or obtained as follows by application of Lemma 5 and
Corollary 7. Let U be the unrooted p-tree derived from T , and let Ru,v be
as in Corollary 7. Then for |R| ≥ 2

P (R(T , v) = R) =
∑

u∈R−{v}

P (root(T ) = u,Ru,v = R)

=
∑

u∈R−{v}

puP (Ru,v = R)

since root(T ) has distibution p, and root(T ) is independent of U and hence
of Ru,v, by Lemma 5. Formula (47) now follows from (42). Moreover, (47)
holds also in the case |R| = 1, that is for R = {v}, since it then reduces to
the previous result (35) that root(T ) has distribution p.
(ii) By independence of T and V ,

P [R(T , V ) = R] =
∑
v∈R

pvP [R(T , v) = R]

and (48) follows from (47). 2

Compare (48) and (27) to see that the range R(T , V ) of the path in a
p-tree from its root to an independent p-distributed vertex V has the same
distribution as the random set of cyclic points of a p-mapping M :

R(T , V )
d
= cyclic(M) (49)
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and hence
|R(T , V )| d= |cyclic(M)|. (50)

So formulae (28) and (29) for the distribution of |cyclic(M)|, and the asymp-
totic results derived from these formulae in [24], apply to R(T , V ) as well as
to cyclic(M).

4.1 Joyal’s bijection between marked rooted trees and
mappings

The coincidence in distribution (49), and numerous further coincidences in-
volving the distributions of functionals of p-trees and p-mappings, are ex-
plained by Joyal’s bijection J : (TS × S) → S, which is constructed as
follows. First, for each subset R of S with |R| = k ≥ 1, set up a bijective
correspondence between the k! permutations

(r1, . . . , rk) : [k]→ R = {r1, . . . , rk}

and the k! permutations π : R→ R, say

π(s) = π(r1,...,rk)(s) ∈ R = {r1, . . . , rk}.

One way to do this is to declare π(s) = rj if s is the jth smallest element
of R with respect to some total ordering of S. But other choices of the π
corresponding to (r1, . . . , rk) may be useful, as indicated later. Given such a
correspondence, for T ∈ TS, v ∈ S define a mapping M = J(T, v) ∈ SS by
letting Ms be the mother of s in T , except if v lies on the path (r1, . . . , rk)
say in T from r1 = root(T ) to rk = v, in which case

Ms = π(r1,...,rk)(s) ∈ {r1, . . . , rk}.

Joyal [49, p. 16] observed that J sets up a bijection between TS ×S and SS,
and that Cayley’s formula |TS| = |S||S|−1| is an immediate consequence. By
construction, if M = J(T, v) then the set of cyclic points of M is the range
of the directed path in T from root(T ) to v:

cyclic(M) = R(T, v), (51)

and furthermore the forest derived from M is

F(M) = T − {edges of T on the path in T from root(T ) to v}. (52)

The coincidence in distribution (49) is now explained by the following propo-
sition.
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Proposition 9 Let T be a p-tree with vertex set S, and V an S-valued
random variable independent of T , with distribution p on S. Then M :=
J(T , V ) is a p-mapping of S.

Proof. Since M is determined by its forest F(M) and the its action as a
permutation of roots(F(M)) = cyclic(M), it suffices to check that the joint
distribution of F(M) and the restriction M to cyclic(M) is given by the
same formula (22) as if M were a p-mapping. But this formula (22) is readily
verified by a variation of formula (40) for rooted trees, using (51) and (52),
where the factor of pv required in the formula appears from P (V = v) = pv.
2

Proposition 9 provides a powerful method for transferring results on the
asymptotic structure of p-trees to corresponding results for p-mappings. See
[7].

5 Hurwitz distributions

Hurwitz [43] studied sums of the form

Hγ,δ
n := Hγ,δ

n (x, y; zs, s ∈ [n]) :=
∑
A⊆[n]

(x+ zA)|A|+γ(y + zĀ)|Ā|+δ (53)

for integers γ and δ, where the sum is over all 2n subsets A of [n], and
Ā := [n]− A. Hurwitz used recurrences to obtain the identities

xH−1,0
n = yH0,−1

n = (x+ y + z[n])
n, (54)

xyH−1,−1
n = (x+ y)(x+ y + z[n])

n−1 (55)

which follows easily from (54), and

H0,0
n =

∑
A⊆[n]

|A|!
(∏

s∈A zs
)
(x+ y + z[n])

|Ā|. (56)

As noted by Hurwitz, for zs ≡ 1 these formulae yield evaluations of corre-
sponding Abel sums [1]

Aγ,δn (x, y) :=
n∑
a=0

(
n

a

)
(x+ a)a+γ(y + n− a)n−a+δ. (57)
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Strehl [86] explains how Hurwitz was led to such identities via the combinato-
rial problem, which arose in the theory of Riemann surfaces [42], of counting
the number of ways a given permutation can be written as a product of a min-
imal number of transpositions which generate the full symmetric group. For
various combinatorial interpretations of these identities and related formulae
see [2, 47, 55, 36, 22, 77, 80, 85, 87].

