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A Littlewood-Richardson rule for evaluation
representations ofUq(ŝln)

Bernard LECLERC

Abstract

We give a combinatorial description of the composition factors of the induction prod-
uct of two evaluation modules of the affine Iwahori-Hecke algebra of typeGLm. Us-
ing quantum affine Schur-Weyl duality, this yields a combinatorial description of the
composition factors of the tensor product of two evaluation modules of the quantum
affine algebraUq(ŝln).

1 Introduction

1.1 Let Hm denote the Iwahori-Hecke algebra of typeAm−1 over C(t). This is a
semisimple associative algebra isomorphic to the group algebraC(t)[Sm] of the sym-
metric group. Hence its simple modulesS(λ) are parametrized by the partitionsλ of m.
Consider a decompositionm = m1 +m2, and two partitionsλ(1) andλ(2) of m1 andm2,
respectively. Then we have aHm1-moduleS(λ(1)) and aHm2-moduleS(λ(2)), and we
can form the induced module

S(λ(1))� S(λ(2)) := IndHm
Hm1⊗Hm2

(
S(λ(1))⊗ S(λ(2))

)
.

Here,Hm1⊗Hm2 is identified to a subalgebra ofHm in the standard way. Using again the
isomorphismHm

∼= C(t)[Sm], we see that the multiplicity of a simpleHm-moduleS(µ)
in S(λ(1)) � S(λ(2)) is equal to the classical Littlewood-Richardson coefficientcµ

λ(1)λ(2)

(seee.g. [Mcd]).



1.2 Let now Ĥm be the affine Iwahori-Hecke algebra overC(t) (see 2.1 below). For
each invertiblez ∈ C(t) we have a surjectiveevaluation homomorphismτz : Ĥm → Hm.
Pulling back the simpleHm-moduleS(λ) via τz we obtain a simplêHm-moduleS(λ; z)
called anevaluation module. In analogy with 1.1, given two invertible elementsz1 andz2

of C(t), we can then form the induced̂Hm-module

S(λ(1); z1)� S(λ(2); z2) := IndĤm

Ĥm1⊗Ĥm2

(
S(λ(1); z1)⊗ S(λ(2); z2)

)
.

It turns out that if we fixλ(1), λ(2) and vary the spectral parametersz1, z2, this module
is generically irreducible, that is, it is simple except for a finite number of values of the
ratio z1/z2. In [LNT , Theorem 36] a combinatorial description of these special values
was given.

In this note we shall make this result more precise by describing all the composi-
tion factors ofS(λ(1); z1)� S(λ(2); z2) at these critical valuesz1/z2. We shall also prove
that, in contrast with the classical Littlewood-Richardson rule, all the composition factors
appear with multiplicity one. The composition factors occuring in a product will be de-
scribed using the combinatorics of Lusztig’ssymbols, that is, of certain two-row arrays
introduced by Lusztig for parametrizing the irreducible complex representations of the
classical reductive groups over finite fields [Lu1, Lu2].

1.3 We will derive our combinatorial formula from some explicit calculations of canon-
ical bases in level 2 representations of the quantum algebraUv(sln+1) performed in [LM ].
More precisely, by dualizing [LM , Theorem 3], we get a formula for the expansion of the
product of two quantum flag minors on the dual canonical basis ofUv(sln+1) (Theorem 5).
Using then Ariki’s theorem as in [LNT ], we obtain immediately the above-mentioned
Littlewood-Richardson rule for induction products of two evaluation modules over affine
Hecke algebras (Theorem 2).

Finally, by means of the quantum affine analogue of the Schur-Weyl duality developed
by Cherednik, Chari-Pressley and Ginzburg-Reshetikhin-Vasserot, we can deduce from
this rule a similar one for the tensor product of two evaluation modules over the quantum
affine algebraUq(ŝlN).

2 Composition factors of inducedĤm-modules

2.1 Let Ĥm be the affine Hecke algebra of typeGLm over C(t). It has invertible
generatorsT1, . . . , Tm−1, y1, . . . , ym subject to the relations

TiTi+1Ti = Ti+1TiTi+1, (1 6 i 6 m− 2),
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TiTj = TjTi, (|i− j| > 1),

(Ti − t)(Ti + 1) = 0, (1 6 i 6 m− 1),

yiyj = yjyi, (1 6 i, j 6 m),

yjTi = Tiyj, (j 6= i, i+ 1),

TiyiTi = t yi+1, (1 6 i 6 m− 1).

