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A Littlewood-Richardson rule for evaluation
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Abstract

We give a combinatorial description of the composition factors of the induction prod-
uct of two evaluation modules of the affine lwahori-Hecke algebra of &/pg,. Us-

ing quantum affine Schur-Weyl duality, this yields a combinatorial description of the
composition factors of the tensor product of two evaluation modules of the quantum
affine algebrdfq(gln).

1 Introduction

1.1 Let H,, denote the Iwahori-Hecke algebra of tyge, ; over C(t). This is a
semisimple associative algebra isomorphic to the group algébras,,| of the sym-
metric group. Hence its simple modulgé)) are parametrized by the partitionsof m.
Consider a decomposition = m; + ms, and two partitions\('! and\? of m, andms,
respectively. Then we haveH,,,-module S(A\V)) and aH,,,-moduleS(\?), and we
can form the induced module

SAM)© SA?) i=Tndj" oy, (SAV) @ 5(AP)).
Here,H,,, ® H,,, is identified to a subalgebra &f,,, in the standard way. Using again the
isomorphismH,,, = C(t)[&,,], we see that the multiplicity of a simplé,,,-moduleS ()
in S(AY) ® S(A@) is equal to the classical Littlewood-Richardson coefficiéft ,
(seee.g.[Mcd)).



1.2 Let now H,, be the affine Iwahori-Hecke algebra ovéft) (see 2.1 below). For
each invertible: € C(¢) we have a surjectivevaluation homomorphism : H, — H,,
Pulling back the simplé,,,-moduleS(\) via 7, we obtain a simpleﬁm-moduleS(A; 2)
called arevaluation moduleln analogX with 1.1, given two invertible elementsandz,
of C(t), we can then form the induced,,-module

SO 2) © S(AY; ) = Indg:l@)ﬁm2 (SAY;21) ® S(A\P; 25)) .
It turns out that if we fixA\(), A\) and vary the spectral parametessz,, this module
is generically irreducible, that is, it is simple except for a finite number of values of the
ratio z;/z. In [LNT, Theorem 36] a combinatorial description of these special values
was given.

In this note we shall make this result more precise by describing all the composi-
tion factors ofS(A\W; ;) ® S(A?); 2,) at these critical values, /z,. We shall also prove
that, in contrast with the classical Littlewood-Richardson rule, all the composition factors
appear with multiplicity one. The composition factors occuring in a product will be de-
scribed using the combinatorics of Lusztiggmbols that is, of certain two-row arrays
introduced by Lusztig for parametrizing the irreducible complex representations of the
classical reductive groups over finite fieldsil, Lu2].

1.3 We will derive our combinatorial formula from some explicit calculations of canon-
ical bases in level 2 representations of the quantum aldélied, ;) performed in LM ].

More precisely, by dualizingfM , Theorem 3], we get a formula for the expansion of the
product of two quantum flag minors on the dual canonical badis @f,,. ;) (Theorem 5).
Using then Ariki’s theorem as inLNT ], we obtain immediately the above-mentioned
Littlewood-Richardson rule for induction products of two evaluation modules over affine
Hecke algebras (Theorem 2).

Finally, by means of the quantum affine analogue of the Schur-Weyl duality developed
by Cherednik, Chari-Pressley and Ginzburg-Reshetikhin-Vasserot, we can deduce from
this rule a similar one for the tensor product of two evaluation modules over the quantum
affine algebrd/,(sly).

2 Composition factors of inducedH,,,-modules

2.1 Let H,, be the affine Hecke algebra of tyger,, over C(t). It has invertible
generatordy, ..., 1,1, 1, - - ., Yn Subject to the relations

1T = T TiTon,  (1<i<m—2),
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(T, — )(T; +1) = 0, (1<i<m—1),
YiY; = Y; Y, (1 < Z?] < m)7
ij‘i:T;yja (]7&@72—"1)7
Tyl = tyiya, (1<i<m-—1).