Definition 10 Let p be a probability distribution on the interval of integers
[0, n + 1] := {0, 1, . . . , n, n + 1}. Say that a random subset V of [n] has the
Hurwitz distribution of index (γ, δ) with parameters p0, p1, . . . , pn+1, abbre-
viated Hγ,δ

n (p), if P (V = A) is proportional to the Ath term of the Hurwitz
sum Hγ,δ

n (p) = Hγ,δ
n (p0, pn+1; ps, s ∈ [n]) defined by (53) as A ranges over

subsets of [n]. That is to say

P (V = A) = Hγ,δ
n (p)−1(p0 + pA)|A|+γ(pn+1 + pĀ)|Ā|+δ (A ⊆ [n]). (58)

where in particular, according to (54) and (55),

H−1,0
n (p) =

1

p0

and H−1,−1
n (p) =

p0 + pn+1

p0pn+1

(59)

Call the distribution of |V | on [0, n] induced by such a random subset V of
[n] the Hγ,δ

n (p)-binomial distribution.

These formulae should be interpreted by continuity in the limit cases when
either p0 or pn+1 equals 0. In the Abel case

p0 = x/Σ; pn+1 = y/Σ; pi = 1/Σ for i ∈ [n] (60)

where Σ := x + y + n for arbitrary x, y ≥ 0, the Hγ,δ
n (p)-binomial distribu-

tion on [0, n] is obtained by normalization of the terms of the corresponding
Abel sum Aγ,δn (x, y) defined by (57). Call this the Abel-binomial distribution
or Aγ,δn (x, y)-binomial distribution to indicate the parameters. The Abel-
binomial distributions A−1,−1

n (x, y) and A−1,0
n (x, y) are known in the statisti-

cal literature as quasi-binomial distributions [30, 29, 28, 26].

5.1 Constructions from p-mappings

Recall from (20) that pred(v,M) is the set of predecessors of v induced by a
mapping M . The following theorem summarizes some natural constructions
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from random mappings of random subsets of [n] with Hurwitz distributions:
See also Berg and Mutafchiev [18] for a closely related appearance of Abel-
binomial distributions in connection with random mappings.

Theorem 11 Let M be a p-mapping of [0, n+1]. Then each of the following
three random subsets of [n] has the Hurwitz distribution H−1,0

n (p):
(i) (Françon [36, p. 339]) assuming p0pn+1 > 0, the random set pred(0,M)
conditionally given that both 0 and n+ 1 are fixed points of M ;
(ii) (Jaworski [48, Theorem 3]) assuming pn+1 = 0, the random set [n] ∩
pred(0,M);
(iii) assuming pn+1 > 0, the random set pred(0,M) conditionally given that
n+ 1 is the unique cyclic point of M .
Moreover, assuming p0pn+1 > 0, a random subset of [n] with the Hurwitz dis-
tribution H−1,−1

n (p) is obtained from (iv) (Françon [36, Prop. 3.5]) assuming
p0pn+1 > 0, the random set pred(0,M) conditionally given that both 0 and
n+ 1 are the unique fixed points of M .

Proof. Parts (i), (ii) and (iv) can be read from the sources cited. Part (iii)
is equivalent to the result formulated and proved for a p-tree in Theorem 12
below. All parts are easily checked using the forest volume formula (5). 2

Before discussing the translation of (iii) in terms of a p-tree, it is worth
noting some striking differences between the first three cases of Theorem
11. Each connected component C of D(M) contains a unique cycle C0, and
C decomposes further into a collection of tree components of F(M) whose
set of roots is C0. In case (i) of the proposition, the conditioning forces
pred(0,M)∪{0} to be a connected component of D(M) which is a single tree
component of F(M) rooted at 0, while n+1 is forced to be the unique cyclic
point of another component of D(M). In case (ii) the set pred(0,M) ∪ {0}
may be either the union of a tree component of F(M) and a cycle of arbitrary
size, or just a subtree of a tree component, according to whether or not
0 ∈ cyclic(M). In case (iii) the conditioning forces F(M) to be a tree rooted
at n + 1, and pred(0,M) ∪ {0} is a fringe subtree of this tree, as discussed
below. As discussed in [15], it is possible to pass between the various cases of
Theorem 11 using Joyal’s bijection between random mapppings and marked
trees, as described in Section 4.
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5.2 Constructions from p-trees

For a forest F labeled by S let Vs(F ) := {v ∈ S−{s} : s
t

; v} denote the set
of non-root vertices of the fringe subtree of T rooted at s, that is the tree T (s)
labeled by {s} ∪ Vs(T ) whose edge relation is the restriction to {s} ∪ Vs(T )
of the edge relation of T . See [8] for background and further references to
fringe subtrees. If T is a tree component of the forest F(M) derived from
a mapping M , so T is rooted at some vertex r ∈ cyclic(M), then for each
non-root vertex s of T the set pred(s,M) of predecessors of s induced by M
is identical to Vs(T ). As remarked below (23), conditioning a p-mapping M
to have a unique cyclic point r makes F(M) a p-tree with root r. Case (iii)
of Theorem 11 can thus be reformulated as follows in terms of trees instead
of mappings:

Theorem 12 Let Tn+1 be a p-tree labeled by [0, n+ 1] with root n+ 1, where
p is a probability distribution on [0, n + 1] with pn+1 > 0. Then the random
set V0(Tn+1) of non-root vertices of the fringe subtree of Tn+1 rooted at 0 has
the Hurwitz distribution H−1,0

n (p) on subsets of [n]. That is, for all A ⊆ [n],
with Ā := [n]− A.