The subalgebraHm generated by theTi’s is the Iwahori-Hecke algebra of typeAm−1.
For any invertiblez ∈ C(t) we have a unique algebra homomorphismτz : Ĥm → Hm

such that
τz(Ti) = Ti, τz(y1) = z, (i = 1, . . . ,m− 1).

This is called theevaluation atz.
We also have an algebra automorphismσz : Ĥm → Ĥm such that

σz(Ti) = Ti, σz(yi) = zyi, (i = 1, . . . ,m− 1).

This is called theshift byz.

2.2 As mentioned in the introduction, given two partitionsλ(1) andλ(2), the structure
of the inducedĤm-module

S(λ(1); z1)� S(λ(2); z2)

depends essentially on the ratioz1/z2. Indeed, by twisting this module with the shift
automorphismσz we obtain the induced module

S(λ(1); zz1)� S(λ(2); zz2).

For example, it is known that ifz1/z2 6∈ tZ thenS(λ(1); z1) � S(λ(2); z2) is irreducible.
Therefore, we can assume without loss of generality that

zi = tai , ai ∈ Z, ai > `(λ(i)), (i = 1, 2), (1)

where as usual̀(λ) denotes the length of the partitionλ. SinceS(λ(1); z1) � S(λ(2); z2)
andS(λ(2); z2)� S(λ(1); z1) have the same composition factors with the same multiplici-
ties, we can also assume thata1 6 a2.

2.3 It will be convenient to write partitions in weaklyincreasingorder. Given a parti-
tionλ and an integera > `(λ) we can makeλ into a non-decreasing sequence(λ1, . . . , λa)
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of lengtha by settingλj = 0 for j = 1, . . . , a− `(λ). We can then associate to(λ, a) the
increasing sequence

β = (β1, . . . , βa), βj = j + λj. (2)

In this way, given(λ(i), ai) (i = 1, 2) as in 2.2, we obtain asymbol

S =

(
β(2)

β(1)

)
=

(
β

(2)
1 , . . . , β

(2)
a2

β
(1)
1 , . . . , β

(1)
a1

)
. (3)

For example, the symbol attached to the pairs((1, 1, 2), 3) and((2, 3), 5) is

S =

(
1 2 3 6 8
2 3 5

)
.

Conversely, given a symbolS, i.e. a two-row array as in Eq. (3) with

1 6 β
(i)
1 < · · · < β(i)

ai
(i = 1, 2),

there is a unique pair(λ(i), ai) (i = 1, 2) whose symbol isS.

2.4 The symbolS of Eq. (3) is said to bestandardif β(2)
k 6 β

(1)
k for k 6 a1. In [LM ,

§2.5] we have defined thepairs of a standard symbolS, and the setC(S) of all symbols
Σ obtained fromS by permuting some of its pairs. As shown in [LM , Lemma 9], these
notions are equivalent to the notion of admissible involution of Lusztig [Lu4].

For the convenience of the reader we shall recall these definitions. LetS =
(

β
γ

)
be a

standard symbol. We define an injectionψ : γ −→ β such thatψ(j) 6 j for all j ∈ γ. To
do so it is enough to describe the subsets

γl = {j ∈ γ | ψ(j) = j − l}, (0 6 l 6 n).

We setγ0 = γ ∩ β and forl > 1 we put

γl = {j ∈ γ − (γ0 ∪ · · · ∪ γl−1) | j − l ∈ β − ψ(γ0 ∪ · · · ∪ γl−1)}.

Observe that the standardness ofS implies thatψ is well-defined.

Example 1 Take

S =

(
1 3 5 8 9
3 6 7 10

)
.

Then
γ0 = {3}, γ1 = {6, 10}, γ2 = · · · = γ5 = ∅, γ6 = {7}.

Hence
ψ(3) = 3, ψ(6) = 5, ψ(7) = 1, ψ(10) = 9.
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The pairs(j, ψ(j)) with ψ(j) 6= j (that is,j 6∈ β ∩ γ) will be called the pairs ofS.
Given a standard symbolS with p pairs, we denote byC(S) the set of all symbols obtained
from S by permuting some pairs inS and reordering the rows. We considerS itself as an
element ofC(S), henceC(S) has cardinality2p.

2.5 Given a partitionλ and an integera we call Young diagram of(λ, a) the Young
diagram ofλ in which each cell(i, j) is filled with the integeri − j + a. For instance, if
λ = (2, 3) anda = 5 then the Young diagram of(λ, a) is

4 5
5 6 7

The rows of the Young diagram of(λ, a) yield amultisegment

m(λ, a) :=
∑

16k6a

[k, k + λk − 1].

This is a formal sum (or multiset) of intervals inZ, in which we discard the empty intervals
corresponding to thek’s with λk = 0. Thus, continuing with the same example, we have

m((2, 3), 5) = [4, 5] + [5, 7].

