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LITTELMANN’S REFINED DEMAZURE CHARACTER
FORMULA REVISITED

STEEN RYOM-HANSEN

Abstract. We give a purely combinatorial derivation of Littel-
mann’s refined Demazure character formula.

1. Introduction

The Demazure character formula is a generalization of Weyl’s char-
acter formula. It was first stated by Demazure in [D], who showed that
it would follow from a certain string property. However, it turned out
that this property did not hold in the original setting. The first cor-
rect proofs of the formula were therefore given by Andersen, [A] and
Ramanan-Ramanathan [RR], using methods closely related to Frobe-
nius splitting.

This work is concerned with the crystal basis approach to the De-
mazure character formula. In that setting the string property indeed
does hold as demonstrated by Kashiwara in [K1]. We briefly review
the deduction of the character formula from it.

We then go on to show that the string property can be obtained
using only combinatorial properties of the crystals: the Kashiwara op-
erators ẽi, f̃i, together with the ∗-operation. This is different from
the previous deductions of the formula, which use either a representa-
tion theoretical interpretation of the formula or appeal to Littelmann’s
path models. Our deduction should be contrasted with the remarks
following Proposition 6.3.10 in Joseph’s book, [J1].

I would like to thank the referee for many useful suggestions.

2. The refined Demazure character formula

2.1. Let us briefly recall the notion of crystal as introduced by Kashi-
wara. We refer to [K1,K2,J] for all unexplained notation. Let C :=
(ci,j)i,j∈I be a generalized Cartan matrix. Crystals are certain combi-
natorial objects associated to C. They consist of a set B with maps
ẽi, f̃i : B → B ∪ {0} and maps εi, ϕi : B → Z ∪ {−∞}, wti : B → P ,
∀i ∈ I, that satisfy certain conditions.
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There is a crystal B(λ) associated to the Weyl module V (λ) of the
quantized universal algebra Uq(g). The limit crystal is called B(∞).

Given two crystals B1 and B2 one can make B1 ×B2 into a crystal,
which is called the tensor product B1 ⊗B2. For example we have that

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 otherwise.

There is also a sum construction. (But notice that not all crystals
arise from the representation theoretical crystals using such construc-
tions).

We shall mainly view crystals as combinatorial objects in the above
sense, but shall also appeal to Kashiwara’s ∗-operation on B(∞) (see
[K1]). We first of all need the following property: for all i ∈ I there is
an injective morphism of crystals Ψi : B(∞) → B(∞)⊗Bi where Bi is
the crystal defined in example 1.2.6. of [K1]. It satisfies the following
conditions

Ψi : u∞ 7→ u∞ ⊗ bi,(2.1.1)

Ψi(f̃
∗
i b) = b′ ⊗ f̃ib

′′ where Ψi(b) = b′ ⊗ b′′,(2.1.2)

f̃iΨi(b) = Ψi(f̃ib) and ẽiΨi(b) = Ψi(ẽib),(2.1.3)

where u∞ is the unique element of B∞ of weight 0, and where B(∞)⊗Bi

has the above structure of a tensor product. Joseph has given a purely
combinatorial proof of the existence of Ψi, [J2].

Now, for a reduced expression sinsin−1 . . . si1 of the Weyl group ele-
ment w, we define Bw(∞) ⊂ B(∞) and Bw(λ) ⊂ B(λ) in the following
recursive way

Bw(∞) :=
⋃
k

f̃k
inBsinw(∞), B1(∞) := {u∞},

Bw(λ) :=
⋃
k

f̃k
inBsinw(λ), B1(λ) := {uλ}.

A priori, these definitions might depend on the choice of reduced ex-
pression sinsin−1 . . . si1 of w. We shall later show that in fact Bw(∞)
and Bw(λ) are independent of this choice.