P (V0(Tn+1) = A) = p0(p0 + pA)|A|−1(pn+1 + pĀ)|Ā|. (61)

Proof. Fix an arbitrary subset A of [n]. The probability P (V0(Tn+1) = A)
is the sum of the probabilities P (Tn+1 = T ) over all T such that (i) the
restriction of T to A ∪ {0} is a tree with root 0, and (ii) the restriction of T
to Ā ∪ {0} ∪ {n+ 1} is a tree with root n+ 1 which has 0 as a leaf. Each of
these probabilities factorizes into one product involving (ps, s ∈ A∪{0}) and
another involving (ps, s ∈ Ā∪{n+ 1}). The sum of products is therefore the
product of two sums which can be evaluated using the tree volume formula
(5), first with r = 0 and S = A ∪ {0}, then with r = n + 1 and S =
Ā ∪ {0} ∪ {n+ 1} with x0 = 0. 2

The same technique yields the following variation of Theorem 12:

Theorem 13 Let V0(Fk) ⊆ [n] be the set of non-root vertices of the fringe
subtree of Fk rooted at 0, for Fk a p-forest of k trees labeled by [0, n]. Then
for A ⊆ [n], with Ā := [n]− A,

P (V0(Fk) = A) =

(
n

k − 1

)−1

p0(p0 + pA)|A|−1

(
|Ā|
k − 1

)
p
|Ā|−(k−1)

Ā
. (62)
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Proof. This is similar to the proof of the previous proposition. Fix A ⊆ [n].
A forest F has V0(F ) = A if and only if (i) the restriction of F to A∪{0} is a
tree with root 0, and (ii) the restriction of F to Ā∪ {0} is a forest of k trees
with 0 as a leaf vertex. The relevant sum of products is therefore factorizes
into a product of two sums, the first of whichwhich can be evaluated using
the forest volume formula (5) with R = {0}, S = A∪ {0}, and the second of
which yields to (8) with S = Ā ∪ {0} and x0 = 0. 2

5.3 Distribution of tree components

Formulae for the distributions of variously defined tree components of a p-
forest follow easily from the forest volume formula. The next two propositions
are typical examples.

Proposition 14 Let p be a probability distribution on [0, n], and let 2 ≤ k ≤
n. For Fk with the distribution induced by p on forests of k trees labeled by
[0, n], let W0(Fk) ⊆ [n] be the random set of all vertices other than 0 in the
tree component of Fk containing 0. Then for A ⊆ [n], with Ā := [n]− A,

P (W0(Fk) = A) =

(
n

k − 1

)−1(|Ā| − 1

k − 2

)
(p0 + pA)|A|p

|Ā|−(k−1)

Ā
(A ⊆ [n])

(63)

The first part of the following proposition spells out the probabilistic
interpretation of Hurwitz’s multinomial theorem [43, VI] [72, (16)] in terms
of a p-forest with roots R, as defined by (18).

Proposition 15 Let FR be a p-forest with roots R and vertex set R ∪ [n],
with R disjoint from [n]. For r ∈ R let Vr(FR) be the random subset of [n]
defined by the non-root vertices of the tree component of FR containing r.
Then
(i) for each of |R|n possible choices of disjoint subsets (Br, r ∈ R) whose
union is [n]

P (Vr(FR) = Br for all r ∈ R) = p−1
R

∏
r∈R

pr(pr + pBr)
|Br|−1 (64)

(ii) for each subset B of R the random set VB(FR) := ∪r∈BVr(FR) has the
Hurwitz distribution H−1,−1

n (pB) on subsets of [n], where pB0 = pB, p
B
n+1 =

pR−B, and pBs = ps for s ∈ [n].
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For VB(FR) defined as in the previous Proposition, there is the remarkably
simple formula

E(|VB(FR)|) = npB/pR (65)

because VB(FR) is the sum of the indicator variables χ(r
FR
; s) over all r ∈ B

and s ∈ [n], so formula (32) can be applied to compute:

E(|VB(FR)|) =
∑
r∈B

n∑
s=1

P (r
FR
; s) =

∑
r∈B

npr/pR = npB/pR. (66)

On the other hand, Proposition 15(ii) shows that (65) amounts to:

Proposition 16 The mean of the H−1,−1
n (p)-binomial distribution of |Vn,p|,

where Vn,p is a random subset of [n] with the Hurwitz H−1,−1
n (p) distribution,

is

E (|Vn,p|) = n

(
p0

p0 + pn+1

)
. (67)

This formula can also be checked as follows. Differentiate Hurwitz’s formula
(54) with respect to x to obtain∑

