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IP-Species and the g-Mehler Formula

Hung Quang Ngo *

Abstract

In this paper, we present a bijective proof of the ¢g-Mehler formula. The proof is in
the same style as Foata’s proof of the Mehler formula. Since Foata’s proof was extended
to show the Kibble-Slepian formula, a very general multilinear extension of the Mehler
formula, we hope that the proof provided in this paper helps find some multilinear extension
of the g-Mehler formula.

The basic idea to obtain this proof comes from generalizing a result by Gessel. The
generalization leads to the notion of species on permutations and the ¢g-generating series for
these species. The bijective proof is then obtained by applying this new exponential formula
to a certain type of species on permutations and a weight preserving bijection relating this
species to the g-Mehler formula. Some by-products of the g-exponential formula shall also
be derived.

1 Introduction

The Hermite polynomials are well-studied and have applications in diverse areas of Mathemat-
ics [2,7]. They can be defined in terms of their generating function, whose bilinear extension
is the well-known Mehler formula. The most general multilinear extension is known as the
Kibble-Slepian formula [17,20]. Foata [10] discovered a combinatorial proof of the Mehler for-
mula, which was later extended to show the Kibble-Slepian formula combinatorially by Foata
and Garcia [12].

A g-analogue of the Hermite polynomials, called the ¢g-Hermite polynomials, was intro-
duced by Rogers [19], who used them to prove Rogers-Ramanujan identities. Up to rescaling,
there are other variants of the ¢-Hermite polynomials [1, 8, 9, 15]. The Mehler formula for
the ¢-Hermite is known, but no ¢-analogue of the Kibble-Slepian formula has been discovered
yet. Similar to the normal Hermite polynomials, one hopes that a Foata-style combinatorial
approach to the g-Mehler formula helps find a ¢-Kibble-Slepian. A few proofs of the g-Mehler
formula is known (see, e.g., [4,8, 15]), of which the one in [15] is combinatorial. However, the
combinatorial objects were vector spaces over finite fields, which are difficult to be dealt with
in bijective arguments.

This paper presents a Foata-style proof of the ¢g-Mehler formula. Along the way, we also
introduce a new kind of species and a few consequences. Throughout this paper, we use [1, n]
(avoiding confusion with [n],) to denote the set of integers from 1 to n. The following standard
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notations shall also be used:

(a)n = (CL; Q)n = (1 - a)(l - aq) .. (1 _ aqn—l)
0], = 0
[Tl]q = 1—|—q+...+qn*1’n21
n — (Q)n N (1 - q”) e (1 — q”_k‘H) .
|:k:|q = (Q)nfk(Q)k = (l—q’“)---(l—q) ,0< k <n.

Most often, the subscript ¢ is dropped when there is no potential confusion. Lastly, we use M,
to denote the set of all matchings on n points [1, n].

2 Preiminaries

2.1 TheMeéehler formula and its extensions

There are several variations of the Hermite polynomials, which are all the same up to rescaling.
A typical definition of the Hermite polynomials and their generating function, respectively, are

n $2dn€7$2
Hy,(x) := (=1)"e d (1)
oo 1 L
> Hy(z)— =™ )
-t n!

To interpret the Hermite polynomials combinatorially, another variant of the Hermite poly-
nomials, denoted by H,(z), was introduced. The definition of the H,(z), their generating
function and its bilinear extension are as follows, respectively:

ﬂn(:v) = %{2@, (3)
Zoliln@)i_n’ — 6;51;—1;2/2’ @)
> - N 1 2txy — t2(2? + 4?)

Identity (5) is the celebrated Mehler’s formula, which was shown combinatorially by Foata
[10]. For a discussion of this proof and its relation to other combinatorial results on orthogonal
polynomials, the reader is referred to Stanton [21].

Carlitz [5, 6] found several multilinear extensions. Kibble [17], and later independently
Slepian [20] found an extension, known as the Kibble-Slepian formula, whose specializations
include all other extensions. Louck [18] proposed another extension which was proved combi-
natorially to be equivalent to the Kibble-Slepian formula by Foata [11].

To describe the Kibble-Slepian formula, let us first introduce some notation. For each integer
n > 2, define a symmetric n x n matrix R by

(R)'- _ {Tij ifi?éj,

1 otherwise,



where {r;;}; j>1 is an infinite sequence of indeterminates. Let z = (z1,...,z,)" be a vector of
n indeterminates. Let A/ be the set of all symmetric matrices N = (v;;) (1 <4, 7 < n) of order
n such that v; = 0 for all 7 < n, and that v;; is a non-negative integer for all ¢ # j. Also, for a
fixed N € N, let the ith row sum of N be

8i = Vit + Vi + -+ + Vip.
The Kibble-Slepian formula reads
1177
Z H, (21)...H, () o -1 exp <1 (72— ZTR_lz)> . (6)

1<j

Foata and Garsia [12] extended Foata’s proof [10] of the Mehler formula to give a combi-
natorial proof of the Kibble-Slepian formula. The left hand side of (6) was interpreted as the
exponential generating function of the so-called n-involutionary graphs, while the right hand
side could be written as the exponential of the series

11 detR 1 Z(%’ — (R V)ij) 225 (7)

2%

They showed that expression (7) is the generating function for the “connected components” of
the n-involutionary graphs. Consequently, the exponential formula applies, proving (6).

