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Abstract
This article, written in December 2004, is an expanded version of

the author’s lecture opening the LascouxFest at the Séminaire Lotha-
ringien de Combinatoire in Domaine Saint-Jacques, Ottrott, March
29-31, 2004. We discuss here some aspects of the work of Alain Las-
coux (and some of his coworkers), related to symmetric functions and,
more generally, Schubert polynomials. We illustrate some of the tech-
niques he uses: determinants, transformations of alphabets, reproduc-
ing kernels, planar displays, divided differences, and vertex operators.
The aim of this article is to show to the reader working in Algebraic
Combinatorics (and others!) what we can learn from Alain to make
our computations more efficient and more exciting.

1 Introduction

I1 met Alain in Spring 1978 during his first visit to Poland. This was just after
his famous Thesis [24] had been passed. He taught us the combinatorics of

∗Supported by KBN grant 2P03A 024 23.
1I believe that Marcel-Paul Schützenberger would be much more competent (than me)

to tell you about the work of Alain. He was the closest coworker of Alain for many years.
Also, Bernard Leclerc and Jean-Yves Thibon would surely accomplish this job better than
me – their collaboration with Alain, though shorter in time, was/is more intensive. I will
not cover here all aspects of Alain’s work. For example, I will not touch the Kostka-
Foulkes, Kazhdan-Lusztig, and Macdonald polynomials, noncommutative methods, and
the singularities of Schubert varieties. I will concentrate on my 25 year collaboration with
Alain and on topics that seem to be in the “intersection” of the interests of the audience
of SLC and those of myself.



syzygies of determinantal ideals, using the combinatorics of the Bott theorem
on cohomology of homogeneous bundles on flag varieties. His 1977 Thesis
introduced to Commutative Algebra and Combinatorics Schur functors, a
functorial version of Schur functions, allowing one to express the syzygies of
determinantal ideals (previously only symmetric and exterior powers were
used, as well as hook Schur functors – the latter by D. Buchsbaum and D.
Eisenbud [5]).

Apart from the Bott theorem (for GLn)2, he used a functorial version of
the Cauchy formula for symmetric and exterior powers of the tensor product
of two vector bundles. I believe that the Cauchy formula is for Alain a
prototype of a “good” algebraic formula. Therefore, in the next section we
discuss several incarnations of it. In particular, the Cauchy formula gives us
a certain “reproducing kernel”. In various places of this article, I shall show
other reproducing kernels – one of the leitmotivs of Alain’s algebraic way of
thinking.

Already in early Alain’s papers (cf. [22], [23]), some determinants show
up. Determinants and more generally, minors, play an important role in
Alain’s work. Often he studies them via various deformations, and especially
by modifying the alphabets that are arguments of Schur functions. We dis-
cuss determinantal techniques and some determinantal expressions in Section
3.

In the beginning of the 80’s, Alain discovered with Marcel-Paul Schützen-
berger that the classical Schur functions are a very particular case of (sim-
ple) Schubert polynomials defined by using divided differences (of Newton).
Even more natural are (double) Schubert polynomials which, defined origi-
nally algebro-combinatorially, have a transparent geometric interpretation:
they are cohomology classes of flagged degeneracy loci. There is an impor-
tant analogue of the Cauchy formula for Schubert polynomials (cf. Theorem
2 in Section 4).

Operator techniques become more and more apparent in Alain’s work.
Apart from divided differences, used in the theory of Schubert polynomials,
and their variations (e.g. isobaric divided differences used in the theory of
Grothendieck polynomials), he uses also vertex operators. In Section 5, I will

tell you how vertex operator were helpful in the theory of Q̃-polynomials.
It would be totally banal to say to the audience of SLC that planar dis-

plays are useful to see better some algebro-combinatorial properties. How-
ever, in Section 6, I wish to show you some recent examples of the use of
planar displays of divided differences.

Already from Alain’s Thesis, I learned about the λ-rings of Grothendieck.