A⊆[n]

y |A| (x+ zA)|A|−1(y + zĀ)|Ā|−1 = n(x+ y + z[n])
n−1. (68)

From the definition (10) of the H−1,−1
n (p) distribution,

E(|Vn,p|) =
∑
A⊆[n]

|A| p0 pn+1

(p0 + pn+1)
(p0 + pA)|A|−1(pn+1 + pĀ)|Ā|−1

and (67) follows by application of (68) with x = p0, y = pn+1 and zs = ps for
s ∈ [n]. 2

Formula (67) is a generalization of the known result [26] that the Abel
A−1,−1
n (x, y)-binomial distribution has mean nx/(x + y). The proof of (67)

just indicated via (66) provides a probabilistic explanation for this otherwise
mysterious exception to the general rule that moments of Abel-binomial dis-
tributions are not simple functions of the parameters. See for instance [26]
where a complicated expression is obtained for the second factorial moment
of the A−1,−1

n (x, y)-binomial distribution. In view of this difficulty in the
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Abel case, it does not seem possible to simplify the Hurwitz sums for higher
moments of the H−1,−1

n (p)-binomial distribution. For the H0,−1
n (p)-binomial

distribution, the Hurwitz sum for the mean does not simplify even in the
Abel case.

5.4 A Hurwitz multinomial distribution

Riordan [77] considers multinomial forms of Abel’s binomial theorem. See
Berg and Mutafchiev [18] for the appearance of an Abel-trinomial distribution
in the context of random mappings. The following definition is motivated by
Proposition 15.

Definition 17 For a probability distribution p on [n]∪R with pR > 0, where
R is a finite set disjoint from [n], say that a random vector of non-negative
integers NR := (Nr, r ∈ R) has the Hurwitz(p)-multinomial distribution if
for all vectors of non-negative integers nR := (nr, r ∈ R) with

∑
r nr = n

P (NR = nR) = p−1
R

∑
(Br)

∏
r∈R

pr(pr + pBr)
nr−1 (69)

where the sum is over all n!/(
∏

r nr!) possible choices of disjoint subsets Br

of [n] whose union is [n] with |Br| = nr, r ∈ R.

According to Proposition 15, a random vector NR with this distribution
is obtained by letting Nr be the size of the tree rooted at r in a p-forest
with roots R and vertex set [n]∪R. The usual multinomial distribution with
parameters n and (pr, r ∈ R) corresponds to the case when ps = 0 for all
s ∈ [n]. Then in the forest FR, each vertex s ∈ [n] is a leaf attached to
a root Ms ∈ R where the Ms are independent with common distribution p.
According to Lemma 3, in the general model the restricted forest F [n]

R clusters
the elements of [n] into a random number K of subtrees such that K− 1 has

binomial(n− 1, pR) distribution. Given K the forest F [n]
R is a p(· | [n])-forest

of K trees labeled by [n], and each of these subtrees is attached to a root
picked independently from R according to p(· |R). The size Nr of the tree

rooted at r is then the sum of the sizes of those subtrees of F [n]
R that happen

to have r chosen as their root. From this construction of a random vectorNR

with the Hurwitz(p)-multinomial distribution it follows without calculation
that this family of multivariate distributions shares with the usual family of
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multinomial distributions the following basic rule for merging of categories.
That is, if Ψ is a map from R to Q say, andNQ is derived fromNR by merging
categories according to Ψ, so the qth component ofNQ is the sum of Nr over r
with Ψ(r) = q, then NQ has the Hurwitz(p′)-multinomial distribution, where
p′ is the probability distribution on Q ∪ [n] defined by p′s = ps if s ∈ [n] and
p′q is the sum of pr over r with Ψ(r) = q.

5.5 Percolation probabilities

Write u
f∼ v if there is a path from u to v in the undirected graph obtained by

ignoring edge directions in a rooted forest F , that is if Tu(F ) = Tv(F ), where
Tv(F ) denotes the set of vertices of the tree component of F containing

v. Write u
f

6∼ v if there is no such path, meaning Tu and Tv are disjoint.
This Section treats the problem of finding expressions for the percolation

probability P (s
Fk∼ v) and the oriented percolation probability P (s

Fk
; v) for

two vertices s and v of a p-forest Fk. See [23, 73, 46] for closely related studies
of such percolation probabilities for the digraph of a random mapping, and
[39] for a study of such problems for other models of random forests, and
applications to reliability of networks.

Unriented percolation. By a suitable relabeling, it suffices to consider

P (0
Fk∼ n+ 1) in the case S := [0, n+ 1] and 2 ≤ k ≤ n+ 1. By an argument

similar to the proof of Proposition 14,

P (0
Fk∼ n+ 1) =

∑
A⊂[n]

(
n+ 1

k − 1

)−1

(p0 +pn+1 +pA)|A|+1

(
|Ā| − 1

k − 2

)
p
|Ā|−k+1

Ā
(70)

where Ath term is P (T0(Fk) = Tn+1(Fk) = {0} ∪ {n+ 1} ∪ A). Similarly

P (0
Fk
6∼ n+ 1) =

∑
A⊂[n]

(
n+ 1

k − 1

)−1

(p0 + pA)|A|
(
|Ā|
k − 2

)
(pn+1 + pĀ)|Ā|−k+2 (71)

where the Ath term is P (T0(Fk) = {0} ∪ A). Another expression for the
same probability is obtained by switching p0 and pn+1, since the Ath term is
then P (Vn+1(Fk) = {n+ 1}∪A). The consequent equality of polynomials in
ps, s ∈ S is a non-trivial identity, even in the Abel case (60). So is the equality
between either of these expressions and 1 minus the right hand expression
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in (70), where 1 must be replaced by (
∑n+1

i=0 ps)
n−k+2 to obtain the general

polynomial identity.