The subalgebrd/,, generated by thé;'s is the Iwahori-Hecke algebra of typ&,, ;.
For any invertiblez € C(t) we have a unique algebra homomorphism H,, — H,,
such that
Tz(T‘z):T; TZ(yl):Z7 (2:177m_1)

This is called theevaluation atz. R R
We also have an algebra automorphism H,, — H,, such that

o.(T;) =T, o.(y;) = 2y, (t=1,...,m—1).

This is called theshift by z.

2.2 As mentioned in the introduction, given two partitiokid) and\(*), the structure
of the inducedH,,,-module
SOAW: 2)) © S(AP; 2,)

depends essentially on the ratip/z,. Indeed, by twisting this module with the shift
automorphisno, we obtain the induced module

SAW; 221) © S(AP); 22).

For example, it is known that if, /2, ¢ t“ thenS(AM): z1) ©® S(A?); z,) is irreducible.
Therefore, we can assume without loss of generality that

=1%o, €L, a; =\, (i=1,2), (1)

where as usual(\) denotes the length of the partition SinceS(A"); z;) ® S(A?): z,)
andS(A\?; z,) © S(AW; ;) have the same composition factors with the same muiltiplici-
ties, we can also assume that< a,.

2.3 It will be convenient to write partitions in weakipcreasingorder. Given a parti-
tion A and an integet > ¢(\) we can make\ into a non-decreasing sequerige, ..., \,)



of lengtha by setting\; = 0for j =1,...,a — ¢()\). We can then associate (9, ) the
increasing sequence

B:(ﬁlw"JﬁG)? ﬁ]:j—i_)\J (2)
In this way, given(\®) a;) (i = 1,2) as in 2.2, we obtain aymbol
e B, B
5= () = (G2 ) ©

For example, the symbol attached to the p&jts1,2),3) and((2,3),5) is
1 2 3 6 8
5= (2 3 5 )
Conversely, given a symbdl|, i.e. a two-row array as in Eq. (3) with
1< gl << g (i=1,2)

there is a unique pai\¥, a;) (i = 1,2) whose symbol isS.

2.4  The symbolS of Eq. (3) is said to betandardif 3* < 8\ for k < ay. In [LM,
§2.5] we have defined theairs of a standard symbd, and the sef(S) of all symbols
Y. obtained fromS by permuting some of its pairs. As shown iIotM , Lemma 9], these
notions are equivalent to the notion of admissible involution of Lusxtigt].

For the convenience of the reader we shall recall these definitionsy ge(f) be a
standard symbol. We define an injection v — 3 such that)(j) < jforall j € ~. To
do so it is enough to describe the subsets

Y={evlvG) =i-1, (0<I<n).
We sety? = v N 3 and forl > 1 we put

V=Uer-0"U Uy i -leB -y U Uy
Observe that the standardnessSsamplies thaty is well-defined.

135 8 9
S_(36710 )

W ={3}, v ={6,10}, ¥ = =7"=0, 7" = {7}.

Example 1 Take

Then

Hence

¥(3) =3, ¥(6) =5, ¥(7) =1, ¥(10) = 9.
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The pairs(j, (7)) with ¥ () # j (thatis,j € 5 N ~) will be called the pairs of.
Given a standard symbslwith p pairs, we denote bg(S) the set of all symbols obtained
from S by permuting some pairs ifi and reordering the rows. We consideitself as an
element ofC(S), henceC(S) has cardinality?.

2.5 Given a partition\ and an integer. we call Young diagram of )\, a) the Young
diagram of) in which each celli, j) is filled with the integet — j + a. For instance, if
A = (2,3) anda = 5 then the Young diagram @f, a) is

415
5167

The rows of the Young diagram ¢A, «) yield amultisegment
m(\a) = > [kk+X —1].
1<k<a

This is a formal sum (or multiset) of intervals# in which we discard the empty intervals
corresponding to thé’s with A, = 0. Thus, continuing with the same example, we have

m((2,3),5) = [4,5] + [5,7).
Similarly, we attach to a pait\”, a;) (i = 1,2) or to its symbolS the multisegment

m(S) = m(A\Y, a1) + m(A? ay).

