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MACDONALD REPRESENTATIONS OF COMPLEX REFLECTION
GROUPS

ALUN O MORRIS AND PATRICK MWAMBA

To Alain Lascoux to celebrate his sixtieth birthday and his massive contribution to algebraic
combinatorics and representation theory

Abstract. I G Macdonald (1972) introduced a unified approach to give many irre-
ducible representations of Weyl groups in terms of their root systems. This generalised
to Weyl groups the earlier well known constructions based on Young tableaux due to W
Specht. These were interpreted in terms of positive systems of subsystems of root sys-
tems. A M Cohen (1976) extended the idea of root systems to complex reflection groups
giving explicitly root systems for all dimensions greater than two. M C Hughes (1980)
had further extended his ideas to generalise the concepts of subsystems and positive
systems. These are now used to construct some irreducible representations of complex
reflection groups.

1. Introduction.

In a now classic paper, I G Macdonald [18] gave a unified construction of irreducible
representations of Weyl groups in terms of subsystems of their root systems. He further
remarked that the same construction could be extended to any finite Coxeter group and its
reflection subgroups. Later, G Lusztig and N Spaltenstein [17] generalized his construction
in a way which means that it also can be extended to complex reflection groups. In this
paper, the main aim will be to extend Macdonald’s original construction to complex
reflection groups in a more direct way which will use the ideas on root systems defined
for these groups as explained below.

G C Shephard and J A Todd [24] have given a complete classification of the irreducible
complex reflection groups, they showed that they are either the infinite families, the
cyclic groups, the symmetric groups and the groups G(m, p, n), where m, p, n are positive
integers such that p divides m, m ≥ 2 and p = 1 if n = 1 and 34 exceptional cases which
we denote STi, 4 ≤ i ≤ 37.

In the case of Weyl groups or finite Coxeter groups the theory is well developed and
documented, see for example, [2]. For complex reflection groups however, some of the
basic ideas are not as well developed with no universally accepted analogues for such
fundamental concepts as root systems and their subsystems or a length function; for more
recent attempts for some of the classical groups, see [3], [4], [23] and [25]. In addition, the
most significant work on complex reflection groups in recent years has originated in the
work of M. Broué, G. Malle et al, see for example, [5], [6], which showed how important
these groups are in a more general context.

However, for our purpose, the concept of root systems introduced by A M Cohen [10]
in his reclassification of the finite irreducible complex reflection groups is far more useful.
These root systems have been developed further by M C Hughes [13], [14] and H Can
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[8], in particular, their subsystems and positive systems, called primary systems in this
context.

Thus, in Section 2 of this paper we introduce all of the preliminary material required
on complex reflection groups and their root systems mainly following [10]. In Section 3,
we recall the ideas of M C Hughes and H Can on subsystems and primary systems. In
particular, in order to obtain the subsystems of these root systems they have developed
algorithms which show how to construct extended Cohen-Dynkin diagrams (c.f. extended
Dynkin diagrams in the real case) in this context. In Tables 1 and 2 we present in a sys-
tematic way the extended Cohen-Dynkin diagrams for all the exceptional groups. In the
final section, Section 4, Macdonald modules are presented for complex reflection groups.
These are presented not in terms of subsystems but in terms of reflection subgroups. In
particular cases, it is seen that most of the irreducible representations can be obtained
in terms of subsystems. However, as not all of the reflection subgroups appear via sub-
systems, the results are presented in this more general context. An additional reason is
that some of the components required in the proof have already appeared in the work of
R Stanley [26] on determining the relative invariants of complex reflection groups. Ab-
solutely crucial for the proof is Lemma 4.1, which generalizes the result in the real case
that if a is a positive root a reflection sa permutes all the positive roots except a which is
mapped onto its negative. The section ends with some applications to the 2-dimensional
reflection groups. In the Appendix, further applications are given, where most of the
irreducible representations of three further groups are given, ST24, ST25 and ST26 - this
work together with that for the 2-dimensional groups, is mainly the work of the second
author, Patrick Mwamba, who has sadly died since completing this work.

2. Preliminaries.

In this section, the basic definitions and notation required later are given following the
approach in [10], [13].

Let V be a complex vector space of dimension n. A reflection in V is a linear transfor-
mation of V of finite order with exactly (n− 1) eigenvalues equal to 1. A reflection group
G in V is a group generated by reflections in V . There exists a unitary inner product ( , )
on V invariant under G. A reflection group G is said to be r-dimensional if the dimension
of the subspace V G of points fixed by G is n− r. If W ⊂ V is a subspace, denote by GW

the subgroup of those elements of G which fix the elements of W ; GW is itself a reflection
group. The group G is irreducible if the restriction to a G-invariant complement of V G

in V is irreducible.
A (unitary) root of a reflection in V is an eigenvector (of length 1) corresponding to the

unique eigenvalue not equal to 1 of the reflection. A (unitary) root of G is a (unitary) root
of a reflection in G. Let s be a reflection in V of order m > 1. There exists a ∈ V, a 6= 0
and a primitive m-th root of unity ζ such that sa,mx = x − (1 − ζ)(x, a)(a, a)−1a for all
x ∈ V , where s = sa,m. If t is any unitary transformation of V , we have tsa,mt−1 = sta,m.
Define θG : V → N by θG(a) = |GW |, where W =< a >⊥, a ∈ V . The number θG(a) is
called the order of a (with respect to G).