2.2. Let Di be the additive operator on Z[B(λ)] given by

Dib =

{ ∑
0≤k≤wti(b)

f̃k
i b if wti(b) ≥ 0,

−
∑

1≤k≤−wti(b)−1 ẽk
i b if wti(b) < 0.
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Then the refined Demazure character formula, [K1,L1], is the following
equality in Z[B(λ)]

(2.2.1)
∑

b∈Bw(λ)

b = DinDin−1 . . .Di1uλ.

The Di’s induce the usual Demazure operators on the group ring
of the weight lattice Z[P ] under the weight map w : Z[B(λ)] → Z[P ].
Thus, if W is finite and we take w = w0 the longest element of the Weyl
group, (2.2.1) generalizes the original Demazure expression of the Weyl
character, see e.g. [A].

2.3. In the rest of this section we shall review Kashiwara’s proof of
(2.2.1). The idea is to reduce to the verification of the following three
properties of Bw(λ):

(1) B∗
w(∞) = Bw−1(∞),

(2) ẽiBw(∞) ⊂ Bw(∞) ∪ {0} ∀i ∈ I,

(3) f̃jb ∈ Bw(∞) ⇒ f̃k
j b ∈ Bw(∞) ∀b ∈ Bw(∞),∀k ∈ N,∀j ∈ I .

Let us denote any subset of B(∞) or of B(λ) an i-string if it is of
the form

(2.3.1) S = {f̃k
i b | k ≥ 0, where b ∈ B(λ) satisfies ẽib = 0}.

We call b the highest weight vector of S. The key “Demazure string
property” of these i-strings is then the following: for any i-string S ⊂
B(∞) we have that

(2.3.2) Bw(∞) ∩ S is either S or {b} or the empty set .

This is seen by combining (2) and (3).

2.4. The string property is also valid for B(λ): to see this one defines
for λ ∈ P the crystal on one element Tλ := {tλ} as follows:

wti(tλ) = 〈λ, αi〉 εi(tλ) = −∞, ϕi(tλ) = −∞,

ẽi(tλ) = 0 = f̃i(tλ).

Let λ ∈ P+. Then uλ 7→ u∞ ⊗ tλ defines an embedding of crystals
ιλ : B(λ) 7→ B(∞)⊗ Tλ that commutes with the ẽi’s.

Now, Bw(λ) is the inverse image of Bw(∞)⊗ Tλ under ιλ. Further-
more, the inverse image under ιλ of an i-string for B(∞) is an i-string
for B(λ). Thus (2.3.2) implies the string property for B(λ).



4 STEEN RYOM–HANSEN

2.5. For completeness we now include Kashiwara’s proof of the fol-
lowing lemma.

Lemma 2.1. The refined Demazure formula (2.2.1) follows from the
string property for B(λ).

Proof. If ẽib = 0 for b ∈ B(λ) then clearly Dib is an i-string having b
as its highest weight vector. Moreover, an easy calculation shows that
DiS = S for S any i-string. Now Theorem 2 of [K2] says that

(2.5.1) B(λ) =
⋃

ki≥0,ji∈I,m≥0

f̃km
jm

f̃
km−1

jm−1
. . . f̃k1

j1
uλ.

Hence, B(λ) is the disjoint union of i-strings for any i ∈ I, since i-
strings are either disjoint or coincide.

We now prove (2.2.1) by induction on l(w). We thus assume the
formula for sinw = sin−1sin−2 . . . si1 and need to check the equality

(2.5.2)
∑

b∈Bw(λ)

b = Din

( ∑
b∈Bsinw(λ)

b
)
.

As Di leaves any i-string invariant it is enough to verify the following
equality

(2.5.3)
∑

b∈Bw(λ)∩S

b = Din

( ∑
b∈Bsinw(λ)∩S

b
)
.