2.2 Theg-Mehler formula and its extensions

A g-analogue of the Hermite polynomials called the ¢g-Hermite polynomials, obtained from the
so-called Rogers-Szegd polynomials [4,9, 15, 19] can be defined by their generating function
H(x,t]q) as follows:

H(x,t = = t < 1. 8
(z.t] ) Z H mq g ! (8)

To get the corresponding g-version H,(z | ¢) of H,(z), we also normalize the H,,(z | q). Define

Ho(3vT—4q|q)

ﬁn = 9
with the new three term recurrence:
Hyn(z|q)=aH,(z | ¢) — (L+q+-+¢" ) Hai(z | ). (10)

This recurrence relation yields a combinatorial interpretation for A, (2 | ¢) [15]. The interpre-
tation gives H,,(z | ¢) as a g-analogue of the matching polynomials H,, (). Notice that each
matching a € M,, can be viewed as an involution on [1,n]. Define a new statistic on « as

follows:
= Z s(e)

eca

where the sum goes over all edges e of a, and if e = (i, 7), 7 < 7, then

s(e):=Hk|i<k<j,and a(k) < j}|.



Pictorially, imagine putting n points 1, ..., n in this order on a horizontal line, then drawing all
edges of « on the upper half plane. The statistic s(e) for an edge e is the number of points &
lying between ¢ and j such that % is either a fixed point or an end-point of some edge ¢’ € a,
both of whose end-points are on the left of j (see Figure 1). Let || denote the number of edges
in the matching «, and let F'(«) = n — 2|«| be the number of fixed points of «. It follows that
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Figure 1: Illustration of s(e), where e = (7, 7), i < j.

Hy(x|q) =) i(a), (11)
ac My,
where
(o) = (=1)llgf@gse), (12)

On the same line of reasoning as in the previous section, one would hope that (11) helps
combinatorially discover the ¢g-analogues of the Mehler formula and its extensions. This turned
out to be not easy. There are several known equivalent forms of the ¢-Mehler formula [4, 15].
In terms of H,,(x | ), it reads

o0

t’l’L
> Hy(z | ) Huly | q)~ =
n=0 <Q)n
) oo
- () . (13)
1 (1 = 4tgbay + 2627 (—1 + 22° + 2°) — 4¢Py + t'¢™)
k=0

On the other hand, let h,,(z | ¢) be the generating function for the number of subspaces of I :
ho(z | @) =>4 [] =¥, then

- o (2Yt?) oo
2l LY 1) G = et I 4

n=0

It is this form of the g-Mehler formula which has the only known combinatorial proof [15]
using the vector space interpretation. However, it does not seem to be possible to extend this
proof along Foata and Garsia’s [12] line to find a multilinear extension of the g-Mehler formula.
Firstly, we need a g-analogue of the exponential formula, which is not known in general. (A
somewhat specialized g-analogue of the exponential formula was devised by Gessel [13], but
I do not know how to use his method on linear spaces over finite fields.) Secondly, linear



subspaces, although very useful in enumeration arguments, are difficult to be dealt with in
bijective arguments. Hence, beside needing a ¢g-analogue of the exponential formula, we also
need a different combinatorial proof of ¢g-Mehler formula which uses some easier-to-describe
combinatorial objects, which is precisely the main result presented in this paper.

Several multilinear extensions have been found by Karande and Thakare [16], and Ismail
and Stanton [14]. However, their formulas all involve an infinite sum, and not as general as the
Kibble-Slepian formula. It would be interesting to have combinatorial proofs of their findings.

2.3 A g-exponential formula

Gessel [13] gave a partial answer to the question raised near the end of the previous section. Let
us briefly summarize here his main result which we shall make use of later. Define a g-analogue
of the derivative:

f(t) — flat)
Df(t) = —————=. 15
Suppose f is a function with f(0) = 0 and g-exponential form
o0 tn
F&)=>" fa—r- (16)
n—0 Nigq
Let g = e[ f] be the g-analogue of the function e/, namely
o tn
9= s (17)
0 Nig
where the coefficients g,, are defined recursively by
1 ifn=0
o {Zk:o [k] gn—kfk—H if n > 1.
Then, we can write g(¢) as an infinite product:
: (19)

"= Ho (1-(1—q)q"t-Df(q"t))

n=

3 Main Results

3.1 Main theorem and approach

The main result of this paper is to provide a ¢g-analogue of Foata’s proof of the Mehler’s for-
mula. This is done by first introducing another variant of the ¢-Hermite polynomials denoted
H,(z | ¢). The new variant is just a rescaling of the old H,(z | ¢), and can also be defined com-
binatorially. The g-Mehler formula for the H,,(z | ¢) is then obtained by generalizing Gessel’s
result summarized in Section 2.3.