Oriented percolation. By a relabeling of vertices, the problem of finding

P (s
Fk
; v) for two arbitrary vertices s and v of a p-forest Fk is reduced to the

case when S = [0, n+1], s = 0 and v = n+1, as in the following proposition.

Proposition 18 Let Fk be a p-forest of k trees labeled by [0, n+ 1]. Then

P (0
Fk
; n+ 1) =

∑
A⊆[n]

(|Ā|)k−1

(n+ 1)k−1

p0(p0 + pA)|A|(pn+1 + pĀ)|Ā|−(k−1) (72)

where the Ath term equals P (0
Fk
; n+ 1, Vk = A) for Vk the random set of all

v ∈ [n] such that there exists a directed path from 0 to v in Fk that does not
pass via n+ 1. Also

P (0
Fk
; n+ 1) =

∑
A⊆[n]

(|Ā|)k−1

(n+ 1)k−1

|A|! p0

∏
s∈A ps (73)

where the Ath term equals P (0
Fk
; n + 1,Lk = A) for Lk the random set of

all v ∈ [n] such that v lies on the path which joins 0 to the root of its tree
component in Fk.

Proof. These formulae are obtained by application of the forest volume
formula, with the help of Theorem 4. See [72] for details. 2

For k = 1, Proposition 18 yields Hurwitz’s expression (56) for H0,0
n , along

with the following probabilistic interpretation: for Tn a p-tree labeled by
[0, n+ 1]

P (0
Tn
; n+ 1) = p0H

0,0
n (p0, pn+1; pj, j ∈ [n]). (74)

In the Abel case (60) with x = y = 1 this implies that A0,0
n (1, 1) is the number

of rooted trees labeled by [0, n + 1] in which there is a directed path from
u to v, for arbitrary distinct u, v ∈ [0, n + 1]. It is easy to deduce from this
the result of Moon [61, Theorem 1], that for Tn with uniform distribution
on rooted trees labeled by [0, n + 1], the conditional expectation of the size

|{v : 0
Tn
; v}| of the fringe subtree of Tn with root 0, given that Tn has
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some root other than 0, is A0,0
n (1, 1)/(n + 2)n. As observed by Moon, this

conditional expectation is also the expected distance in T between any two
distinct vertices u, v ∈ S, which is asymptotically equivalent to

√
πn/2 for

large n. See [14] for a study of the asymptotic behaviour for large n of

the distribution of the size of the fringe tree {v : 0
T
; v} for T distributed

according to a non-uniform forest volume distribution on trees labeled by S,
and [5, 24] for further study of the asymptotics of large random trees of this
kind.

6 Restrictions of p-forests

Call a random forest F with a random number of trees a p-forest if F is a
p-forest of k trees conditionally given that F has k trees. Put another way,
a random element F of the set FS of all forests of rooted trees labeled by S
is a p-forest if and only if the distribution of F is given by the formula

P (F = F ) = w|F |
∏
s∈S

p|Fs|s (F ∈ FS) (75)

for some sequence of weights (wm, 1 ≤ m ≤ |S| − 1), where |F | =
∑

s |Fs| is
the number of edges of F .
Note. By Proposition 2 (i) and (27), the forest F(M) derived from a p-
mapping is a p-forest if and only if p is uniform on S. However, Corollary
20 below shows how a p(·|B)-forest for B ⊂ S can be obtained by suitable
conditioning of a p-mapping.

The following restriction theorem is proved in the next subsection.

Theorem 19 For B a non-empty subset of S and F a p-forest labeled by S,
the restriction FB of F to B is a p(· |B)-forest. The distribution of |FB| on
0, . . . , |B|−1 is determined by pB and the distribution of the random number
|F| of edges of F by the falling factorial moments

E(|FB|)r = E(|F|)r
(|B| − 1)r
(n− 1)r

prB (r = 1, 2, . . .). (76)

In particular, if |F| has binomial (|S|−1, q0) distribution for some q0 ∈ [0, 1],
then |FB| has binomial (|B| − 1, q0 pB) distribution.
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To be more explicit, the distribution of |FB| is determined by the factorial
moments (76) via the well known sieve formula [20, p. 17]

P (|FB| = `) =

|B|−1∑
r=`

(
r

`

)
(−1)r−`

E(|FB|)r
r!