Similarly, we attach to a pair(λ(i), ai) (i = 1, 2) or to its symbolS the multisegment

m(S) = m(λ(1), a1) + m(λ(2), a2).

2.6 To each multisegment
m :=

∑
k

[αk, βk]

is attached an irreduciblêHm-moduleLm, wherem =
∑

k(βk + 1− αk) (seee.g.[LNT ,
§2.1]).

2.7 Let us assume that the pair(λ(i), ai) (i = 1, 2) satisfies the conditions of 2.2. Let
Σ denote the symbol attached to this pair. We can now state:

Theorem 2 The composition factors ofS(λ(1); ta1)� S(λ(2); ta2) are the modulesLm(S)

whereS runs through the set of standard symbols such thatΣ ∈ C(S). Each of them
occurs with multiplicity one.
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Theorem 2 will be deduced from Theorem 5 below.

Example 3 Let (λ(1), a1) = ((1, 4), 2) and(λ(2), a2) = ((1, 2, 3), 4). The corresponding
symbol is

Σ =

(
1 3 5 7
2 6

)
.

The standard symbolsS such thatΣ ∈ C(S) are(
1 2 5 6
3 7

)
,

(
1 2 5 7
3 6

)
,

(
1 3 5 6
2 7

)
,

(
1 3 5 7
2 6

)
.

It follows that the composition factors ofS((1, 4); t2)� S((1, 2, 3); t4) are theLm where
m is one the following multisegments:

n1 = [1, 2] + [2, 6] + [3, 4] + [4, 5], n2 = [1, 2] + [2, 5] + [3, 4] + [4, 6],

n3 = [1, 1] + [2, 2] + [2, 6] + [3, 4] + [4, 5], n4 = [1, 1] + [2, 2] + [2, 5] + [3, 4] + [4, 6].

2.8 By restriction to the finite Hecke algebraHm the irreducibleĤm-modulesLm(S)

decompose into direct sums of Specht modules. The sum of all these Specht modules is
given by the (classical) Littlewood-Richardson rule for the productS(λ(1)) � S(λ(2)). It
would be interesting to find a combinatorial description of the splitting ofS(λ(1))�S(λ(2))
thus obtained.

Example 4 Let us continue Example 3. The restrictions toH11 of the 4 irreducibleĤ11-
modules are as follows:

Ln1 ↓ = S(1, 3, 7)⊕ S(2, 2, 7)⊕ S(2, 3, 6)⊕ S(1, 1, 3, 6)

⊕ S(1, 2, 2, 6)⊕ S(1, 2, 3, 5)⊕ S(2, 2, 2, 5),

Ln2 ↓ = S(1, 4, 6)⊕ S(2, 3, 6)⊕ S(2, 4, 5)⊕ S(1, 1, 4, 5)⊕ S(1, 2, 3, 5)

⊕ S(1, 2, 4, 4)⊕ S(3, 3, 5)⊕ S(1, 3, 3, 4)⊕ S(2, 2, 3, 4),

Ln3 ↓ = S(1, 1, 2, 7)⊕ S(1, 2, 2, 6)⊕ S(1, 1, 1, 2, 6)⊕ S(1, 1, 2, 2, 5),

Ln4 ↓ = S(1, 1, 3, 6)⊕ S(1, 2, 3, 5)⊕ S(1, 1, 1, 3, 5)⊕ S(1, 1, 2, 3, 4).

This gives a splitting ofS(1, 4)� S(1, 2, 3).
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3 Canonical bases

3.1 Fix n > 2 and letg = sln+1. We consider the quantum enveloping algebraUv(g)
over Q(v) with Chevalley generatorsej, fj, tj (1 6 j 6 n). The simple roots and the
fundamental weights are denoted byαk andΛk (1 6 k 6 n) respectively. The irreducible
representation ofUv(g) with highest weightΛ is denoted byV (Λ). We denote byUv(n)
the subalgebra ofUv(g) generated byej (1 6 j 6 n).

3.2 Let B (resp.B∗) denote the canonical basis (resp. the dual canonical basis) of
Uv(n) ([Lu3], [BZ]; see also [LNT , §3]). The elements ofB andB∗ are naturally la-
belled by the multisegmentsm supported on[1, n]. We shall denote them bybm andb∗m
respectively.

The vectorsb∗m for whichm is of the form

m = m(λ, a)

for some partitionλ and some integera are calledquantum flag minors. Indeed, by [BZ],
they can be expressed as quantum minors of a triangular matrix whose entries are iterated
brackets of theei’s (see [LNT , §5.2]).