Specifically, define

(x| g) = i"g (‘% | q) . (20)

Then, these new ¢-Hermite polynomials can be combinatorially defined as follows.



Proposition 3.1. Let w be a weight function on matchings defined by

w(a) == aF@glal+sl@), (21)
Then, B
Hy(z|q) =) w(a). (22)
a€ My,

Proof. Recall the combinatorial interpretation (11) of the H,,(x | ¢), we get

3 m on2sr [ T
Hyx|q) = zqﬂHn(—\q)

Vi
Y (—1)elge@ SANN
— an§ 1 aqsa <_>
o€ My, \/a
— Z (2n< 1)|a\<_i)F(a)) .’ITF(a)qz F(za)—|—s(a)
aEM,,
— Z 1, \a|+s(a
aEM,,
]
The following is the main theorem of the paper.
Theorem 3.2. The polynomials H, (z | q) satisfy the following Mehler-type identity:
00 B e
> Hu(w [ q)Huly | )
n=0 q
242

Hzio [(1 _ t2q2k—|—2)2 _ t(l _ q)qk(<1 + t2q2k+2)xy + tqk—|—1($2 + y2))} )

Note that (23) is the same as (13) and (14), up to a change of variables.

Theorem 3.2 shall be shown in several steps. Notice that the right hand side of (23) looks
similar to the right hand side of (19). We shall find a function f so that the two are identical.
The coefficients f,, in the g-exponential expansion of f shall be interpreted as enumerating a
certain kind F of new species (Section 3.3) called P-species (Section 3.2). Another P-species
G defined from F is enumerated by a sequence g,, which satisfes relation (18). The IP-species
basically gives a combinatorial interpretation of relation (18). The last step is to bijectively
show that g, = H,,(z | ¢)H,.(y | q) (Section 3.4). The species G is completely analogous to the
bicolored involutionary graphs introduced by Foata in his proof of the Mehler’s formula. Thus,
our proof of Theorem 3.2 can be thought of as a g-analogue of Foata’s proof. A few simple
by-products of the new kind of species shall also be derived.

3.2 Weighted IP-species

In this section, we generalize Theorem 5.2 in [13] by introducing a new kind of species [3],
which then gives a combinatorial interpretation of identity (18).

Let S,, denote the symmetric group on [1, n] as usual. More generally, we use Sym(N ) to
denote the set of all permutations on a totally ordered set N of size n. Each word 5 =iy ...1,



where {4y, ...,i,} = N could be thought of as a permutation on N written in one line notation,
i.e. f € Sym(N). The set N is called the content of 3, and is denoted by cont(3). For any
o € Sym(N), we use I (o) to denote the number of inversions in ¢. For any two subsets X and
Y of N, let I(X,Y) denote the number of inversions created by pairs of elements in X and Y/,
namely

I(X,Y)={(i.j)|i>jie X,jeY}]

Let K C C be an integral domain and A = K[g, 1, t», . .. ] be a ring of formal power series
or of polynomials over K on the variables ¢, ¢y, .... An A-weighted set is a pair (A, w) where
Aisasetand w : A — A is a function associating a weight w(a) to each element ¢ € A.
An A-weighted set (A, w) is said to be summable if for each monomial ;. = ¢™t'¢3* ..., the
number of elements a € A whose weight w(a) contributes a non-zero coefficient to 4 is finite.
We are now ready to describe the new species.

Definition 3.3. An A-weighted P-species is a rule F which

(i) to each totally ordered set N, and each permutation ¢ € Sym(N), associates an A-
weighted set (F[N, o], w),

(i) to each increasing bijection v : N; — N,, and each permutation o € Sy, (= Sn,)|),
associates a weight-preserving bijection

Flv, 0] : (F[Ny, 01],w) — (F[Na, 09, w),
where o, € Sym(N;) and oo € Sym(N,) are derived from o in the natural way.
Moreover, these functions F|v, o] must also satisfy the functorial properties:
Flldn,o] = Idgn,e, (24)
FlBor,o] = F[B,o]oF|y,a]. (25)

Basically, the functorial properties say that the weighted sets (F[N, o], w) depend only on
the fact that IV is totally ordered and on N’s cardinality. When | N| = n we shall use F[n, o] to
denote F[N, o], and F|n| to denote | J Fln,ol.

Definition 3.4. Let F be an A-weighted P-species with weight function w. The P-generating
series of F is the g-exponential formal power series F,(t | q) with coefficients in A defined by

gESy

w(t10) = 3 | Flnllw o o (26)

n>0

where the g-inventory | F[n]|,, is defined by

Flollw:=Y_ > w (27)

0€8Sn a€Fn,o]

Theorem 5.2 of [13] was about partitioning permutations into basic blocks with a multi-
plicative weight function on the blocks. We generalize this notion by defining the so-called
permutation partition.

Definition 3.5. Given ¢ € S,,, a permutation partition 7 of ¢ is a sequence of non empty words
m = (o1, ...,0%) such that
0O =0102...0¢

in one line notation, and that the largest elements of o4, ..., o, form an increasing sequence.
We shall write 7 F o for “ is a permutation partition of .”