Each reflection sa,m fixes a unique reflecting hyperplane

Hsa,m = {x ∈ V | (x, a) = 0} = {x ∈ V | sa,mx = x}.
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Clearly Hsζia,m
= H i

sa,m
= Hsa,m , 0 ≤ i ≤ m − 1. For each of the reflecting hyperplanes

H, choose a functional αH ∈ V ∗, the dual space of V , such that ker(αH) = H, that
is, H = {x ∈ V | αH(v) = (x, a)}. For convenience, we sometimes denote a reflection
which generates the cyclic group GH of order eH by sH . The collection of all reflecting
hyperplanes for the group G is an arrangement A on which the group G acts in a natural
way. Let C denote the set of G-orbits under this action, thus A = ∪C∈CC. The order eH

depends on the orbit C = G.H ∈ C; thus whenever it is convenient we write eC in place
of eH and ζH = ζC for the corresponding primitive eC-th root of unity.

Just as for real reflection groups, root systems can be equally useful in the complex
case. These are now presented following [10]. (i) A vector graph is a pair (B, θ), where B
is a non-empty finite subset of C∞, the vector space with standard unitary inner product
( , ), such that for all a, b ∈ B, |(a, b)| = 1 if and only if a = b and θ is a map from B to
N \ {1}. We say that B is the set of vertices and θ(a), for a ∈ B, is the order of a. A
vector graph (B, w) is represented by a directed value graph by assigning to each element
a ∈ B a node a with weight θ(a) and if (a, b) 6= 0, 1 a directed edge from a to b with
weight (a, b). For example, if B = {a, b}, θ(a) = m and θ(b) = p and (a, b) = α, then the
vector graph is g g-m p

a b

α

We adopt the following conventions: if m = 2 the number 2 is omitted, if α ∈ R the arrow
is omitted and if p = m and α = −1/2, the value −1/2 is omitted.

(ii) Let π = (B, θ) be a vector graph. Then, we define dim π to be the dimension of
the vector space spanned by B, and W (π) to be the group generated by all the reflections
sa,θ(a) for a ∈ B. The vector graph π is called a root graph if dim π = |B| and W (π) is
a finite reflection group. Root graphs π = (B, θ) and π′ = (B′, θ′) are equivalent if the
groups W (π) and W (π′) are conjugate.

(iii) For any root graph π = (B, θ) and for any w ∈ W (π), let wπ = (Bw, θw), where
Bw = wB and θw(w(a)) = θ(a) with a ∈ B, then wπ is also a root graph which is
equivalent to π since sw(a),θw(w(a)) = wsa,θ(a)w

−1 for all a ∈ B it follows that W (wπ) =
wW (π)w−1 = W (π).

(iv) We say that π is irreducible if W (π) is irreducible (or that π is connected). The
vector graph π is said to be congruent to the vector graph π′ = (B′, θ′) if there is a
t ∈ Gl(C∞) such that θ′(ta) = θ(a) for a ∈ B and the elements of B are eigenvectors of t.

(v) A pair (R, f) is called a pre-root system if R is a subset of non-zero elements of C∞

and f : R → N \ {1} such that for all a, b ∈ R, sa,f(a)R = R and f(sa,f(a)a) = f(a) . To
Σ = (R, f) is associated the reflection group W (Σ) defined by W (Σ) =
< sa,f(a)|a ∈ R >.

(vi) A pre-root system Σ is called a root system if in addition αa ∈ R if and only if
αa ∈ W (Σ)a for all a ∈ R,α ∈ C.

We make the following remarks which have been proved in [10].

Remark 2.1. Every root graph defines a pre-root system, for if π = (B, θ) is a root graph,
then Σ = (R, f), where R = W (π)B, f : R → N \ {1} is induced by the order function
oW (π) defines a pre-root system with W (π) = W (Σ).

Remark 2.2. Every finite reflection group yields a pre-root system and every pre-root
system contains a root system, that is, if Σ = (R, f) is a pre-root system, then there is a
root system Φ = (S, g) with W (Φ) = W (Σ), S ⊂ R and g = f |S.
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Remark 2.3. Every reflection group has a root system, but not every root system is
obtained in the above way from a root graph.

Remark 2.4. If a root system Φ is the pre-root system obtained from a root graph π as
described in Remark 2.1, then π is called a simple system in Φ. Can [8] has shown that
if w ∈ W then wπ = (wB, θw), where θw(w(a)) = θ(a), a ∈ B is a root graph which is
equivalent to π which yields the same root system Φ and so wπ is another simple system in
Φ. Hence, the number of simple systems in Φ is equal to the order of W (π). If Φ is a root
system with simple system π, then the graph associated to π is called a Cohen-Dynkin
diagram of Φ.

A group G of unitary automorphisms of V is said to be imprimitive if V is a direct
sum V = V1 ⊕ · · · ⊕ Vk of non-trivial proper subspaces Vi(1 ≤ i ≤ k) of V such that
{Vi | 1 ≤ i ≤ k} is invariant under G. If such a direct splitting of V does not exist, G is
said to be primitive.

Let Sn be the (symmetric) group of all n× n permutation matrices and let A(m, p, n)
be the set of all diagonal n× n matrices with ζρi , ρi∈ Z in the (i, i) position, where ζ is a
primitive mth root of unity and

∑n
i=1 ρi ≡ 0 (mod p). Define G(m, p, n) = A(m, p, n)oSn,

then the imprimitive reflection groups in V are of the form G(m, p, n), where p|m.