3.3 Let (λ(i), ai) (i = 1, 2) be as in 2.2. We also assume that the multisegments

mi = m(λ(i), ai) (i = 1, 2)

are supported on[1, n]. Let Σ be the symbol attached to the pair(λ(i), ai) (i = 1, 2). For
a standard symbolS such thatΣ ∈ C(S) we denote byn(S,Σ) the number of pairs ofS
which are permuted to getΣ. Finally, we denote byNj(λ, a) the number of cells of the
Young diagram of(λ, a) containing the integerj.

Theorem 5 We have

b∗m1
b∗m2

= v−Na1 (λ(2), a2)
∑

S

vn(S, Σ) b∗m(S)

where the sum runs through all standard symbolsS such thatΣ ∈ C(S).

Example 6 We take(λ(1), a1) and(λ(2), a2) as in Example 3. Hence

m1 = [1, 1] + [2, 5], m2 = [2, 2] + [3, 4] + [4, 6].

ThenNa1(λ
(2), a2) = N2((1, 2, 3), 4) = 1, and we obtain, using the notation of Exam-

ple 3,
b∗m1

b∗m2
= v−1(v2 b∗n1

+ v b∗n2
+ v b∗n3

+ b∗n4
).
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3.4 Proof of Theorem 5.Following [LNT , §7.2], we will replace calculations of prod-
ucts of elements ofB∗ by calculations of dual canonical bases of finite-dimensional rep-
resentations ofUv(g).

3.4.1 Let Uv(n
−) denote the subalgebra ofUv(g) generated by thefi’s, and letx 7→ x]

denote the algebra isomorphism fromUv(n) toUv(n
−) defined bye]

i = fi (i = 1, . . . , n).
Let Λ be a dominant integral weight and letuΛ be a highest weight vector of the irre-
ducible moduleV (Λ). Then the mapπΛ : x 7→ x]uΛ projects the canonical basisB of
Uv(n) to the union of the canonical basisB(Λ) of V (Λ) with the set{0}. The dual map
π∗Λ gives an embedding of the dual canonical basisB∗(Λ) of V (Λ) ' V (Λ)∗ into the dual
canonical basisB∗ of Uv(n) ' Uv(n)∗.

3.4.2 In particular the subset ofB∗ obtained by embedding the basesB∗(Λa) (1 6 a 6
n) of the fundamental representations is precisely the subset of quantum flag minors. It
is well known thatV (Λa) is a minuscule representation whose basesB∗(Λa) andB(Λa)
coincide. Moreover the elements of these bases are naturally labelled by the pairs(λ, a)
whose Young diagram (as defined in 2.5) contains only cells numbered by integers be-
tween1 andn. Denoting them byb∗(λ,a) we have

π∗Λa
(b∗(λ,a)) = b∗m(λ,a)

Equivalently, we can also label the elements ofB∗(Λa) by one-row symbolsβ as in Eq. (2)
with βi 6 n+ 1.

3.4.3 Similarly, the basisB∗(Λa1)⊗B∗(Λa2) is naturally labelled by the set of symbols
S as in Eq. (3) withβ(i)

ai 6 n + 1 (i = 1, 2). Using the theory of crystal bases [K1, K2]
one can see that the basisB∗(Λa1 + Λa2) has a natural labelling by the subset of standard
symbols [LM , §2.3]. Moreover, denoting byb∗S the element ofB∗(Λa1 + Λa2) labelled by
the standard symbolS we have, using also the notation of 2.5,

π∗Λa1+Λa2
(b∗S) = b∗m(S).

3.4.4 Let ι : V (Λa1 +Λa2) → V (Λa1)⊗V (Λa2) be theUv(g)-module embedding which
mapsuΛa1+Λa2

to uΛa1
⊗uΛa2

, and letι∗ : V (Λa1)⊗V (Λa2) → V (Λa1 +Λa2) be its dual.
Let b∗i ∈ B∗(Λai

) (i = 1, 2) and denote byb∗mi
= π∗Λai

(b∗i ) (i = 1, 2) the corresponding
quantum flag minors. It is shown in [LNT , §7.2.7] that the image ofb∗1 ⊗ b∗2 under the
composition of mapsπ∗Λa1+Λa2