We are now ready to define a P-species whose “connected components” are structures of
another P-species.

Definition 3.6. Let F, be a weighted P-species with weight function v. Define the P-species
Gw = E(F), with weight function w as follows. For each totally ordered set N and o €
Sym(N), define

GIN, o] == | FINi, 1) x - -+ x F[Ny, 0], (28)

o

where 7 = (074, ..., 0%), and N; = cont(o;), forall i = 1, ..., k. Moreover, for each
G= (Fl,...,Fk) € f[Nl,O'l] X e X f[Nk,O'k]

we associate
w(G@) =v(F)...v(Fg). (29)

This is the analogue of the multiplicative property in Theorem 5.2 of [13]. The fact that
E(F), is a P-species is easy to verify. At last, the promised generalization of Theorem 5.2
in [13] can now be stated:

Theorem 3.7. Let F, be a P-species of structures with weight function v. Let G,, be the P-
species £(F),, defined as above. Define a sequence {g,,}5°, by go = 1 and

Let { f.}22, be the sequence defined by f, = 0, and

frv1 = |Flk + 1]|, fork > 0.

Then,
P2 = [an_'] Ua—aproren @
namely
Gu(t | q) = e[Fu(t ] q)]- (31)

Proof. We only need to verify that the sequences g,, and f,, satisfy relation (18). Recall that
each G € G[n + 1] is a sequence of structures of 7: G = (F,..., F,,). Letoy,..., 0, be
the corresponding permutations (or words) underlying Fi, ..., F,,. Let N; = cont(o;), for each
i = 1,...,m. Notice that n +1 € N,,. Suppose |F,| = k+ 1,k > 0. Let V := N,
K:=V—{n+1},andV :=[1,n+1] - V. Notethat I(V,V) = I(V,K) sincen+1 € V.
Furthermore, let G’ € G[V'] be the structure of species G obtained from G by removing F,,. For
each structure C' of a P-species, we use o(C') to denote the underlying permutation of C'.
It is clear that
I(0(G)) = I(V, K) + I(a(G")) + I(o(Fy)).

and that
w(GQ) = w(G")v(F,).



In order to form a G € G[n + 1], we can first pick a k-subset K of [1,n] (0 < k < n),
then form V' = K U {n + 1}, and finally concatenate any pair of G’ € G[V] and F,,, € F[V].
Consequently,

G =Y w(G)g' @
Geg[n+1]

= Z Z Z Z q TV E) s (G g @D x p(Fy,)q @)

k=0 K,|K|=k G’'€G[V] FmeF[V

= Z Z Z Z qI(V,K) % w(GI)qI(J(G’)) v ’U(Fm)ql(a(Fm))

k=0 K,|K‘:k G’Gank Fmefk+1

n

- Z Z ¢! (= K.K) Z w(G)g" @) Z v(Fpp)g @)
k=0 K,|K|=k G'€Gpn_k Fyn€Fp41

n
= Z [k In—kSr+1-
k=0

O

Example 3.8. Theorem 3.7 implies Theorem 5.2 in [13] and thus all its consequences as derived
by Gessel.

Example 3.9. Take v = 1 so that w = 1 in Theorem 3.7, we obtain

n - bl
— n!q HZO:O(l — 2tq™ + t2q2n+1)

where,

=Y Hrlnko}e"

ocESy

In fact, when ¢ — 1, g,, counts the number of sets of words on [1, n] whose contents are disjoint
and whose union of contents is exactly [1,n]. While, when ¢ — 1 the right hand side of (32)
goes to exp (t/(l — t)). Thus, we could have proven easily identity (32) combinatorially when
qg=1.

Following Gessel’s line of derivation we can generalize the previous example as follows.

Corollary 3.10. Let 7 = (o4, ..., 0x) be any permutation partition of o € S,,. Let b;(7) be the

number of words of size i of 7. Define a weight function w for 7 by w(r) = ], acf"(”), and let
=> > wm)g'®. (33)
o€S, Tto
Then,
st 1
w(t|q) (34)
] ,HO 1—(1—q)g"tX(q"t))’
where

o
= Z .Tn_|_1 [n —+ 1]qtn
n=0



Example 3.11. Write 7 - ¢ if 7 F o and all words of 7 are of size at most k. Set X (¢) =

z + (1 + ¢)t, so that
{xbl(”) ifrhky o
w(m) =

0 otherwise,
and hence
(lg)= D > "™
OESy a0
Corollary 3.10 gives
Gulrt 0= ool = I 1
Lo 1= (1—q)g"tX(q"t)
d 1
— 35
kl}) 1 — 2uzgk + 22¢?F’ (35)

where v = =, /1% and z = it\/1 — ¢2. We now get

2 \/ 1+¢

gu( | @) = "(1+ g, ( (36)

=)
Thus,

22 " = (14 )g @), (37)

oES, Tha0 aEeM,

an interesting combinatorial identity.