2Alain discovered it independently by himself (cf. [23] and [26], Addendum).
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The λ-ring structure played – I believe – a large role in Alain’s algebro-
combinatorial thinking: it allows one to treat symmetric functions as op-
erators on polynomials. It is truly amazing that the techniques he devel-
oped, under the general “umbrella” of λ-rings, provide a uniform approach
to numerous classical polynomials (e.g. symmetric, orthogonal) and formulas
(e.g. interpolation formulas or those of representation theory of general lin-
ear groups and symmetric groups). The polynomials and formulas are often
related to the names such as: E. Bézout, A. Cauchy, A. Cayley, P. Cheby-
shev, L. Euler, C.F. Gauss, C.G. Jacobi, J. Lagrange, E. Laguerre, A-M.
Legendre, I. Newton, I. Schur, T.J. Stieltjes, J. Stirling, J.J. Sylvester, J.M.
Hoene-Wroński, and others. See [30].

In fact in Section 7, I will tell you about my current work with Alain on
some aspects of Euclid’s algorithm. You will see again some determinants,
the Lagrange interpolation, and reproducing kernels.

The last section will contain some “concluding remarks” and pictures from
Nankai University in Tianjin, where Alain worked during the last years.

I will not repeat in this article the stories and jokes that I told during my
talk in Ottrott, because of the rule that I try to follow: “Jokes should not
be repeated.”

2 The Cauchy formula

The Cauchy formula is one of Alain’s favourite formulas. He told me this
already during his very first lesson on symmetric functions in Paris, in Novem-
ber 1978. As any important formula, it has many incarnations.

I. (Cauchy kernel) Let A, B be two alphabets. We have∏
a∈A,b∈B

1

1− ab
=

∑
I

SI(A)SI(B) =: K(A, B) , (1)

where the sum is over all partitions I 3.
Consider the ring Sym of symmetric functions in a countable alphabet

of variables. Let ( , ) be the scalar product on Sym such that {SI} is an
orthonormal basis. Given two such alphabets A and B and f ∈ Sym, we
have

(f(A), K(A, B)) = f(B) (2)

– a fundamental reproducing property.

3In this section, we use French partitions in order not to offend Cauchy. The reader not
familiar with Schur functions will find their definition in the next section. The notation
for partitions, used in the present article, is that of [30].
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II. (Resultant) Let card(A) = m, card(B) = n. We have∏
a∈A,b∈B

(a− b) =
∑

I⊂nm

SI(A)Snm/I(−B). (3)

III. (Diagonal and Specht modules) Let SI be the irreducible represen-
tation of the symmetric group Sn indexed by the partition I, |I| = n. Then
for the diagonal embedding

Sn ↪→ Sn ×Sn ,

we have
Ind(S(n)) = ⊕|I|=nSI ⊗ SI , (4)

where S(n) is the one dimensional representation of Sn with the trivial action.

IV. (Bitableaux) Let X = (xij)m×n be a matrix of indeterminates. We
search for a “determinantal” additive basis of the polynomial ring Z[X] (in-
stead of a familiar monomial basis). Set

(i1, . . . , ik|j1, . . . , jk) := det(xipjq)1≤p,q≤k . (5)

In the following, when speaking about tableaux and standard tableaux we
mean the corresponding planar objects explained in [30], p.176. “Transpos-
ing” will mean taking reflection in the main diagonal.

A bitableau is a pair of transposed tableaux. These transposed tableaux
must have the same shape, called the shape of a bitableau. We display pla-
narly a bitableau as:

a1a2a3

c1 c2 c3c4c5

e1e2e3e4e5e6e7e8

,

b1 b2 b3

d1d2d3d4d5

f1f2f3f4f5f6f7f8


(here the shape is 358), where ai, cj, ek ≤ m and bi, dj, fk ≤ n.

Here is an example of a bitableau of shape 245:
34

2459

23567

,

78

2367

13689

 .