2.6 To each multisegment

m = [, 5]

k

is attached an irreduciblg,,-moduleL,,, wherem = > w(Br+1—ay) (seee.q.[LNT,

§2.1]).

2.7 Letus assume that the paix(*), q;) (i = 1,2) satisfies the conditions of 2.2. Let
Y. denote the symbol attached to this pair. We can now state:

Theorem 2 The composition factors f(A(V); t%1) ® S(A?); t%2) are the moduled, s
where S runs through the set of standard symbols such that C(S). Each of them
occurs with multiplicity one.



Theorem 2 will be deduced from Theorem 5 below.

Example 3 Let (A1) a;) = ((1,4),2) and(A\? ay) = ((1,2,3),4). The corresponding

symbol is
1 3 5 7
S (2 ’ )

The standard symbols$ such that: € C(S) are

1 2 5 6 1 2 5 7 1 3 5 6 1 3 5 7
37 " \3 6 T\2 7 " \2 6 '

It follows that the composition factors 6f((1,4); %) ® S((1,2, 3); t*) are theL,, where
m is one the following multisegments:

n; = [1,2] +[2,6] + [3,4] + [4,5], mny=[1,2] +[2,5] + [3,4] + [4, 6],

ng = [1,1] 4+ (2,2 + [2,6] + [3,4] + [4,5], na=[1,1]+[22] +[2,5 +[3,4] + [4,6].

2.8 By restriction to the finite Hecke algebfa,, the irreducibleﬁm-moduIesLm(S)
decompose into direct sums of Specht modules. The sum of all these Specht modules is
given by the (classical) Littlewood-Richardson rule for the prodi@t")) ® S(A®). It

would be interesting to find a combinatorial description of the splitting(of"))®.S (A?))

thus obtained.

Example 4 Let us continue Example 3. The restrictionsHg, of the 4 irreducibleﬁu-
modules are as follows:

Lo, | = S(1,3,7)®S(2,2,7) @ S(2,3,6) @ S(1,1,3,6)
@ S(1,2,2,6) ® S(1,2,3,5) @ S(2,2,2,5)
Lo, | = S(1,4,6)® S(2,3,6) ® S(2,4,5) @ S(1,1,4,5) & S(1,2,3,5)
@ S(1,2,4,4) B S(3,3,5) B S(1,3,3,4) @ 5(2,2,3,4),
Lo, | = S(1,1,2,7)® 5(1,2,2,6) & S(1,1,1,2,6) @ 5(1,1,2,2,5),
Lo, | = S(1,1,3,6) ® S(1,2,3,5) @ S(1,1,1,3,5) @ 5(1,1,2,3,4).

This gives a splitting o5 (1,4) ® S(1, 2, 3).



3 Canonical bases

3.1 Fixn > 2and letg = sl,,;. We consider the quantum enveloping algebiyég)
over Q(v) with Chevalley generators;, f;,t; (1 < j < n). The simple roots and the
fundamental weights are denoteddgyandA;. (1 < k£ < n) respectively. The irreducible
representation of/, (g) with highest weight\ is denoted by (A). We denote by/,(n)
the subalgebra df,(g) generated by; (1 < j < n).

3.2 Let B (resp.B*) denote the canonical basigegp.the dual canonical basis) of
Uy(n) ([Lu3], [BZ]; see alsolLNT, §3]). The elements oB andB* are naturally la-
belled by the multisegmenia supported orl, n]. We shall denote them by, andb;,
respectively.