3.3 A g-analogue of the bicolored n-involutionary graphs

The previous section gives a combinatorial view of identity (18). As outlined at the end of sec-
tion 3.1, the next step in the proof of Theorem 3.2 is to find a P-species F,, whose P-generating
series f(t) = F,(t | ¢) is such that the right hand side of (19) is the same as that of (23). The
P-species G, = £(F),, is a g-analogue of the bicolored n-involutionary graphs. We actually
will start defining G first.

Definition 3.12. A graph G = (N, E) is called an ordered bicolored n-involutionary graph if
G satisfies the following conditions:

1. G has n vertices labeled by n distinct positive integers in V.
2. G has no multiple edges, but can have loops.

3. The n vertices of G line up on a horizontal line, so that we can speak of a vertex being
on the left or right of another, and so that the vertices of G forms a permutation 7(G) =
MMy ... T, € Sym(N).

4. Each edge of G is colored either red or blue.
5. Each vertex of GG is incident to exactly 2 edges of different colors.

6. A non-loop edge of G can only connect some ; to 7,1 unless it completes a cycle of G.

10



7. Let C4,...,C,, be the connected components of G from left to right. Let L(C) denote
the largest vertex number in a connected component C' of G, then 7(G) must satisfy the
condition that L(C) < --- < L(Cy,).

8. For each connected component C, the vertex numbered L(C') has to be on the left of the
blue edge incident to it.

9. If a connected component C' is a cycle, then the vertex numbered L(C') has to be the
left most vertex among all vertices of C. It is not difficult to see that the connected
components of G can only be in one of 5 forms as shown in Figure 2. In the figure, the
bold lines represent blue edges and the thin lines represent red edges.

Blue
4 S A Red
L(C)
EB%—{+—+&——O e Gh—{%—%}—~%) %§+—4%443——© — 044£+_+}44é)
L(C) L(C)
L(C) L(C)
Y Y z x

Figure 2: Possible connected component types of an ordered bicolored n-involutionary graph.

Let Gy denote the set of all ordered bicolored n-involutionary graphs on N, where N is
an n-set of positive integers. Let Cy be the set of all graphs in Gy which have exactly one
connected component. When N = [1, n], G,, and C,, shall be used for convenience.

Let ¢ : N — [1,n] be the trivial one-to-one correspondence between N and [1, n] which
preserves order. For each G' € Gy, let red(G) denote the graph obtained from G by renumber-
ing each vertex v of G by ¢(v). Conversely, we also use N(G) to denote the set of vertices of
G.

Definition 3.13. A weight function w defined on G with values over some commutative alge-
bra over the rationals is said to be multiplicative if it satisfies the following conditions:

() w(G) = w(red(q)).

(i1) If ~q, ..., v are the connected components of G (which are ordered bicolored involution-
ary graphs themselves), then w(G) = w(7y1) - . . w(y).

The following theorem is obviously a very special case of Theorem 3.7 applied to the or-
dered bicolored involutionary graphs.

Theorem 3.14. Supposed w is a multiplicative function on G,,. For n > 0, define a sequence

{9ntno
g =) w(@)q" ™.
Gegn

Let { f.}>2, be the sequence defined by f, = 0, and
fror1 = Z w(C)g' ()

CeCrip

11



for £ > 0. Then,

Sty =[S nk
gn_':e fn_' .
£=""nl, =" nly

Definition 3.15. Let G be a graph in Gy. For each edge e (respectively vertex 7) of G, let
C'(e) (respectively C'(i)) denote the connected component containing e (respectively ). Define
a weight function 6 on each edge e of GG as follows:

(¢ if e is a non-loop red edge,

if e is non-loop, blue and to the left of L(C(e)),
if e is non-loop, blue and to the right of L(C'(e)),
if e is ared loop,

if e is a blue loop.

>
—~
a
N—r
Il
KR e = QY

\

Let 0 be a weight function defined on G by:
H f(e

e€E(G

then obviously 6 is multiplicative.

We call an ordered bicolored n-involutionary graphs with the weight 6 associated a bicolored
(¢, n)-involutionary graph. Figure 3 shows an example of such a graph. In the figure, the largest

Z Z X

Ol elot Q Lot ol i VAN g 1}

3 9 5 1 10 8 4 7 6 12 14 11 13 15 2
m=(3,9,5,1,10,8,4,7,6,12,14,11,13,15,2) I(r) =33

0(G)q'™ = ¢"aPy? x ¢
Figure 3: An example of a bicolored (¢, n)-involutionary graph.

vertex number L(C') in each component C' has been put in bold face.

Lemma 3.16. Let 6 be the function defined above, and { f,, } >, be a sequence defined by fo, = 0
and

ZQ ., whenn > 1.

ceCy

f(t]a): an x

Moreover, let

Then,
(1 = P¢)tq® + (1 + ¢")zy + tq(a + y*)

Df(t|q) = (0= )1 - )

(38)

12



Proof. Firstly, we claim that
Forsr = (K] + [k + 1)) g™ (2k) gy

To see this, let us consider Figure 2. The components in Cox,1 Can only be the paths which
start and end with different colored loops, and have largest vertex number 2k + 1. Summing
9(C)q' ™) over all components C which start with a blue loop and end with a red loop we get
the term

[Kla™ (2k)!qzy,

while the components which start red and end blue introduce the term
[k + 1] (2k),y.