With a bitableau, we associate the product of minors:

(a1, a2, a3|b1, b2, b3) (c1, c2, c3, c4, c5|d1, d2, d3, d4, d5)

× (e1, e2, e3, e4, e5, e6, e7, e8|f1, f2, f3, f4, f5, f6, f7, f8) .
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Now a basic theorem says that products of minors associated with bitab-
leaux form an additive basis of Z[X]. Several mathematicians contributed to
this result; the “most combinatorial” references, containing the Rota straight-
ening formula, are [10] and [9].

Alain in his Thesis considers a characteristic zero variant of this result:
given two vector spaces or vector bundles,

Sn(E ⊗ F ) = ⊕|I|=nVI(E)⊗ VI(F ) , (6)

where VI(E) is the polynomial representation of GL(E), called by Alain the
Schur functor, corresponding to the weight I (and invented in Schur’s 1901
Thesis [55]).

In fact, in Alain’s Thesis the following parallel formula plays an even more
important role:

∧n(E ⊗ F ) = ⊕|I|=nVI(E)⊗ VI∼(F ) , (7)

where I∼ is the conjugate partition of I. The importance of this formula
comes from the fact that it describes the Koszul syzygies of the ideal generated
by the entries of a generic matrix, and then via suitable derived functors
(following a method introduced in G. Kempf’s 1971 thesis) allow one to
describe syzygies of determinantal ideals [24], [26].

In terms of characters, the last decomposition corresponds to∏
a∈A,b∈B

(1 + ab) =
∑

I

SI(A)SI∼(B) . (8)

V. (Robinson-Schensted-Knuth correspondence) This is a favourite
way of seeing the Cauchy formula by combinatorialists. Its simplest vari-
ant asserts a bijection between permutations in Sn and pairs of standard
tableaux of the same shape of weight n.

For example, the R-S-K correspondence associates with the permutation
[3, 6, 4, 1, 7, 2, 5] 4 the last pair of standard tableaux of shape 133 in the
following display:

4Here we follow the convention of writing a permutation σ ∈ Sn by its sequence of
values: σ = [σ1, σ2, . . . , σn].
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3 , 1 −→ 36 , 12 −→ 6
34

,
3
12

−→
6
3
14

,
4
3
12

−→
6
3
147

,
4
3
125

−→
6
34
127

,
4
36
125

−→
6
347
125

,
4
367
125

To be more precise, what corresponds to the Cauchy formula is a similar
bijection between monomials in commutative biletters and pairs of tableaux
of the same shape (cf. [17]).

According to Alain, the Cauchy formula gathers many (if not all) features
of a “good” algebraic formula: firstly, because it gives us some useful repro-
ducing kernel; secondly, because of its functorial character; thirdly, because
it is an interesting result on determinants having a natural “bijective inter-
pretation” with the help of planar displays. In the forthcoming sections, I
will show you several variations on these themes.

We also signal that a variant of a “Cauchy formula” for loop groups was
used by G. Faltings in his derivation of the famous Verlinde formula (for the
moduli space of vector bundles on a curve) – see Theorem 2.4 in [11].

3 Determinants

Everybody (since Jacobi) knows that Schur functions are given by determi-
nants in complete or elementary symmetric functions. One of the very first
things on symmetric functions that I learned from Alain was that the former
are more important that the latter. This was also claimed by J.M. Hoene-
Wroński (1778-1853), a Polish-French universal scientist admired by Alain
(cf. [28]).
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Castle Kórnik near Poznań in Poland, containing a large collection
of the original manuscripts of Wroński. They probably contain

interesting mathematical things still to be (re)discovered.

Working with a determinantal presentation of Schur functions, Alain al-
ways considers them as minors of a large matrix:

S0 S1 S2 S3 S4 ...

0 S0 S1 S2 S3 ...

0 0 S0 S1 S2 ...

0 0 0 S0 S1 ...

0 0 0 0 S0 ...
...

...
...

...
...