Remark 2.5. (i) G(m,m, 2) is conjugate to W (I2(m)) (notation of [2]), the dihedral group
of order 2m.

(ii) G(1, 1, n) = W (An−1) ∼= Sn, the Weyl group of type An−1.
(iii) G(2, 1, n) = W (Bn), the Weyl group of type Bn.
(iv) G(2, 2, n) = W (Dn), the Weyl group of type Dn.
(v) If p 6= 1, m, then G(m, p, n) can be defined with n + 1 generating reflections, but

for p = 1, m, then n generating reflections are sufficient.

A root system for G(m, p, n) may be defined as follows. Let ζ be a primitive m-th root
of unity and let {ε1, . . . , εn} be the standard basis for the complex vector space Cn. If
d ∈ N, let µd be the group of d-th roots of unity. Let

Ωl(m, n) = {εi − ζaεj, 1 ≤ i, j ≤ n, i 6= j, a ∈ Z/mZ}.
and let

Rl(m, m, n) =

{
µmΩl(m, n) if m is even,

µ2mΩl(m, n) if m is odd.

Let fl(r) = 2 for all r ∈ Rl(m, m, n). Then Φl(m,m, n) = (Rl(m, m, n), fl) is a root
system for G(m, m, n). Let

Ωs(n) = {εi, 1 ≤ i ≤ n}
and let Rs(m/p, n) = µm/pΩs(n). Let fs(r) = m for all r ∈ Rs(m/p, n). Let Φs(m/p, n) =
(Rs(m/p, n), fs). Then

Φ(m, p, n) = Φl(m,m, n)
⋃

Φs(m/p, n)

is a root system for G(m, p, n) for p 6= m.
Let
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π(m, 1, n) = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn}
where, θ(αi) = 2, 1 ≤ i ≤ n− 1, θ(αn) = m and

π(m, m, n) = {ε1 − ε2, . . . , εn−1 − εn, εn−1 − ζεn}
where, θ(αi) = 2, 1 ≤ i ≤ n. Then π(m, 1, n) and π(m, m, n) are vector graphs and so,
simple systems for G(m, 1, n) and G(m, m, n) respectively.
The corresponding Cohen-Dynkin diagrams for G(m, 1, n) and G(m, m, n) are

g g g gp p pαn α2 αn−1 αn

m
−1√

2

and

g g g g g
gp pp ��

HH 6

αn α2 α3 αn−2

αn

αn−1

eπi/mcos(π/m)

respectively. However, as pointed out by Can [8], based on the work of Popov [22], the
vector graph π(m, p, n) represented by

g g g g g g
gp pp ��

HH 6
q
α1 α2 α3 α4 αn−1

αn+1

αn

eπi/mcos(π/m)
−1√

2

is a vector graph for G(m, p, n), where if q = m/p

π(m, p, n) = {α1 = −ε1, α2 = ε1 − ε2, . . . , αn = εn−1 − εn, αn+1 = εn−1 − exp(2πi/q)εn}
However, it is not a simple system for the corresponding root system Φ(m, p, n) as this
set is clearly not linearly independent over C.

3. Subsystems and primitive systems.

Let Φ = (R, f) be a root system corresponding to the reflection group W (Φ).If S ⊆ R
and g = f |S, then the pair Ψ = (S, g) is called a subsystem of Φ if Ψ is itself a root
system. The corresponding reflection subgroup W (Ψ) is the subgroup of W (Φ) generated
by the sa,g(a) with a ∈ S. Subsystems Ψ1 = (S1, g1) and Ψ2 = (S2, g2) of Φ are conjugate
under W (Φ) if S2 = wS1 and g2(w(a)) = g1(a) for some w ∈ W (Φ) and for all a ∈ S1; in
which case W (wΨ1) = wW (Ψ1)w

−1, that is, W (Ψ1) and W (Ψ2) are conjugate subgroups
in W (Φ).

Now, as in Hughes [13] and Can [8], primary systems for root systems Φ with simple
system π = (B, θ) are defined. These play the role of positive systems for real reflection
groups. Let B = {a1, . . . , an}, and put ri = sai,θ(ai), 1 ≤ i ≤ n, then the corresponding
primary system is defined inductively as follows:

(i) Let Ω1 = B.
(ii) Let Ω2 = {ri(aj) | 1 ≤ i, j ≤ n, i 6= j, aj ∈ Ω1, ri(aj) 6∈ Ω1}.
(iii) For k ≥ 3, let

Ωk = {ri(a) | 1 ≤ i, j ≤ n, i 6= j, a ∈ Ωk−1, ri(a) 6= µb for any b ∈ Ωl, l < k},
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where µ is a root of unity.
Then Ω =

⋃
k≥1 Ωk is a primary system for the simple system π of the root system

Φ. The elements of Ωk are called primary roots of height k. The elements of Ωk for the
largest k for which Ωk 6= ∅ are called highest roots.

Remark 3.1. The primary system is not unique in that there is an element of choice at
each step. However, having fixed a primary system Ω for the simple system π, if the
simple system is replaced by wπ, then [8] the corresponding primary system obtained by
making the same choices in the above algorithm is the conjugate wΩ of Ω. Thus, the
choice of primary system is of no consequence. In fact, different choices in the above
algorithm would result in conjugate primary systems.