Now (2.3.2) severely restricts the shape of these intersections, and even
further restrictions are imposed by the condition

Bw(λ) ∩ S =
⋃
k

f̃k
in(Bsinw(λ) ∩ S),

which is a consequence of the definitions. All together, we are left with
only three possibilities, namely

(1) Bw(λ) ∩ S = Bsinw(λ) ∩ S = ∅,
(2) Bw(λ) ∩ S = Bsinw(λ) ∩ S = S,
(3) Bw(λ) ∩ S = S and Bsinw(λ) ∩ S = {b} where ẽib = 0.

In all three cases it is straightforward to check that (2.5.3) holds true.
�

We have thus reduced ourselves to the verification of (1), (2) and (3)
of 2.3. Kashiwara proves (1) and (2) by realizing the Bw(λ)’s as crystals
of the Demazure modules whereas the proof of the string property
(3) relies on the combinatorial properties of the operators ẽ∗i and f̃ ∗i
together with (1) and (2).
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Here we shall demonstrate that (1) and (2) can be obtained in the
same combinatorial spirit that is employed for (3), that is without
relying on an interpretation of Bw(λ)’s as crystals for any modules.
Now it is known that Littelmanns’s Path model is equivalent to the
crystal combinatorics, see eg. [J1] and references therein, and that (2)
and (3) (which suffice to obtain the string property (2.3.2)) can be
obtained in that setting, [L2]. Still, Joseph remarks on page 181 in [J1]
that it seems extremely difficult to establish (2) purely combinatorially.

3. Properties of Bw(∞)

3.1. Recall the injective morphism Ψi : B(∞) → B(∞) ⊗ Bi from
the previous section. Using its properties (2.1.1), (2.1.2) and (2.1.3)

one can obtain information about the commutation of f̃i and ẽi; this is
illustrated by the following lemma.

Lemma 3.1. For any i, j ∈ I and b ∈ B(∞) we have⋃
k,n

f̃n
i f̃ ∗kj b =

⋃
k,n

f̃ ∗kj f̃n
i b.

Proof. If i 6= j then by Corollary 2.2.2 of [K1] f̃i and f̃ ∗j commute and
there is nothing to prove. So we assume i = j. Write

Ψi(b) = b0 ⊗ f̃m
i bi,

and let ϕ := ϕi(b0) and ε := m. Now, Ψi is an embedding so to show
the equality of the lemma it is enough to see that both sides have the
same image under Ψi. So we replace b by b0 ⊗ f̃m

i bi and keep in mind

that the action of f̃ ∗kj is on the right factor while f̃i acts as on a tensor
product.

Let now Ψi(b) = b0 ⊗ f̃m
i bi be represented as a point in the crystal

graph associated to B(∞)⊗Bi. The crystal graph is a representation

of the action of f̃i on B(∞) ⊗ Bi, so there is an arrow between two

points in the graph if f̃i carries the corresponding crystal elements to
each other.

If ϕ ≤ m the action of f̃i is on the second factor and there is a
horizontal arrow leaving b0 ⊗ f̃m

i bi and if ϕ > m there is a vertical

arrow leaving b0 ⊗ f̃m
i bi

One typically gets a picture as the following one.



6 STEEN RYOM–HANSEN

Bi

B(∞)
∗ ∗ ∗ ∗ → ∗ → ∗ → ∗ → ∗
↓ ↓ ↓
∗ ∗ ∗ → ∗ → ∗ → ∗ → ∗ → ∗
↓ ↓
∗ ∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗
↓
∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗

The subset of B(λ) , ⋃
k

f̃k
i (b0 ⊗ f̃m

i bi),

is represented by the points of the graph that can be hit by a sequence
of arrows starting in b0 ⊗ f̃m

i bi.

On the other hand the action of f̃ ∗i is always on the second factor of

the tensor product, so f̃ ∗i always takes a point in the graph to its right
neighbour. Using this information one can now calculate the two sides
of the lemma; in both cases one gets the infinite rectangle whose upper
left corner is Ψi(b) = b0⊗ f̃m

i bi and whose lower left corner is the point

below b0 ⊗ f̃m
i bi in which the arrows change direction. The lemma is

proved. �

3.2. We can use the above to show the following result.

Theorem 3.2. Bw(∞) =
⋃

k1,...kn
f̃ ∗k1

i1
. . . f̃ ∗kn

in
u∞.