The vector9;, for whichm is of the form

m=m(\ a)

for some partitionh and some integer are callecquantum flag minorsindeed, by BZ],
they can be expressed as quantum minors of a triangular matrix whose entries are iterated
brackets of the;’s (see LNT, §5.2]).

3.3 Let(\9, q;) (i =1,2) be as in 2.2. We also assume that the multisegments

are supported ofi, n]. Let ¥ be the symbol attached to the pak”, a;) (i = 1,2). For
a standard symbdl such that: € C(.S) we denote by:(.5, ) the number of pairs of
which are permuted to gét. Finally, we denote byV;(\, a) the number of cells of the
Young diagram of A, a) containing the intege.

Theorem 5 We have
* * —Ng <2),a n(S, *
b, by = 07T Y S0
S

mj "mso

where the sum runs through all standard symigsuch that: € C(.5).
Example 6 We take(A\("), a;) and(\?), a,) as in Example 3. Hence
m; = [1a1]+[2a5]7 my = [2a2]+[3a4]+[476]

ThenN,, (A?, ay) = Ny((1,2,3),4) = 1, and we obtain, using the notation of Exam-
ple 3,
by, b, = v (0705, + 0}, + 0], +b5).
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3.4 Proof of Theorem 5Following [LNT, §7.2], we will replace calculations of prod-
ucts of elements dB* by calculations of dual canonical bases of finite-dimensional rep-
resentations of/,(g).

3.4.1 LetU,(n") denote the subalgebra bf,(g) generated by thé;'s, and letr — *
denote the algebra isomorphism fréf(n) to U,(n~) defined bye! = f; (i = 1,...,n).
Let A be a dominant integral weight and let be a highest weight vector of the irre-
ducible modulel’(A). Then the mapr, : « — z*u, projects the canonical basi® of
U,(n) to the union of the canonical badB{A) of V/(A) with the set{0}. The dual map
7 gives an embedding of the dual canonical b#sisA) of 1V(A) ~ V(A)* into the dual
canonical basi8* of U, (n) ~ U,(n)*.

3.4.2 In particular the subset @* obtained by embedding the bad@yA,) (1 < a <

n) of the fundamental representations is precisely the subset of quantum flag minors. It
is well known thatV’(A,) is a minuscule representation whose ba3és\,) andB(A,)
coincide. Moreover the elements of these bases are naturally labelled by thé\pajrs
whose Young diagram (as defined in 2.5) contains only cells numbered by integers be-
tweenl andn. Denoting them byy, ,, we have

Wza(bfx7a)) = b:jn()\,a)
Equivalently, we can also label the element86fA,) by one-row symbolg as in Eq. (2)

3.4.3 Similarly, the basi®*(A,,) ® B*(A,,) is naturally labelled by the set of symbols
Sasin Eq. (3) With@éﬁ.) < n+1 (i = 1,2). Using the theory of crystal bases], K2]

one can see that the ba®83(A,, + A,,) has a natural labelling by the subset of standard
symbols [M, §2.3]. Moreover, denoting by the element oB*(A,, + A,,) labelled by
the standard symbd we have, using also the notation of 2.5,

7T7§01+A,12 (05) = bins)-

344 Leti: V(A +A,,) — V(A,)®V(A,,) be thelU,(g)-module embedding which
mapsua, +a,, 0ux, @ua,,,andlet” : V(A,, ) @ V(Ay,) — V(Ag, + Ag,) be its dual.
Letb; € B*(A,,) (¢ = 1,2) and denote by;, = 73 (b;) (¢ = 1,2) the corresponding
quantum flag minors. It is shown ilLNT, §7.2.7] that the image dff ® b under the
composition of maps;alﬂa2 o.* coincides up to a power afwith the producby, b7, .
Hence to calculate thB*-expansion ob;, b}, itis enough to calculate the matrix of the
map.* with respect to the basé&®*(A,,) ® B*(A,,) andB*(A,, + Aq,).
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3.4.5 The matrix of. with respect to the bas@¥(A,, + A,,) andB(A,,) ® B(A,,) was
calculated in [M, Theorem 3] in terms of Lusztig’s symbols. Transposing this matrix
we obtain the desired matrix of. Using 3.4.2 and 3.4.3, we then get the formula of
Theorem 5. O