Remark 3.2. The roots of maximal height are not in general unique for complex reflection
groups. For example, [14], J3(4) has a unique highest root of height 6, but L4 has two
highest roots of height 9.

Remark 3.3. In the case of real reflection groups, the primary systems are positive systems
and the highest roots are the longest roots.

Hughes [13] has shown how subsystems of root systems may be constructed. He has
done this by extending the corresponding method for real reflection groups to the com-
plex case. Namely, an extended Cohen-Dynkin diagram of a root system Φ is formed by
attaching the negative of a highest root to a Cohen-Dynkin diagram for Φ and removing
one or more nodes in all possible ways and repeating this process on all the resulting dia-
grams. At all stages, including the initial Cohen-Dynkin diagram, all equivalent diagrams
must also be considered. As there could be more than one highest root in the complex
case and since a number of equivalent diagrams must be considered, the algorithm is more
difficult to apply in the complex case in comparison with the real case. In [14], a complete
list of subsystems is given for spaces of dimension ≥ 3. Can [8] has given an alternative
algorithm for obtaining a complete set of subsystems. In particular, he has in [9] obtained
subsystems for the groups G(m, 1, n) and G(m, m, n). He proved that the subsystems (up
to conjugacy) for the groups G(m, 1, n) and G(m,m, n) are

m∑
i=1

si∑
j=1

Bmi

λ
(i)
j

+
s∑

j=1

Dm
µj

,

s1∑
j=1

(λ
(1)
j + 1) +

m∑
i=2

s1∑
j=1

λ
(i)
j +

s∑
j=1

µj = n(3.1)

and
m∑

i=1

si∑
j=1

Dmi

λ
(i)
j

,

s1∑
j=1

(λ
(1)
j + 1) +

m∑
i=2

s1∑
j=1

λ
(i)
j = n(3.2)

respectively, where m1 = 1 and mi = m, (i = 2, . . . ,m).
In Tables 1 and 2, the results of applying these algorithms to all the exceptional groups

ST4 − ST37 are given (excluding the real reflection groups). We note that these results
are in line with the relationship between the extended Cohen-Dynkin diagram and the
diagrams and presentation for the corresponding irreducible infinite discrete complex re-
flection groups given by G Malle [19].

From now on, if Φ = (R, f) is a root system, we will simply write π and Ω for the
corresponding simple system and primary system with the corresponding map f being
restricted to these sets.
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Shephard Cohen-Dynkin Extended
Todd type diagram iα iα′ C-D diagram

ST4
g g-3 3
s t

3

α
1√
3

√
2√
3 g g

g
-

�





J
JJ

JJ]
α α

α
3 3

3

ST5
g g-3 3
s t

4

α

√
2√
3

1√
3

g g g- �
α α′

3 3 3

ST6
g g-3
s t

6

α (1
2
(1 + 1√

3
))

1
2 (1

2
(1− 1√

3
))

1
2 g g

g
-

�





J
JJ

JJ]
−i√

3 α′

α
3

3

g g g� -
α′ α

3

ST8
g g-4 4
s t

3

α
1√
2

1√
2

g g g- �
α α′

4 4 4

ST9
g g-4
s t

6

α (1
2
(1 + 1√

2
))

1
2 (1

2
(1− 1√

2
))

1
2 g g g- �

α α′
4 4

g g g� -
α′ α

4

ST10
g g-4 3
s t

4

α (1
2
(1 + 1√

3
))

1
2 (1

2
(1− 1√

3
))

1
2 g g g- �

α α′
4 3 4

g g g� -
α′ α

3 4 3

ST14
g g-3
s t

8

α (1
2
(1 +

√
2√
3
))

1
2 (1

2
(1−

√
2√
3
))

1
2 g g g- �

α α′
3 3

g g g� -
α′ α

3

ST16
g g-5 5
s t

3

α (1
2
(1 + 1√

5
))

1
2 (1

2
(1− 1√

5
))

1
2 g g g- �

α α′
5 5 5

ST17
g g-5
s t

6

α (1
2
(1 + α16))

1
2 (1

2
(1− α16))

1
2 g g g- �

α α′
5 5

g g g� -
α′ α

5

ST18
g g-5 3
s t

4

α (1
2
(1 + 1√

3
cotπ

5
))

1
2 (1

2
(1− 1√

3
cotπ

5
))

1
2 g g g- �

α α′
5 3 5

g g g� -
α′ α

3 5 3

ST20
g g-3 3
s t

5

α
1
2
(1+

√
5√

3
) 1

2
(1−

√
5√

3
) g g g- �

α α′
3 3 3

ST21
g g-3
s t

10

α (1
2
(1 + α20))

1
2 (1

2
(1− α20))