(0 ≤ ` ≤ |B| − 1). (77)

Before the proof of Theorem 19, here is a corollary obtained by simply com-
bining this theorem and Lemma 3, followed by some examples to illustrate
formula (77). The corollary shows in particular how a q-forest labeled by B
can be derived from a p-tree with root 0 /∈ B, for any distribution p on a
superset S of B ∪ {0} such that q = p(·|B).

Corollary 20 For R and B disjoint non-empty subsets of a finite set S, with
pR > 0, the restriction to B of p-forest with roots R is a p(· |B)-forest with
a binomial(|B| − 1, pB) number of edges. In particular, if F(M) is the forest
derived from a p-mapping M of S, then conditionally given cyclic(M) = R
the restriction of F(M) to B is a p(· |B)-forest with a binomial(|B| − 1, pB)
number of edges for each B ⊆ S −R.

Examples. According to (76) and (77), assuming that F = Fk has a fixed
number k of tree components, so E(|F|)r = (n−k)r, for each B with |B| = b
the restriction of Fk to B is a tree with probability

P (|FBk | = b− 1) =
(n− k)b−1

(n− 1)b−1

pb−1
B . (78)

The restriction has two tree components with probability

P (|FBk | = b− 2) = (b− 1)

(
(n− k)b−2

(n− 1)b−2

pb−2
B − (n− k)b−1

(n− 1)b−1

pb−1
B

)
(79)

and so on. For p uniform, pB = b/n, and the above probabilities are fractions
of the total number

(
n−1
k−1

)
nn−k of forests of k rooted trees labeled by [n]. To

illustrate with (78), the number of forests of k trees labeled by [n] whose
restriction to [b] is a tree is

(n− k)b−1

(n− 1)b−1

(
b

n

)b−1(
n− 1

k − 1

)
nn−k = bb−1

(
n− b
k − 1

)
n1+n−b−k. (80)

Since bb−1 is the number of rooted trees labeled by [b], (80) agrees with the
formula of Stanley [81, Ex. 2.11.a] for the number of forests of k trees labeled
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by [n] which contain a particular forest of 1 + n− b trees, applied to any of
the bb−1 forests with one tree component equal to [b] and n − b singleton
roots. The following proof of Theorem 19 involves formula (9), which is a
generalization of the formula of Stanley just mentioned.

6.1 Proof of the restriction theorem

Lemma 21 Let F be a p-forest with restriction FB to B ⊆ S with |B| = b.
Then for each G ∈ FB and each vector of non-negative counts (ci, i ∈ B)
with P (|Fi| = ci for all i ∈ B) > 0

P (FB = G | |Fi| = ci for all i ∈ B) =
(n− 1− cB)b−|G|−1

(n− 1)b−1

∏
i∈B

(ci)|Gi|. (81)

Proof. Assume for convenience that S = [n] := {1, . . . , n} and B = [b]
for some b ∈ [n]. It is easily seen, as in the proof of [70, Thm. 1.6], that
conditionally given |Fi| = ci for all i ∈ [n], the random set F1 of children of
1 has uniform distribution over all subsets of size c1 of {2, . . . , n}, and for
each 2 ≤ i < n given also the subsets Fj of [n] for all j < i, the random set
Fi has uniform distribution over all subsets of size ci of some subset of [n] of
size n− 1− c1 − · · · − ci−1, this subset of [n] being determined by the Fj for
j < i and the constraint that F is a forest. The event F [b] = G is identical
to the event that Fi ∩B = Gi for all i ∈ [b]. So conditionally given |Fi| = ci
for all i ∈ [b] there are

b∏
m=1

(
n− 1− c[m−1]

cm

)
=

(n− 1)!

(n− 1− c[b])!
∏b

i=1 ci!
(82)

equally likely possible choices of the sets Fi for i ∈ [b]. The number of these
choices that make the event (F [b] = G) occur is

b∏
m=1

(
n− b− c[m−1] − a[m−1]

cm − am

)
=

(n− b)!
(n− b− c[b] − a[b]))!

∏b
i=1(ci − ai)!

(83)

where ai := |Gi|, and the ratio of (83) to (82) simplifies to yield (81). To check
the left-hand formula in (83), observe that given choices of the Fi have been
made for i < m in such a way that |Fi| = ci and Fi ∩ [b] = Gi for all i < m,
the choice of the set Fm of size cm is subject firstly to the constraint that F
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is a forest, and secondly to the constraint that Fm ∩ [b] = Gm. This means
that there cm − am elements of [n] − [b] to be chosen. The forest constraint
forbids the choice of any of the c[m−1] children of vertices 1, . . . ,m− 1. But
due to previous choices, a[m−1] of these forbidden vertices are contained in [b],
so there are c[m−1]−a[m−1] forbidden vertices within [n]− [b], and the cm−am
vertices of Fm∩([n]−[b]) are chosen from an allowed set of n−b−c[m−1]−a[m−1]

vertices. Therefore, no matter what the Fi for i < m such that |Fi| = ci and
Fi ∩ [b] = Gi for all i < m, the number of possible choices of Fm such that
Fm ∩ [b] = Gm is the mth factor on the left side of (83). 2

For the rest of this section let CB denote the total number of children of
all vertices in B in the p-forest F :

CB := |F ∩ (B × S)| =
∑
s∈B

|Fs|.