Proof. By definition f̃ ∗ki u∞ = f̃k
i u∞ for all k and all i. So we get that

Bw(∞) =
⋃

k1,...kn

f̃kn
in

. . . f̃k2
i2

f̃ ∗k1
i1

u∞.

Using Lemma 2.1 we can move f̃ ∗k1
i1

to the front position. We then

proceed with f̃k2
i2

etc. The theorem is proved. �
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3.3. We can now deduce the property (1) of Bw(∞):

Corollary 3.3. B∗
w(∞) = Bw−1(∞).

Proof. Let b ∈ Bw(∞), i.e. b = f̃kn
in

. . . f̃k1
i1

u∞ for some k1, . . . kn. The

definition of f̃ ∗i then gives that

b∗ = f̃ ∗kn
in

f̃
∗kn−1

in−1
. . . f̃ ∗k1

i1
u∞

But from Theorem 3.2 we see that b∗ ∈ Bw−1(∞) and the corollary is
proved. �

3.4. We shall now consider the property (2). To that end we prove
the following lemma

Lemma 3.4. For all i, j ∈ I and for all b ∈ B(∞) we have that

ẽi

⋃
k

f̃ ∗kj b ⊂
⋃
k

f̃ ∗kj ẽib ∪
⋃
k

f̃ ∗kj b ∪ {0}

Proof. Again only the case i = j is nontrivial; otherwise ẽi and f̃ ∗j
commute. We apply the morphism Ψi to both sides of the lemma and
can then check the inclusion in the crystal graph:

Bi

B(∞)
∗ ∗ ∗ ∗ → ∗ → ∗ → ∗ → ∗
↓ ↓ ↓
∗ ∗ ∗ → ∗ → ∗ → ∗ → ∗ → ∗
↓ ↓
∗ ∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗
↓
∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗

The graph is infinite to the right. We understand that ẽib = 0 if
there is no arrow ending at the point corresponding to b. Again, f̃ ∗i
acts by shifting a b to the right while f̃i follows the arrows (and hence
ẽi follows the arrows in negative direction).

Let us start out by verifying that there are no points missing in the
above picture. So we must check that if the arrow leaving b is vertical
and there is no arrow ending at b then neither should there be any
arrow ending at b’s right neighbour.
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Let thus b be as indicated and write Ψi(b) = b0⊗ f̃m
i bi. Then ϕ(b0) >

ε(f̃m
i bi) = m because the arrow leaving b is vertical. Now ẽi(b) = 0

implies that ẽi(b0) = 0 because Ψi commutes with ẽi and no element

of Bi is mapped to 0 under ẽi. Since ϕ(b0) ≥ ε(f̃m+1
i bi) we indeed get

that

ẽi(Ψi(f̃
∗
i b)) = ẽi(b0 ⊗ f̃m+1

i bi) = ẽib0 ⊗ f̃m+1
i bi = 0

We now split the verification of the lemma into several cases. Firstly
we consider the case of a b with ẽi(b) = 0. Then the left hand side
of the lemma consists of those points in the row of b from which a
horizontal arrow is leaving. But this is contained in the right hand side
of the lemma.

Then we consider the case of a vertical arrow entering and a vertical
arrow leaving b. In that case the left hand side of the lemma consists
of all the points that are positioned to the right of b (including b itself)
together with the points in the row above b that have an arrow leading
into one of the first points. In addition, the right hand side consists
of the first points together with their upper neighbours. Thus the
inclusion also holds in this case.

We then consider the case of a vertical arrow entering and a hori-
zontal arrow leaving b. Then the left hand side of the lemma consists
of the points positioned to the right of b together with b itself and its
immediate predecessor. This is contained in the right hand side of the
lemma (only the k = 0 part of the first union is needed).