1
2 g g g- �

α α′
3 3

g g g� -
α′ α

3

Table 1. Extended Cohen-Dynkin diagrams in dimension 2
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ST | Cohen Cohen-Dynkin Extended

type diagram C-D diagram

ST24 | J3(4) g g
g



�





J
JJα α =

(1−
√

7i)
4 g g

g
g

�





J

JJα

ST25 | L3 g g g� -
α α

3 3 3 α = −i√
3

g g g
g
6

� -
α α

α

3 3 3

3

ST26 | M3 g g g-
α β

3 3 α = −i√
3

g g g g� -
α α β

3 3 3

β = −1√
2

g g g g-
α β

3 3

ST27 | J3(5) g g
g



�





J
JJα α = 1

2
+ ωcos π

5 g g
g

g

�





J
JJα

ST29 | N4 g g g
g

-





J
JJ

α

α = 1−i
2 g g

g
g g

�







J
JJα

ST31 | EN4 α = 1−i
2 g g g g

g
-





J
JJ

α

ST32 | L4 g g g g� �-
α α α

3 3 3 3 α = −i√
3

g g g g g� �- -
α α α α

3 3 3 3 3

g g g g g- -� �
α α α α

3 3 3 3 3

ST33 | K5 g g
g

g g





J
JJ

�
α

α = −ω
2

g g
g

g
g

�
α

g g
g g

g
g

�
α

ST34 | K6 g g
g

g g g





J
JJ

�
α

α = −ω
2

g g g
g

g
g

�
α

g g g g
g

g
g

�
α

Table 2. Extended Cohen-Dynkin diagrams in dimension > 2
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4. Macdonald representations.

Let R be the ring of polynomial functions on V which can be identified with the
symmetric algebra of V . The reflection group G acts on R as follows

(gf)(x) = f(g−1x)

for all f ∈ R, g ∈ G, x ∈ V . In particular,

(gαH)(x) = χ−1
H αH(x)

for all g ∈ GH , x ∈ V , where G̃H = {χ−i
H | 0 ≤ i ≤ eH − 1} is the character group of GH .

Define πC =
∏

H∈C αH for C ∈ C and πG =
∏

C∈C πC .
When reflection subgroups are determined by subsystems of root systems, the functions

πG defined earlier will be denoted πΦ.
We give three examples

Example 4.1. For the real reflection group of type An−1 (symmetric groups of order n!),
the root system is {εi − εj, 1 ≤ i, j ≤ n} and a simple system is {εi − εi+1, 1 ≤ i ≤ n− 1}
and corresponding primary (positive) system {εi − εj, 1 ≤ i < j ≤ n}. Then

πAn−1(x) =
∏

1≤i<j≤n

(xi − xj)

which is the Vandermonde determinant.

Example 4.2. For the complex reflection group of type G(m, m, n) and G(m, 1, n) using
the primary root systems given above, we obtain

πG(m,m,n)(x) =
∏

1≤i<j≤n

m∏
a=1

(xi − ζaxj) =
∏

1≤i<j≤n

(xm
i − xm

j )

and

πG(m,1,n)(x) =
∏

1≤i<j≤n

m∏
a=1

(xi − ζaxj)
n∏

i=1

xi =
∏

1≤i<j≤n

(xm
i − xm

j )
n∏

i=1

xi.

Example 4.3. For the complex reflection group of type ST4, a simple system is [15]
{ε1,−i/

√
3(ε1 +

√
2ε2)} with primary system ΩST4 = {−i/

√
3(ε1 + ωk

√
2ε2), 0 ≤ k ≤ 2}

and root system µ6ΩST4. Then

πST4(x) = x1(x1 −
√

2x2)(x1 − ω
√

2x2)(x1 − ω2
√

2x2) = x1(x
3
1 + 2

√
2x3

2)/3
√

3

The following lemma is the crucial result which extends the well known result in the
real case that the positive roots are permuted by a reflection sa except that sa(a) = −a,
where a is any positive root.

Lemma 4.1.

sHπC =

{
πC if H 6∈ C

(χH)−1πC if H ∈ C.
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Proof. If H ′ 6∈ C, let v0 ∈ H ′ be a point, thus αH(v0) 6= 0 for all H ∈ C which implies
that πC(vo) =

∏
H∈C αH(v0) 6= 0. Hence

(sH′πC)(v0) = πC(s−1
H′v0) = πC(v0).

Furthermore, if H ∈ C, then

sHπC =
∏
H∈C

sHαH =

(
sHαH

αH

)
πC = χ−1

H πC .

Let πC =
∏

H′∈C,H′ 6=H αH′ and let v0 ∈ H be a point such that αH′(v0) 6= 0 for all H ′ 6= H,

then πC(v0) 6= 0. Hence

(sHπC)(v0) = πC(s−1
H v0) = πC(v0),

which proves the lemma.
Let RG be the subring of G-invariant elements in R. Then, it is well known [2] that

RG is generated by n algebraically independent homogeneous elements p1, . . . , pn. If
di = deg(pi), then

|G| =
n∏

i=1

di(4.1)

|complex reflections in G| =
n∑

i=1

(di − 1) =
∑
H∈A

(eH − 1).(4.2)

(In fact, [21] if mi = di − 1 are the exponents and ni are the coexponents of G, then

|complex reflections in G| =
n∑

i=1

mi(4.3)

|reflecting hyperplanes| =
n∑

i=1

ni.)(4.4)

If χ is a linear character of G, let RG
χ be the RG-module of relative invariants of G

introduced by R. Stanley [26], that is,

RG
χ = {f ∈ R | gf = χ(f)f for all g ∈ G.}

Then Stanley has proved, amongst other things, that if f ∈ RG
χ , then f is divisible by

fχ =
∏

C∈C πlC
C , where 0 ≤ lC ≤ eC − 1 and lC is the least positive integer such that

χ(sC) = ζ lC
C , for a fixed generator sC ∈ GH for some H ∈ C. Furthermore, RG

χ = fχRG

and fχ ∈ RG
χ , that is,

gfχ = χ(g)fχ for all g ∈ G.