The details are easy to be verified and hence omitted here.
Secondly, we claim that

oz = ¢¥ 2k + 1)l + [k + 1™ (2k + 1)l (2” + 1)

Here, the term ¢3%+2(2k 4 1)!, is from the cycle components, [k + 1]¢?**!(2k + 1)!,2* from the
paths which start and end with a blue loop, and [k + 1]¢%***(2k + 1)!,3? from the paths which
start and end with a red loop.

By definition,
f(t|Q) = an .
0 ok t2k+1
= 1 1) | ) E—
D (k] + b+ ) 2By
= 3k+2 2k+1 2 2 t2k+2
(2 1)! 1 2 1)! —_—.
+k§_% B Dl [k 1g (26 + D4 +) gy
Hence,

Df(t|q) = Z (k] + [k + 1)) ¢**zyt® + Zq3k+2t2k+l
k=0 k=0

+ Z k‘ + 1 2k:+1 .’L' + y2)t2k+1. (39)
k=0
Now, we calculate each term of (39) separately as follows:

zy Z([k] + [k + 1))t = ay(1 + 2¢%) Z[k + 1) "

k=0

0 k
k=0 \j=0

(40)

o0 o0
— .I'y(l + t2q2) Z t2iq2i Z t2jq3j
i=0 §=0
(1 +¢)zy
(-2 (1 —t2¢%)

13



Similarly,

S 3k+2,2k+1 tq*
> g = g (41)
k=0
and
00 [e’) k
562 + 2 k‘ + 1 2k+1t2k+1 — .1'2 + 2 t 2k+j t2k
(z°+y q y)tq q
k=0 k=0 \j=0
0 k
_ (Iz 4 yQ)tqZ (Z qz(k—j)+3j) 12(k=5)+2j
k=0 \j=0 (42)
i=0 =0
tq(2? 4 y?)
(1= (1 - ¢
Combining (40), (41) and (42) yields (38). O

Corollary 3.17. Let 6 be the function defined above, and { g, }5° , be a sequence defined by

g= ) 0(G)g" ™. (43)
GEGn
Then,
(¢*t*) oo
g<t|q): o 2 1 2k+2)\2 k 2 2k+2 k+1 (2 2 ’
[T [(1 — 2¢7%+2)% — t(1 — q)q* (1 + t2¢%*+2)zy + tg*+1 (22 + ?)) ]
where
o tn
919 =Y gur-
n=0 4
Proof. This is straightforward from Theorem 3.14, Lemma 3.16 and equation (19). O
3.4 A bijection

This section completes the last step of the proof of Theorem 3.2. We are left to demonstrate
that H,,(z | ¢)H.(y | ¢) = g». We shall show this relation combinatorially as formally put in
the following theorem.

Theorem 3.18. Let H,, be defined combinatorially by equation (22), and g,, by equation (43).
Then,

ﬁn(x | q)Hn(y | q) = Gn-

Proof. We want to find a weight-preserving bijection ¢ which maps a pair (a, o) € M, 11 X
M, toagraph G € G, 1. Let («, o’) be a pair of matchings in M,, 1 x M, 1, where the fixed
points of o are weighted by x and of o’ by 3. As before, we view the vertices 1,...,n + 1 of «
and o’ as lying on a horizontal line from left to right in that order, with the edges drawn on the

14



upper half plane. Let py,...,p, (a < n + 1) be the sequence of vertices of « starting from the
right which are not left end-points of «’s edges. Similarly, let p/, ..., p!, be the corresponding
sequence for o/. Notice that p; = p| =n + 1. Letey,..., e (respectively e}, .. ., eia,‘) be the
set of edges of o (respectively o) ordered by their right end-points starting from the right.

Our idea is to start from the right, look simultaneously at p; and p, p, and p5, ... determine
the “right place” to stop and build up the right most connected component of GG based on the
relative distribution of edges and points of oz and o’ seen so far. Then, remove certain points
and edges from « and o’ to get 5 and 3’ respectively, and re-apply the method to get the next
(from the right) connected component of Gz, and so on.

Looking at p; and pf, p, and p5, ... there will roughly be 5 situations as follows.

1. Atsome k + 1, all of p; and pl, 1 < i < k + 1, are right end-points of edges in « and o/
respectively, and j = k + 1 is the least integer such that s(e;) = 0.

2. We meet a fixed point p,,, 1 0f o and then a fixed point p; 1 of o/ where m < k. For this
case to be disjoint from case 1, it is necessary that all edges e of oz whose right end-points
are on the right of p,,, 1 have s(e) > 0.