Usually Si = Si(A) where A is an alphabet or even a virtual alphabet. More
precisely, given I = (i1, . . . , in), J = (j1, . . . , jn) ∈ Zn, he sets

SJ/I(A) := det(Sjk−ih+k−h(A))1≤h,k≤n . (9)

If I consists of zeros, such a determinant is, up to sign, a Schur function
indexed by a French partition:

S5,7,2,0,3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S5 S8 S4 S3 S7

S4 S7 S3 S2 S6

S3 S6 S2 S1 S5

S2 S5 S1 1 S4

S1 S4 1 0 S3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= S3,3,3,4,4 .
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Among minors of a given matrix, there are many relations: Laplace expan-
sions, Plücker relations, etc. that can be used to get interesting relations for
Schur functions. Alain recommended, many times, that I go through Muir’s
treatment of determinants in five volumes [50]. For him [50] is an example
of an extremely useful “encyclopaedic” piece of work, unfortunately rather
rare in Mathematics.5

In particular, a familiar Binet-Cauchy formula for the minors of a product
of matrices (cf. [50], 1812, chap. IV), implies

SJ/I(A + B) =
∑
K

SJ/K(A)SK/I(B) . (10)

I want now to discuss some applications of the Bazin-Sylvester identity
for minors. Suppose that an ∞×n matrix is given. For a subset A ⊂ N with
card(A) = n, we denote by [A] the n× n minor of the matrix taken on rows
indexed by A. Now suppose that three subsets A, B, C ⊂ N are given with
card(A) = card(C) = p ≤ n and card(A) + card(B) = n. Then

det([ABc \ a])a∈A,c∈C = [AB]p−1[BC] . (11)

In [34] this identity was used to obtain a generalization to skew Schur func-
tions of the classical Schubert-Giambelli identity presenting a Schur function
in terms of hook Schur functions.

Afterwards, Alain and the author used it to derive in [35] the following
determinantal formula for a Schur function in terms of ribbon Schur functions.
Take the partition J = 11444677. The following picture shows the “ribbon-
decomposition” of the diagram of J :

� ? ? ? � � �
ℵ � � � � � �
ℵ ? � � � �
? ? � �
� � � �
� � � �
�
�

�
�

�
�

��

d i a
gonal

5Most interesting and useful determinantal relations were “systematized” by B. Leclerc
in [47].
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Consider now the matrix:

S1 S2 S6 S7 S8 S11 S13 S14

S0 S1 S5 S6 S7 S10 S12 S13

• S0 S4 S5 S6 S9 S11 S12

• • S3 S4 S5 S8 S10 S11

• • S2 S3 S4 S7 S9 S10

• • S1 S2 S3 S6 S8 S9

• • S0 S1 S2 S5 S7 S8

• • • S0 S1 S4 S6 S7

• • • • S0 S3 S5 S6

• • • • • S0 S2 S3

• • • • • • S0 S1

• • • • • • • S0



,

where we use • for Si, i < 0. Let A = {9, 12, 14, 15}, B = {2 , 3 , 7 , 8},
C = {1,4,5,6}. Then Bazin-Sylvester’s formula expresses S11444677 as the
following determinant of 8× 8-minors:∣∣∣∣∣∣∣∣∣∣∣

[23678 , 12, 14, 15] [236789 , 14, 15] [236789 , 12, 15] [236789 , 12, 14]

[23578 , 12, 14, 15] [235789 , 14, 15] [235789 , 12, 15] [235789 , 12, 14]

[23478 , 12, 14, 15] [234789, 14, 15] [234789 , 12, 15] [234789 , 12, 14]

[12378 , 12, 14, 15] [123789 , 14, 15] [123789 , 12, 15] [123789 , 12, 14]

∣∣∣∣∣∣∣∣∣∣∣
=

=

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨

ℵ
ℵ
�

ℵ
ℵ
�
? ? ?

ℵ
ℵ
�
���

��

ℵ
ℵ
�
���

��
�

? ?
?
�

? ?
?
�
? ? ?

? ?
?
�
���

��

? ?
?
�
���

��
�

���
�
�

���
�
�
? ? ?

���
�
�
���

��

���
�
�
���

��
�

�
�
����

�
�

�
�
����

�
�
? ? ?