◦ ι∗ coincides up to a power ofv with the productb∗m1
b∗m2

.
Hence to calculate theB∗-expansion ofb∗m1

b∗m2
it is enough to calculate the matrix of the

mapι∗ with respect to the basesB∗(Λa1)⊗B∗(Λa1) andB∗(Λa1 + Λa2).
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3.4.5 The matrix ofι with respect to the basesB(Λa1 +Λa2) andB(Λa1)⊗B(Λa1) was
calculated in [LM , Theorem 3] in terms of Lusztig’s symbols. Transposing this matrix
we obtain the desired matrix ofι∗. Using 3.4.2 and 3.4.3, we then get the formula of
Theorem 5. 2

3.5 Proof of Theorem 2.By [LNT , §3.7] the multisegmentsm indexing the compo-
sition factorsLm of S(λ(1); ta1) � S(λ(2); ta2) are those occuring in the right-hand side
of the formula of Theorem 5. Moreover the composition multiplicities are obtained by
specializingv to 1 in the coefficients of this formula. Hence they are all equal to1. 2

4 Tensor products ofUq(ŝlN)-modules

4.1 LetUq(ŝlN) be the quantized affine algebra of typeA(1)
N−1 with parameterq a square

root of t (see for example [CP] for the defining relations ofUq(ŝlN)). The quantum
affine Schur-Weyl duality between̂Hm andUq(ŝlN) [CP, Ch, GRV] gives a functorFm,N

from the category of finite-dimensional̂Hm-modules to the category of level0 finite-
dimensional representations ofUq(ŝlN). If N > m, Fm,N maps the simple modules of
Ĥm to simple modules ofUq(ŝlN). However, the image of a non-zero simpleĤm-module
may be the zeroUq(ŝlN)-module. More precisely, the simplêHm-moduleLm is mapped
to a non-zero simpleUq(ŝlN)-module if and only if all the segments occuring inm have
length6 N − 1. In this case the Drinfeld polynomials ofFm,N(Lm) are easily calculated
from m (see [CP]).

The functorFm,N transforms induction product into tensor product, that is, forM1 in
Cm1 andM2 in Cm2 one has

Fm1+m2,N(M1 �M2) = Fm1,N(M1)⊗Fm2,N(M2) .

4.2 The image underFm,N of an evaluation module for̂Hm is an evaluation module for
Uq(ŝlN), and all evaluation modules ofUq(ŝlN) can be obtained in this way, by varying
m ∈ N∗.

4.3 By application of the Schur functorFm,N to Theorem 2 we thus obtain a com-
binatorial description of all composition factors of the tensor product of two evaluation
modules ofUq(ŝlN).
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Example 7 We continue Example 3 and Example 6. The image of theĤ5-moduleLm1

underF5,N is the evaluation moduleV (m1) of Uq(ŝlN) with Drinfeld polynomials

P1(u) = u− q−2,

P2(u) = P3(u) = 1,

P4(u) = u− q−7,

Pk(u) = 1, (5 6 k 6 N − 1).

This is a non-zero module if and only ifN > 5. Similarly, the image of thêH6-module
Lm2 underF6,N is the evaluation moduleV (m2) of Uq(ŝlN) with Drinfeld polynomials

P1(u) = u− q−4,

P2(u) = u− q−7,

P3(u) = u− q−10,

Pk(u) = 1, (4 6 k 6 N − 1).

This is a non-zero module if and only ifN > 4. The images of thêH11-modules
Lm1 , Lm2 , Lm3, Lm4 underF11,N are the modulesV (n1), V (n2), V (n3), V (n4) with re-
spective Drinfeld polynomials

P1(u) = 1,

P2(u) = (u− q−3)(u− q−7)(u− q−9),

P3(u) = P4(u) = 1,

P5(u) = u− q−8,

Pk(u) = 1, (6 6 k 6 N − 1);

P1(u) = 1,

P2(u) = (u− q−3)(u− q−7),

P3(u) = u− q−10,

P4(u) = u− q−7,

Pk(u) = 1, (5 6 k 6 N − 1);

P1(u) = (u− q−2)(u− q−4),

P2(u) = (u− q−7)(u− q−9),

P3(u) = P4(u) = 1,

P5(u) = u− q−8,

Pk(u) = 1, (6 6 k 6 N − 1);
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P1(u) = (u− q−2)(u− q−4),

P2(u) = u− q−7,

P3(u) = u− q−10,

P4(u) = u− q−7,

Pk(u) = 1, (5 6 k 6 N − 1).

The modulesV (n1) andV (n3) are non-zero only ifN > 6. HenceV (m1)⊗ V (m2) has
only two composition factorsV (n2) andV (n4) for N = 5, and four composition factors
V (n1), V (n2), V (n3), V (n4) for N > 6.

4.4 We note that our result implies the following

Theorem 8 All composition factors of the tensor product of two evaluation modules of
Uq(ŝlN) occur with multiplicity one.
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