Now let G′ be a reflection subgroup of G and let χ also denote the restriction of the
linear character χ to G′. Let f ′χ be defined as above for the subgroup G′. Let P χ

G′ be the
subspace of R generated by the polynomial functions gf ′χ for all g ∈ G, then the vector
space P χ

G′ is a CG-module. The special case χ = 1 will be denoted by PG′ . Then we
have the following theorem which generalizes the well known result of I G Macdonald
[18] to complex reflection groups - in fact, his proof carries over almost verbatim. It can
be shown by using some of the above results that (i) below is a direct consequence of a
theorem in [17].
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Theorem 4.2. (i) The module P χ
G′ is an absolutely irreducible CG-module.

(ii) If G′ and G′′ are two non-isomorphic reflection subgroups of G with

|reflecting hyperplanes for G′| 6= |reflecting hyperplanes for G′′|,
then the modules P χ

G′ and P χ
G′′ are not isomorphic.

(iii) The modules P χ
G′ and χ⊗ PG′ are isomorphic.

Proof. (i) Let φ : P χ
G′ → P χ

G′ be a CG-homomorphism, then

gφ(f ′χ) = φ(gf ′χ) = φ(χ(g)f ′χ) = χ(g)f ′χ

for all g ∈ G and so, by the above result φ(f ′χ) is divisible by f ′χ. Since φ(f ′χ) and f ′χ are
of the same degree and so φ(f ′χ) is a scalar multiple of f ′χ and (i) follows.

(ii) The proof is similar to that of (i), but resulting this time in a zero map.
(iii) The map φ : P χ

G′ → χ ⊗ PG′ is φ(fχ) = χ ⊗ f1, which is easily seen to be the
required isomorphism.

The last result (iii) shows that basically it is only necessary to construct the mod-
ules(representations) P χ

G′ .
Some examples are now given to illustrate the usefulness of the above approach.

Example 4.4. In the case G(m, 1, n), this construction gives all the irreducible Macdonald
modules. It is well known in this case that the irreducible representations are in one-to-
one correspondence with the set of m-partitions (λ(1), . . . , λ(m)) of n; thus we need only
take the subsystems of type

∑m
i=1

∑si

j=1 Bmi

λ
(i)
j

listed in (3.1) - here λ(i) is the partition

(λ
(i)
1 , . . . , λ

(i)
si ). The representations of the generalized symmetric group G(m, 1, n) have

been considered by Can [7] and Hughes [11] from a different point of view (generalizing
the concepts of tabloids and polytabloids or the symmetric groups), it is clear that this
can be modified to adopt the Macdonald module approach.

Example 4.5. We consider the group ST4. As was seen in Table 1, this group has Cohen-
Dynkin diagram g g-3 3

s t

3

α
and extended Cohen-Dynkin diagram

g g
g

-

�





J
JJ

JJ]
α α

α
3 3

3

,

where α = −i/
√

3.
Thus, in this case, there are only 3 non-conjugate subsystemsg g-3 3

3

α
g3 ∅.

From Table 3, we see that ST4 has three linear characters χ1, χ2 and χ3 and since
χ5 = χ4 ⊗ χ2 and χ6 = χ4 ⊗ χ3, thus the only modules required are those corresponding
to χ1, χ4 and χ7 of degrees 1,2 and 3 respectively. The first two are obtained from the

subsystems g g-3 3
3

α and g3 of ST4. The third is obtained by using the fact that ST4 is

a subgroup of ST6 with Cohen-Dynkin diagram g g-3
6

β , where β = −i( 1
2
(1 + 1√

3
))

1
2 . The

representation of degree 3 is the representation of ST6 corresponding to the subsystemg g3 3 which remains irreducible on restriction to ST4, indeed this subsystem is also
a subsystem of ST4.
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ST4 cl1 cl2 cl3 cl4 cl5 cl6 cl7

order 1 2 6 6 3 3 4

class order 1 1 4 4 4 4 6

χ1 1 1 1 1 1 1 1

χ2 1 1 ω ω2 ω ω2 1

χ3 1 1 ω2 ω ω2 ω 1

χ4 2 -2 1 1 -1 -1 0

χ5 2 -2 ω ω2 −ω −ω2 0

χ6 2 -2 ω2 ω −ω2 −ω 0

χ7 3 3 0 0 0 0 -1

Table 3. Character Table of ST4

The irreducible representations obtained from the three subsystems are given in Table
4.

Subsystem Basis s tg g-3 3
s t

3

α {s} (ω) (ω)g3
s {s, τts}

 
0 −ω

1 −ω2

!  
ω ω

0 1

!

g g3 3
s t {s, τts}

0BB@
0 0 1

1 0 0

0 1 0

1CCA
0BB@

0 0 −1

−1 0 0

0 1 0

1CCA
∅ (1) (1)

Table 4. Irreducible Representations of ST4

Example 4.6. Some more general results may be obtained for an arbitrary two-dimensional
group. For an arbitrary root system

g g-m n
k

αu v

let ζ and η denote primitive m-th and n-th roots of unity respectively. For the subsystem

S = gm
u

if s = τu and t = τv, then πS = u and PS =< u, tu = u + (1− η)αv >, and we see that

s 7−→

(
ζ −(1− ζ)(1 + (1− η)α2)

0 1

)
and t 7−→

(
0 −η

1 1 + η

)
.