�
�
����

�
�
���

��

�
�
����

�
�
���

��
�

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨

.
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With this “generic example” the reader easily sees a general pattern. It is
also possible to get the ribbon determinant by a suitable deformation of the
Schubert-Giambelli hook determinant (cf. [35] and Section 6).

A generalization of this result to “super-Schur” functions has recently
been obtained by W.Y.C. Chen, G-G. Yan, and A.L.B. Yang [6].

Ribbon Schur functions admit a lift to the noncommutative situation,
and play a basic role in the theory of noncommutative symmetric functions
(cf., e.g., [60]).

For a more systematic development of the theory of symmetric functions,
the reader is referred to Macdonald’s book [48]. Alain’s recent book [30]
exploits a more “λ-ring approach” to symmetric functions which allows one
to treat them as operators on polynomials. Among the techniques used most
frequently, we mention “transformations and specializations of alphabets”
(see also [45], [36]).

Schur functions admit a useful generalization to (no more symmetric)
multi-Schur functions. Given I = (i1, i2, . . . , ir) ∈ Nr, and alphabets
A1, . . . , Ar, B1, . . . , Br, the multi-Schur function SI(A1−B1, . . . , Ar−Br) is

SI(A1−B1, . . . , Ar−Br) := det(Sik+k−h(Ak−Bk))1≤h,k≤r . (12)

For example, S5,7,2,0,3(A−B, C−D, E−F, G−H, K−L) equals∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S5(A−B) S8(C−D) S4(E−F) S3(G−H) S7(K−L)

S4(A−B) S7(C−D) S3(E−F) S2(G−H) S6(K−L)

S3(A−B) S6(C−D) S2(E−F) S1(G−H) S5(K−L)

S2(A−B) S5(C−D) S1(E−F) 1 S4(K−L)

S1(A−B) S4(C−D) 1 0 S3(K−L)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The following simple lemma is masterfully exploited by Alain in numerous
situations (cf., e.g., [45], [30]):

Lemma 1 (Jacobi-Lascoux Lemma) Let D0, D1, . . . , Dn−1 be alphabets
such that card(Di) ≤ i. Then

SI(A1−B1, . . . , Ar−Br) = det(Sjk−ih+k−h(Ak−Bk−Dr−h))1≤h,k≤r . (13)

In other words, we can replace, in row h, A•−B• by A•−B•−Dr−h without
changing the determinant.
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This is easily seen from the relation:

Si(A−B−Dh) = Si(A−B) + S1(−Dh)Si−1(A−B) + · · ·
· · ·+ Sh(−Dh)Sj−h(A−B) , (14)

by subtracting from successive rows of the LHS-determinant, appropriate
combinations of its lower rows.

For example,∣∣∣∣∣∣∣∣
Si(A) Sj+1(B) Sk+2(C)

Si−1(A) Sj(B) Sk+1(C)

Si−2(A) Sj−1(B) Sk(C)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
Si(A−y−z) Sj+1(B−y−z) Sk+2(C−y−z)

Si−1(A−x) Sj(B−x) Sk+1(C−x)

Si−2(A) Sj−1(B) Sk(C)

∣∣∣∣∣∣∣∣ .

In particular, the Jacobi-Lascoux Lemma allows one to present a mono-
mial in a determinantal way:

a5b3c2 = S2,3,5(a + b + c, a + b, a) ,

which sometimes appears to be useful.

4 Schubert polynomials

Schur functions and multi-Schur functions are a very particular case of a
family of Schubert polynomials invented by Alain and M-P. Schützenberger
in 1982 ([42]). We shall follow the convention (used in [42]) that operators
acts on their left.

Let n be a fixed positive integer. The symmetric group Sn is the group
with generators s1, . . . , sn−1, where

si := [1, . . . , i− 1, i + 1, i, i + 2, . . . , n] , (15)

subject to the relations:

s2
i = 1 , si−1sisi−1 = sisi−1si , and sisj = sjsi ∀i, j : |i− j| > 1 .