Lemma 22 For each G ∈ FB with j tree components and each c with
P (CB = c) > 0,

P (F [b] = G |CB = c) =
(n− 1− c)j−1

(n− 1)b−1

(c)b−j
∏
s∈B

(
ps
pB

)|Gs|
. (84)

Proof. Again, take S = [n], B = [b], and let Ci := |Fi| for i ∈ [n]. By
application of (81),

P (F [b] = G |CB = c) =
(n− 1− c)j−1

(n− 1)b−1

Ec

(
b∏
i=1

(Ci)|Gi|

)
(85)

where Ec denotes expectation relative to the conditional law of (C1, . . . , Cb)
given CB = c, which by Proposition 1 is a multinomial distribution with
parameters c and (p1/pB, . . . , pb/pB). But this expectation can be evaluated
by a calculation with the generating function of the multinomial distribution,
and the result is (84). 2

Lemma 23 For F a p-forest labeled by S, and G a rooted forest labeled by
S with r edges,

P (F ⊇ G) =
E(|F|)r

(|S| − 1)r

∏
s∈S

p|Gs|s . (86)

Proof. This can be read from formula (9). 2
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Completion of the proof. Lemma 22 shows that for each c ∈ [n− 1] the
conditional distribution of F [b] given CB = c is that of a p(· |B)-forest, hence
so is the unconditional distribution of F [b]. To verify formula (76), recall
that for indicator random variables Xi, i ∈ I and r = 0, 1, 2, . . . there is the
formula

E

(∑
i∈I Xi

r

)
=

∑
J⊆I:|J |=r

P (∩j∈J(Xj = 1)). (87)

Since
|FB| =

∑
(s,t)∈B×B

1(s
F→ t) (88)

formula (87) gives for r = 1, 2, . . . , b− 1

E

(
|FB|
r

)
=

∑
G⊆B×B:|G|=r

P (F ⊇ G). (89)

The probability P (F ⊇ G) is zero unless G is a rooted forest labeled with r
edges, in which case this probability is given by (86). Thus

E

(
|FB|
r

)
=

∑
G∈FB : |G|=r

E(|F|)r
(|S| − 1)r

∏
s∈B

p|Gs|s =
E(|F|)r

(|S| − 1)r

(
b− 1

r

)
prB (90)

where the second equality is due to (8). The claim in the binomial case
follows easily because the rth factorial moment of the binomial (n − 1, q0)
distribution is (n)rq

r
0. 2

6.2 Variations

To illustrate formula (86), for any two distinct s and s′ in S, the probability
that a p-forest F contains a particular edge (s, s′) is

P (s
F→ s′) =

E|F|
(|S| − 1)

ps. (91)

For distinct t and t′ in S, with (s, s′) 6= (t′, t) and s′ 6= t′, the probability
that F contains both (s, s′) and (t, t′) is

P ((s
F→ s′) ∩ (t

F→ t′)) =
E(|F|(|F| − 1))

(|S| − 1)(|S| − 2)
pspt. (92)
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In particular, for such (s, s′) and (t, t′) the events (s
F→ s′) and (t

F→ t′) are
independent if F is a p-tree, and negatively correlated if F is a p-forest of k
trees for k ≥ 2.

The formula (86) for P (F ⊇ G) may be compared to a determinantal
formula of Pemantle [66, Th. 4.2] for such a probability for F a uniform
random spanning tree of a graph. In contrast to (86), there is no simple
general formula for P (F ⊆ G) for a general directed graph G ⊆ S × S. For
instance, in the simplest case when p is uniform on S and F = T say is a
tree, then P (T ⊆ G) = t(G)/|S||S|−1 where t(G) is the number of spanning
subtrees of G. Some references to the classical problem of evaluating t(G)
are [62, Chapter 6] and [Ex. 2.11.a][81]. See also [52] for a technique for
finding P (F ⊆ G) for graphs G with special structure.

Lemma 22 has another consequence which is worth recording. Recall that
for 1 ≤ n ≤ N and 0 ≤ K ≤ N the hypergeometric (n,N,K) distribution
is the distribution of the number of good elements that appear in a random
subset of size n picked from a set of K good elements and N−K bad elements
[34].

Proposition 24 For F a p-forest labeled by S with |S| = n, and

CBF :=
∑
s∈B

|Fs|,

(i) the distribution of CB given |F| = m is binomial (m, pB);
(ii) given |F| and CB = c, the distribution of |FB| is hypergeometic (b −
1, n− 1, c); in particular,
(iii) if the number of edges of F has binomial (n− 1, q) distribution for some
q ∈ [0, 1], then the number |FB| of edges of F in B × B, and the number
of edges of F in B × Bc are independent, with binomial (b − 1, qpB) and
binomial (n− b, qpB) distributions respectively.