3. We meet a fixed point p/, ,, of o strictly before a fixed point p, of c.
4. Two fixed points of o are met before any fixed points of o'.
5. Two fixed points of o’ are met before any fixed points of «.

Note that similar to case 2, the cases 3, 4, and 5 need to be defined so that they are disjoint from
case 1. These cases determine our “right place” to stop as mentioned above.
Formally, we consider 5 cases as follows.

Case 1. Thereexistsa k, 0 < k < (";1), such that

() j = k + 1isthe smallest integer where s(e;) = 0. (i.e. s(e;) > 0forall j < k.)
(i) Forall j =1,...,k +1, ¢; has right end-point p; and ¢} has right end-point p’..

The situation is depicted in Figure 4. Let 3 (respectively ') be the matching obtained

Figure 4: Illustration of case 1.

by removing e, ..., ex41 and their end-points (respectively ef, ..., e, and their end-
points) from « (respectively o'). We shall construct G = ¢(a, ') such that the last
connected component of G isacycle C = (n + 1, 4941, - - -,41), and that (53, ') forms

the rest of the components of G. Let R = {io1,-..,%1} be the set of the rest of the
points on the cycle as shown. To do this, we need to pick a permutation o = ig 1 ...4; €
Sym(R), where R = {ig1,...,41} IS a set of distinct integers in [1, n], such that the
contribution w¢ of this cycle C' to the weight of G is exactly equal to the contribution
wg Of eq,. .., epq1 to the weight of o plus the contribution wi; of e},... e, to the
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weight of o’. Notice that removing the edges e; and €, does not have any effect on the
total weights of the rest of edges of o and o'. Let U = [1,n] — R, and I(U, R) be the
number of inversions created by pairs of numbers in U x R, namely the number of pairs
(u,r) € U x Rsuchthatu > r.

As each red edge on C is weighted ¢ and each blue edge weighted 1, it is easy to see that

we = qI(U,R)+I(J)+2k+1-qk+1’ (44)

wp = qk:-l-l q ;H'lls(ej) (45)
k+1$e

wy = ¢ gRim ), (46)

Hence, we need to pick ¢ such that

k41 k41
I(U,R) +1(o Z )+ Y s(e)) — k. (47)
j=1 j=1
Observe that
s(exs1) = 0, (48)
1<s(ej) < n+1-2j Vj=1,...,k, (49)
0<s(ef) < n+1-25 Vi=1,... k+1 (50)

Now, define a function f on {1,...,2k + 1} by

f(t) = n—t+2-—s(e) ift=25j=1,...k,
C\n—t+l-s(e) ift=2j-1,j=1,... k+L

Then, recursively determine iy, ..., iax41, €lement by element starting from 7;, working
toward iy, 1 as follows:

iy = the f(t)th smallest number in [1,n] — {i1,... 4 1}. (51)

Itiseasy tocheckthat1 < f(t) <n—(t—1)forallt =1,...,2k + 1 so that i; is well
defined. Moreover,

I(U,R)+1(c) = > {j|jpreceedsis, j > iy j #n+1}|
= D (n—(t—1)—f(1)
= 2 (=@ =)= f@2))+ 3 (n=(2-2) = f(2 = 1))

k+1 k+1

= Z s(e; +Zs

J:
which is exactly (47).

Case 2. Thereexistsa k, 0 < k < Z,and anm, 0 < m < k such that

16



(i) Forall j =1,...,m, p; is the right end-point of e;, and s(e;) > 0. Moreover, p,, 1
is a fixed point, which is weighted by . And, forall j = m+2,...,k+1, p; isthe
right end-point of e;_;.

(i) Forall j = 1,...,k, pj is the right end-point of ¢;. And, p;,, is a fixed point
weighted by y.

The situation is depicted in Figure 5. This time, the last component C' of G starts with

€ €

k em+1 m €1
4444444444444444444444 O

Figure 5: Illustration of case 2.

a red loop and ends with a blue loop. The point n + 1 is the (2m + 1)st point from the
right. Let o, R, U be defined as in the previous case, then the corresponding w¢, wg and
w'; are as follows:

we = qI(U,R)—l—I(U)-i-Qm . q2k—m -2y, (52)
wy = ¢ -g=i-sE) g (53)
wy = ¢ qE;;l () Ly, (54)
Hence, we need to pick o so that
k
I(UR)+I(0) = Zs(ej) +Zs(e;~) —m. (55)
j=1 i=1

Fort=1,...,2k, the corresponding f(t) is:

n—t+2—s(e) ift=24j=1,...,m,
f)y=<n—t+1—s(e;) ift=24,7=m+1,...,k, (56)
n—t+1-—s()) ift=2j-1,7=1,...,k.

As in the previous case, i, is defined by (51). To show that i, is well defined and that they
satisfy (55), we only need to observe that

1<s(ej) < n+1-24 j=1,...,m, (57)
0<s(ej) < n+1—(2j+1), j=m+1,...,k, (58)
0<s(e) < n+1-2j, j=1,... k. (59)

Case 3. Thereexistsak, 1 <k < Z,andanm, 0 < m <k — 1, such that

(i) Forallj =1,...,k, p,istherightend-point of ¢;, and pj_, is a fixed point weighted
Z.