3.5 Proof of Theorem 2By [LNT, §3.7] the multisegments indexing the compo-
sition factorsL,, of S(A(M;t41) © S(A?); %) are those occuring in the right-hand side
of the formula of Theorem 5. Moreover the composition multiplicities are obtained by
specializingv to 1 in the coefficients of this formula. Hence they are all equdl.to O

AN

4 Tensor products ofU,(sly)-modules

4.1 LetU, (sly) be the quantized affine algebra of ty4@§)_1 with parametey a square
root of ¢ (see for example(P] for the defining relations qu(sA[N)). The quantum
affine Schur-Weyl duality betweef,,, anqu(sT[N) [CP, Ch, GRV] gives a functotF,,, y
from the category of finite-dimensionf!m-modules to the category of levelfinite-
dimensional representations U;(E[N). If N > m, F,, y maps the simple modules of
H,, to simple modules dr]q(sA[N). However, the image of a non-zero simple,-module
may be the zer@fq(;[N)-module. More precisely, the simpﬁin-moduleLm is mapped
to a non-zero simpléfq(sA[N)-moduIe if and only if all the segments occuringrin have
length<< N — 1. In this case the Drinfeld polynomials %, v (L.,) are easily calculated
from m (see CP]).

The functorF,, y transforms induction product into tensor product, that is Marin
Cm, @andMs in C,,, one has

Fontman(My © M) = Frpy N(M1) @ Frny N(Ma) .

4.2 Theimage undef,, y of an evaluation module fd?im is an evaluation module for

Uq(sA[N), and all evaluation modules di)fq(sA[N) can be obtained in this way, by varying
m € N*,

4.3 By application of the Schur functaF,, y to Theorem 2 we thus obtain a com-
binatorial description of all composition factors of the tensor product of two evaluation
modules ofU/,(sly).



Example 7 We continue Example 3 and Example 6. The image offflgaemoduleLml

~

underFs; y is the evaluation modul€ (m,) of U, (sly) with Drinfeld polynomials

Pi(u) =
PQ (U) =
P4<U> =

u—q?

Py(u) = 1,
u—q 7,

1, 6<k<N-1).

This is a non-zero module if and only ¥ > 5. Similarly, the image of théls-module
L, underF; v is the evaluation modul&(ms,) of U, (sl ) with Drinfeld polynomials

Pi(u) =
Py(u) =
Py(u) =
Py(u) =
This is a non-zero module if and

Ly, Ly, Limgy Lm, UnderFi; y are
spective Drinfeld polynomials

4

U—q_,
-7
u—q ,
—-10
uU—dq )

1, A<k<N-1).

only W > 4. The images of theﬁn-modules
the module¥ (n;), V(ny), V(n3), V(n,) with re-

17

(u—q ) (u—q ) u—q"),
P4(U> = 1,

u_q_87

1, 6<k<N-1)

1,

(u—q ) (u—q7"),
u_q—l()’

u—q 7,

1, 5<k<N-1);

1, 6<k<N-1)
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Pi(u) = (u—q ) (u—q™),
Py(u) = u—gq,

Py(u) = u—q 0

Py(u) = U—C]_7>

Pi(u) = 1, G <K<ESN-1).

The moduled/(n,) andV (n3) are non-zero only ifV > 6. HenceV (m;) ® V(msy) has
only two composition factor¥ (ny) andV (n4) for N = 5, and four composition factors
V(nl), V(Ilg), V(ng), V(n4) for N = 6.

4.4 We note that our result implies the following

Theorem 8 All composition factors of the tensor product of two evaluation modules of
U,(slx) occur with multiplicity one.
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