Proof. The first part can be read from Proposition 1. Sum the expression
(84) over all forests G ∈ F (B) with ` edges and simplify using (8) to see that

P (|FB| = ` |CB = c) =
(n− 1− c)b−`−1(c)`

(n− 1)b−1

(
b− 1

`

)

=

(
c

`

)(
n− 1− c
b− 1− `

)(
n− 1

b− 1

)−1
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which yields (ii). Part (iii) is a standard consequence of (i) and (ii). 2

An alternative proof of the factorial moment formula (76) can be based on
Proposition (24). By standard applications of (87), for Sn,p with binomial(n, p)
distribution and Hn,N,G with hypergeometric(n,N,G) distribution there are
the formulae

E

(
Sn,p
r

)
=

(
n

r

)
pr; E

(
Hn,N,G

r

)
=

(
n

r

)
(G)r
(N)r

. (93)

By application of these formulae and Proposition 24, for F with m edges the
binomial moments of NB are

E

(
NB

r

)
= E

(
E

[(
NB

r

)∣∣∣∣CB]) =
(b− 1)r
(n− 1)r

E

(
CB
r

)
=

(b− 1)r
(n− 1)r

(
m

r

)
prB

and (76) follows.
Proposition 24 implies the following alternate expression for the distribu-

tion of |F [b]|:

P (|F [b]| = `) =

(
n− 1

b− 1

)−1

E

[(
n− 1− CB
b− `− 1

)(
CB
`

)]
(94)

where CB has binomial (m, pB) distribution given that |F| = m. Compare
(94), (77) and (93) to see that the following moment identity (95) must hold
for a binomially distributed random variable Y , with some restrictions on x:

E

[(
x− Y
a

)(
Y

b

)]
=

a∑
j=0

(−1)j
(
b+ j

j

)(
x− b− j
a− j

)
E

(
Y

b+ j

)
(95)

It follows easily that this formula must hold for any random variable Y with
all moments finite, for all real x and all non-negative integers a and b. This
can be checked as follows. By linearity of the expectation operator E, it
suffices to check the formula for a constant random variable Y , say Y = y
for some real y. Then the formula reduces easily to(

x− y
a

)
=

a∑
j=0

(−1)j
(
x− b− j
a− j

)(
y − b
j

)
. (96)
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Replace x− b by x and y − b by −z to see that this amounts to(
x+ z

a

)
=

a∑
j=0

(
x− j
a− j

)(
z + j − 1

j

)
(97)

for all real x and z, which is a known identity for binomial coefficients (replace
n by a, x by z− 1 and y by x− a in Gould [38][(3.2)]). These identities (96)
and (97), when written in terms of the hypergeometric function 2F1, can be
read from the Chu-Vandermonde summation formula.

6.3 Thinning of p-forests

Let T be a p-tree with n vertices. For 0 ≤ q ≤ 1 call F a q-thinning of T if
given T the forest F is derived from T by retaining each of the n−1 edges of
T independently with probability q. Then, as shown in [70], F is a p-forest
whose number of edges has binomial (n − 1, q) distribution. Compare with
the conclusion of Corollary 20 to deduce

Corollary 25 The restriction to B of a q-thinning of a p-tree is a p(·|B)-
forest with the same distribution as a qpB-thinning of a p(· |B)-tree.

Even for p uniform and q = 1 this result does not seem evident without
calculation. Neither does the independence property in part (iii) of Propo-
sition 24 seem obvious even in this case. In the same vein, there is also the
following generalization of results in [70]:

Theorem 26 Suppose that F is p-forest. Given F , let each edge s
F→ t be

marked red with probability rs, independently as (s, t) ranges over all directed
edges of F . Let Fred denote the forest of red edges so obtained, and let
p∗ :=

∑
s∈S psrs. Then Fred is a p′-forest, where p′s := psrs/p∗, and given F

has m edges the number of edges of Fred has a binomial(m, p∗) distribution.

Proof. This is established by a straightforward calculation using formula
(9). 2

In particular, if F is a random tree with uniform distribution on the set
of all rooted trees labeled by S, then Fred obtained by the above construction
is a p′-forest with p′s proportional to rs.
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[76] A. Rényi. On the enumeration of trees. In R. Guy, H. Hanani, N. Sauer,
and J. Schonheim, editors, Combinatorial Structures and their Applica-
tions, pages 355–360. Gordon and Breach, New York, 1970.

[77] J. Riordan. Combinatorial Identities. Wiley, New York, 1968.

[78] S. M. Ross. A random graph. J. Appl. Probab., 18:309–315, 1981.

[79] G.-C. Rota and R. Mullin. On the foundation of combinatorial theory
III: Theory of binomial enumeration. In B. Harris, editor, Graph Theory
and its Applications, pages 167–213. Academic Press, New York, 1970.

[80] L.W. Shapiro. Voting blocks, reluctant functions, and a formula of
Hurwitz. Discrete Mathematics, 87:319–322, 1991.

[81] R. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University
Press, 1997.

[82] R. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University
Press, 1999.

[83] V.E. Stepanov. Random mappings with a single attracting center. The-
ory Probab. Appl., 16:155–162, 1971.

44



[84] A. H. Stone. Trees and power-sums. Amer. Math. Monthly, 92(5):328–
331, 1985.

[85] V. Strehl. Identities of the Rothe-Abel-Schläfli-Hurwitz-type. Discrete
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