(i) Forallj =1,...,m, s(e;) > 0.
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Case 4.

Zz n+4+1

Y

@ o o

e' 6’ e' 6’ N O
k m-41 m 1 Tok 12m+4-2 2m+1
44444444 \\@\\@ %\\@\\@ 1<k<Z, 0<m<k-1

Figure 6: Illustration of case 3.

2 i1

(iii) Forall j = 1,...,m, p; is the right end-point of e}, p,,,1 is a fixed point weighted

y,and forall j = m +2,...,k + 1 p; is the right end-point of €_,.

The situation is depicted in Figure 6. In this case, we have

G OB+ (@) +2mt1 2k (m+1)

we q " Y,

wE = qk . qu:l S(ej) . .T,

le‘ = qk . qZ?:l S(e;‘) . y

Hence, we need to pick o so that

Fort=1,...,2k, the corresponding f(t) is:
n—t+2—s(e ift=25,7=1,...,m,

J() = n—t+1—s(e

(€;)
n—t+1-s(e) ift=25,j=m+1,...,k,
(¢) ift=2j—1,j=1,...,m.

n—t+1—s(e) ft=2j—-1,j=m+1,... k.

(60)
(61)
(62)

(63)

(64)

As in the previous case, i, is defined by (51). To show that i, is well defined and that they

satisfy (63), we only need to observe that

1<s(ej) < n+1-2j, j=1,...,m, (65)
0<s(ej) < n+1-2j, j=m+1,... .k, (66)
0<s(e)) < n+1-2j, j=1,...,m, (67)
0<s(e;) < n+l1=(2j+1), j=m+1,... k (68)
There existsa &, 0 < k < ®- and an m, 0 < m < k, such that
(i) Forall j =1,...,m, p; is the right end-point of e;, and s(e;) > 0. Moreover, p,, 1

and py- are fixed points weighted z. Forall j = m + 2,...,k + 1, p; is the right

end-point of e;_;.
(i) Forall j =1,...,k + 1, p’; is the right end-point of ¢’.

The situation is depicted in Figure 7. In this case, we have

qI(U,R)+I(0')+2m L 2hriem g2

Weo = T,
_ k b s(e; 2
U}E = q -qzj_l (J)ZC ,
k+1 7
wjg = qk_H . qzj:l S(ej).
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Case 5.

Figure 7: Illustration of case 4.

Hence, we need to pick o so that

I({U,R) + I(0) = Z s(e;) + Z s(e}) — m.

Fort=1,...,2k + 1, the corresponding f(¢) is:

n—t+2—s(e;) ift=24,j=1,....,m,
fO)=<Sn—t+1—s(e;) ift=24,j=m+1,...,k,

n—t+1-s() ift=2j-1,j=1,...,k+1

(72)

(73)

As in the previous case, i, is defined by (51). To show that i, is well defined and that they

satisfy (72), we only need to observe that

1<s(e) < n+1-2j, j=1,...,m,
0<s(ej) < n+l1—(2j+1), j=m+1,...,k,
0<s(ef) < n+1-25 j=1,...k+1

There existsa k, 0 < k < "5 ‘and anm, 0 < m < k, such that

(74)
(75)
(76)

(i) Forall j =1,...,m, pj is the right end-point of ). Moreover, p;, ., and p;,, are
fixed points weighted y. Forall j = m +2,...,k + 1, pj is the right end-point of

e

7—1
(if) Forall j =1,...,k + 1, p; is the right end-point of e;.
(iii) Forall j =1,...,m, s(ej) > 0.

The situation is depicted in Figure 8. In this case, we have

k1 X

1 Y
! 7 7 7 (/J
k m m SITINER (€ S <9—Q§
! { C%k 12k 12m41 i
41 1
"""" & bbb b 0<k< ™3, 0<m<k

Figure 8: Illustration of case 5.

we = qI(U,R)+I(U)+2m—|—1 _q2k+1—(m+1) _yQ’
wg = ¢**- quill s(e),
wly = & q ki s(e)) 2.
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Hence, we need to pick o so that

I({U,R) + I(0) = Z s(e;) + Z s(e}) — m. (80)

Fort=1,...,2k + 1, the corresponding f(¢) is:

n—t+2—s(e;) ift=24,j5j=1,...,m,
n—t+1—s(e) ift=2j,j=m+1,...,k,
f(t) = A : . (81)
n—t+1l—s(e) ift=2j-1,j=1,...,m,
n—t+1—s(e;) ift=2j—-1,j=m+1,...,k+1.

As in the previous case, i, is defined by (51). To show that i, is well defined and that they
satisfy (80), we only need to observe that

1<s(ej) < n+1-24, j=1,...,m, (82)
0<s(ej) < n+1-2j, j=m+1,...,k+1, (83)
0<s(ef) < n+1-25, j=1,...,m, (84)
0<s(e)) < n+1-(27+1), j=m+1,...,k (85)
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