Finally we consider the case of horizontal arrows entering as well as
leaving b. In that case the left hand side consists of all points to the
right of b together with b’s immediate predecessor, which is included in
the right hand side (only the first union is needed). �

3.5. We can now show the property (2) of Bw(∞):

Theorem 3.5. For i ∈ I we have ẽiBw(∞) ⊂ Bw(∞) ∪ {0}

Proof. We argue by induction on l(w) and thus assume the theorem
for l(w)− 1. By Theorem 3.2 Bw(∞) satisfies the equality

Bw(∞) =
⋃
k1

f̃ ∗ki
i1

Bwsi1
(∞)

By induction hypothesis ẽiBwsi1
(∞) ⊂ Bwsi1

(∞) ∪ {0}. Combining
this with lemma 3.4 we obtain the induction step. The theorem is
proved. �
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4. The Braid Relations

In this section we verify that the crystal Demazure operators Di

satisfy the braid relations on dominant weights. From this it follows
that Bw(λ) is independent of the choice of reduced expression for w.
Note that Kashiwara has observed that the Di do not satisfy the braid
relations in general.

4.1. Since W is a Weyl group, it is enough to check the braid relations
for W of type A2, B2 or G2. Indeed, for

w = w1siksik−1
sikw2 = w1sik−1

siksik−1
w2

a braid relation of type A2 it is enough to check the case w1 = 1. By
the refined sum formula (2.2.1) applied to w2 one should then show
that

(4.1.1) DikDik−1
Dik

 ∑
b∈Bw2 (λ)

b

 = Dik−1
DikDik−1

 ∑
b∈Bw2 (λ)

b

 .

Using (2.2.1) once more, the left hand side of this is the sum over all
elements of Bsksk−1skw2(λ) while the right hand side is the sum over the
elements of Bsk−1sksk−1w2(λ). We write w2 = silsil−1

. . . si1 and get then
by repeated use of Lemma 3.1 like in Theorem 3.2 that

Bsksk−1skw2(λ) =
⋃

k1,...kl

f̃ ∗k1
i1

. . . f̃
∗kl−1

il−1
f̃ ∗kl

il
Bsksk−1sk

(λ).

Similarly, the right hand side of (4.1.1) is the sum over⋃
k1,...kl

f̃ ∗k1
i1

. . . f̃
∗kl−1

il−1
f̃ ∗kl

il
Bsksk−1sk

(λ).

The A2-case of the braid relations then implies (4.1.1). Similarly, one
reduces the other braid relations to rank 2 cases.

4.2. To check the A2, B2 or G2 cases, we appeal to the representation
theoretical interpretation of B(λ) as basis at q = 0 of the irreducible
highest weight module V (λ) for the quantum group Uq(g).

Let us consider the A2-case and write λ = (λ1, λ2) in terms of the

fundamental weights (ω1, ω2). Then f̃λ2
1 uλ is nonzero, since it is the

lowest element of the 2-string with highest element uλ. But by weight
considerations f̃λ2

1 uλ must be mapped to 0 under ẽ1 and therefore it is

the highest element of the 1-string, whose lowest element is f̃λ1+λ2
2 f̃λ1

1 uλ

and especially nonzero. Continuing, we find that

f̃λ2
1 f̃λ1+λ2

2 f̃λ1
1 uλ ∈ Bs1s2s1(λ) ⊂ B(λ)
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is nonzero. The lowest weight vector space of V (λ) is one dimensional
and so this element is the unique lowest element if B(λ) .

Now, by (2) of (2.3), Bs1s2s1(λ) is invariant under all the ẽi operators.
Since it moreover contains the lowest element, it must be equal to all of
B(λ). The same conclusion holds for Bs2s1s2(λ) and then Bs2s1s2(λ) =
Bs1s2s1(λ) as promised.
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