It can be shown that the subsystem gm
u gives an equivalent representation.

The explicit results for the separate root systems are listed in Table 5; thus we have
the ’basic’ representations of degree two for all the two-dimensional reflection groups. In
Table 5, ω, i, η and ε are primitive cube, fourth, fifth and eigth roots of unity respectively
and α = −i

q
1
2
(1 + 1√

5
).
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ST-type s t ST-type s t

ST4

 
ω −1

0 1

!  
0 −ω

1 −ω2

!
ST14

 
ω

√
2iω2

0 1

!  
0 1

1 0

!

ST5

 
ω ω2

0 1

!  
0 −ω

1 −ω2

!
ST16

 
η −1

0 1

!  
0 −η

1 1 + η

!

ST6

 
ω iω2

0 1

!  
0 1

1 0

!
ST17

 
η (1− η)α

0 1

!  
0 1

1 0

!

ST8

 
i −1

0 1

!  
0 −i

1 1 + i

!
ST18

 
η ω2

0 1

!  
0 −ω

1 −ω2

!

ST9

 
i −ε3

0 1

!  
0 1

1 0

!
ST20

 
ω ω2 − ω(η + η4)

0 1

!  
0 −ω

1 −ω2

!

ST10

 
i ω2

0 1

!  
0 −ω

1 −ω2

!
ST21

 
ω iω2(1 + η + η4)

0 1

!  
0 1

1 0

!

Table 5. Irreducible Representations of degree 2

ST-type s t

ST4

0BB@
0 0 1

1 0 0

0 1 0

1CCA
0BB@

0 0 −1

−1 0 0

0 1 0

1CCA
ST5

0BB@
ω 0 −1

0 0 −ω2

0 1 −ω

1CCA
0BB@

0 0 1

1 0 0

0 1 0

1CCA
ST6

0BB@
0 0 1

1 0 0

0 1 0

1CCA
0BB@

−1 0 0

0 1 0

0 0 1

1CCA
ST8

0BB@
i 0 0

0 0 1

0 1 0

1CCA
0BB@

0 1 0

1 0 0

0 0 i

1CCA
ST9

0BB@
i 0 0

0 0 1

0 1 0

1CCA
0BB@

0 1 0

1 0 0

0 0 −1

1CCA
0BB@

0 0 −i

1 0 1

0 1 i

1CCA
0BB@

−1 −i 0

0 1 0

0 0 1

1CCA
Table 6. Irreducible Representations of degree 3

Example 4.7. The irreducible representations of degree three are obtained by taking the

subsystems g gm m and g gn n of the root system g g-m n . In Table 6, as ex-
amples, the irreducible representations of degree three of ST4, ST5, ST6, ST8 and ST9 are
given, the two representations of ST9 are clearly not equivalent.

Further examples are given in the Appendix below.
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Subsystem s t ug
s

0BB@
−1 0 −1

0 1 0

0 0 1

1CCA
0BB@

0 1 −β

1 0 β

0 0 1

1CCA
0BB@

0 −ᾱ 1

0 1 0

1 ᾱ 0

1CCA

g g g
s t σ

-

0BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 −1

0 1 0 0 0 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 −1

0 0 0 1 0 0 0 −1

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 1 0

0 0 0 1 0 0 −1 0

0 0 0 0 1 0 1 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 −1 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0

1CCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 −1 0 −1 0 −1 0

0 0 0 −1 0 −1 0 −1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0

1CCCCCCCCCCCCCCCA

g g
s σ

0BBBBBBBBBB@

−1 0 −1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

1CCCCCCCCCCA

0BBBBBBBBBB@

0 1 0 1 0 1

1 0 0 −1 0 −1

0 0 0 −1 1 −1

0 0 0 1 0 0

0 0 1 1 0 1

0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBB@

0 0 1 0 1 0

0 0 0 1 −1 0

1 0 0 0 −1 0

0 1 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCA

g g
s u

0BBBBBBBBBBBB@

−1 0 0 0 −2 0 0

0 0 1 0 1 0 0

0 1 0 0 −1 0 0

0 0 0 0 −1 1 1

0 0 0 0 1 0 0

0 0 0 1 1 0 −1

0 0 0 0 0 0 1

1CCCCCCCCCCCCA

0BBBBBBBBBBBB@

0 1 1 0 0 −1 0

1 0 −1 0 0 1 0

0 0 1 0 0 0 0

0 0 0 −1 0 −2 0

0 0 0 0 0 1 1

0 0 0 0 0 1 0

0 0 0 0 1 −1 0

1CCCCCCCCCCCCA

0BBBBBBBBBBBB@

−1 0 0 0 0 −2 0

0 0 0 1 0 1 −1

0 0 0 0 1 −1 0

0 1 0 0 0 −1 1

0 0 1 0 0 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1CCCCCCCCCCCCA
Table 7. Irreducible Representations of ST24

Appendix. The group ST24 has irreducible representations of degrees

1, 1︸︷︷︸, 3, 3︸︷︷︸, 3, 3︸︷︷︸, 6, 6︸︷︷︸, 7, 7︸︷︷︸, 8, 8︸︷︷︸ .

Information concerning the irreducible representations and characters of the complex re-
flection groups may be found in M. Benard [1].

Thus the representations given in Table 7 lead to all the irreducible representations of
ST24.

The group ST25 has irreducible representations of degrees

1, 1, 1︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸, 3, 3, 3︸ ︷︷ ︸, 3, 3, 3︸ ︷︷ ︸, 6, 6, 6︸ ︷︷ ︸, 6, 6, 6︸ ︷︷ ︸, 8, 8, 8︸ ︷︷ ︸, 3, 9, 9.
Thus the representations in Table 8 lead to all the irreducible representations except

the final ones of degrees 8, 3 and 9.
The group ST26 has irreducible representations of degrees

1, 1, 1, 1, 1, 1︸ ︷︷ ︸, 2, 2, 2, 2, 2, 2︸ ︷︷ ︸, 3, 3, 3, 3, 3, 3︸ ︷︷ ︸, 3, 3, 3, 3, 3, 3︸ ︷︷ ︸, 6, 6, 6, 6, 6, 6︸ ︷︷ ︸, 6, 6, 6, 6, 6, 6︸ ︷︷ ︸, 8, 8, 8, 8, 8, 8︸ ︷︷ ︸,
3, 3︸︷︷︸, 9, 9︸︷︷︸, 9, 9︸︷︷︸.

Thus the representations given in Table 9 lead to all the irreducible representations
except the final ones of degrees 3 and 9.
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Subsystem s t ug3
s

0BB@
ω −1 −1

0 1 0

0 0 1

1CCA
0BB@

0 −ω 0

1 −ω2 0

0 0 1

1CCA
0BB@

1 0 0

0 0 −ω

0 1 −ω2

1CCA
g g g3 3 3
s u σ

 
ω −1

0 1

!  
0 −ω

1 −ω2

!  
ω −1

0 1

!

g g3 3
s u

0BBBBBBBBBB@

ω 0 0 −1 0 ω2

0 0 0 0 1 0

0 1 0 −ω 0 −ω

0 0 0 1 0 0

0 0 1 ω 0 ω

0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBB@

0 0 0 1 −ω2 −ω

1 0 0 0 ω2 ω

0 0 ω 0 ω −ω

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBB@

ω ω 0 0 −ω2 0

0 1 0 0 0 0

0 −1 0 0 −1 ω

0 ω2 ω2 0 ω2 0

0 0 0 0 1 0

0 0 0 1 0 0

1CCCCCCCCCCA

g g-3 3
s t

3

α

0BBBBBBBBBB@

ω 0 0 0 −1 −ω2

0 ω 0 0 ω2 0

0 0 0 0 −ω2 −1

0 0 0 ω ω ω2

0 0 1 0 −ω 1

0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBB@

ω 0 0 −1 0 0

0 0 0 0 0 1

0 1 0 −ω 0 0

0 0 0 1 0 0

0 0 0 ω ω 0

0 0 1 ω 0 0

1CCCCCCCCCCA

0BBBBBBBBBB@

0 0 0 1 0 −ω2

1 0 0 0 0 ω2

0 0 ω 0 0 ω

0 1 0 0 0 0

0 0 0 0 ω −ω

0 0 0 0 0 1

1CCCCCCCCCCA
Table 8. Irreducible Representations of ST25
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Subsystem s t ug
s

0BB@
−1 ω2 ω2

0 1 0

0 0 1

1CCA
0BB@

0 −ω 0

1 −ω2 0

0 0 1

1CCA
0BB@

1 0 0

0 0 −ω

0 1 −ω2

1CCA
g3
t

0BB@
0 1 −1

1 0 1

0 0 1

1CCA
0BB@

ω 0 −1

0 1 0

0 0 1

1CCA
0BB@

0 −1 −ω

0 1 0

1 1 −ω2

1CCA
g g g3
σ1 s t

-
 

−1 0

0 −1

!  
ω −1

0 1

!  
0 −ω

1 −ω2

!

g g-3 3
t u

4

α

0BBBBBBBBBB@

0 1 0 0 −ω2 ω

1 0 0 0 ω2 −ω

0 0 0 1 ω ω

0 0 1 0 −ω −ω

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBBBB@

a

ω 0 0 0 0 ω

0 0 0 0 1 −ω

0 1 0 0 0 ω

0 0 0 ω 0 −ω

0 0 1 0 0 0

0 0 0 0 0 1

1CCCCCCCCCCCCA

0BBBBBBBBBB@

ω 0 −ω 0 0 0

0 ω ω 0 0 0

0 0 1 0 0 0

0 0 −1 0 0 ω

0 0 ω2 ω2 0 0

0 0 0 0 1 0

1CCCCCCCCCCA

g g- 3
s t

4

α

0BBBBBBBBBB@

−1 0 −ω 0 0 0

0 −1 −1 0 0 0

0 0 1 0 0 0

0 0 −ω2 −1 0 0

0 0 1 0 0 1

0 0 0 0 1 0

1CCCCCCCCCCA

0BBBBBBBBBB@

ω 0 0 −1 0 −1

0 0 0 0 1 1

0 1 0 −ω 0 −1

0 0 0 1 0 0

0 0 1 ω 0 0

0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBB@

0 0 0 1 −ω2 0

1 0 0 0 ω2 1

0 0 ω 0 ω ω

0 1 0 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCA

g g g
s t σ

-

0BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 −1

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 −1 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBB@

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

1CCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
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