Let A = (a1, . . . , an) be an alphabet of variables. The group Sn acts on
the polynomial ring Z[A] by permuting the variables. We define, following
Newton, a (simple) divided difference ∂i : Z[A] → Z[A], by

f∂i =
f − f si

ai − ai+1

(16)
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for f ∈ Z[A], where fσ := f(aσ1 , . . . , aσn) for σ ∈ Sn.

The ∂i’s satisfy the Moore-Coxeter relations. Thus for σ ∈ Sn, given its
reduced decomposition σ = si1 si2 · · · si` , the operator

∂σ := ∂i1 ∂i2 · · · ∂i` (17)

is well defined (i.e. does not depend on a reduced decomposition of σ).
Let B = (b1, . . . , bn) be another alphabet of variables. The definition of

Schubert polynomials X(A, B) (often called double Schubert polynomials6) of
Alain and M-P. Schützenberger goes as follows. For ω = [n, n− 1, . . . , 1],

Xω(A, B) =
∏

i+j≤n

(ai − bj) , (18)

and for arbitrary σ ∈ Sn,

Xσ(A, B) = Xω(A, B)∂ωσ . (19)

(In fact, it makes sense to speak about Schubert polynomials for any pair of
alphabets A, B of cardinality ≥ n, cf. [30].) Here we use divided differences
w.r.t. the variables A, but the variables from B appear just as systematically
because of the equation:

Xσ(A, B) = (−1)l(σ)Xσ−1(B, A) . (20)

Schubert polynomials satisfy the following fundamental vanishing prop-
erty: all positive degree Schubert polynomials vanish under the specialization
A = B.

When we specialize B with zeros, we get simple Schubert polynomials
Xσ(A); note that Xω(A) = an−1

1 an−2
2 · · · an−1. For a didactic exposition of

Schubert polynomials, see [49]. Schubert functors having characters equal
to the corresponding simple Schubert polynomials were constructed by W.
Kraśkiewicz and the author in [19] (see also [46]).

There is an associated reproducing kernel in this story. Consider the ring:
Pol = Z[A, B]/I , where I is the ideal generated by all f(A) − f(B) where
f is symmetric. On Pol there is a scalar product with values in Sym(A),
defined by

(f, g) := fg∂ω (21)

for f, g ∈ Pol. Note that the Jacobi symmetrizer ∂ω acts on Z[A] as follows:

f 7→
∑

σ∈Sn

( f∏
i<j(ai − aj)

)σ

. (22)

6It seems that we need a deeper reflection on “double” versus “single” in various math-
ematical situations.
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Set
K(A, B) :=

∏
1≤i<j≤n

(bi − aj) = ±Xω((an, . . . , a1), B) . (23)

For any polynomial f in n variables, in Pol we have

(f(A),K(A, B)) = f(B) . (24)

There is the following nonsymmetric Cauchy-type formula for Schubert
polynomials:

Theorem 2 (Cauchy-Lascoux Formula) Let A, B, C be three alphabets
of cardinality ≥ n. Then for σ ∈ Sn,

Xσ(A, B) =
∑
τ,η

Xτ (C, B)Xη(A, C) , (25)

where the sum is over σ = τη with l(σ) = l(τ) + l(η).

(Cf. [30], Theorem 10.2.6.) The most remarkable thing about the Cauchy-
Lascoux formula is that we can take an arbitrary(!) alphabet C. To be
just modest, for C = (0, . . .), Eq. (25) gives a quadratic expression of a
Schubert polynomial in terms of simple Schubert polynomials in A and B.
When σ = ω, we get an expression for the total Chern class of the full flag
manifold (cf. [27] – the paper where (double) Schubert polynomials originally
appeared). When σ = [n + 1, . . . , n + m, 1, . . . ,m], we get an expression for
the total Chern class of the Grassmannian (i.e., the Cauchy formula for the
resultant from Section 1).

In 1978, during his first visit to Poland, Alain said to me a sentence which
impressed me a lot at that time:

“The Schubert variety is a Schur function.” 7

This was probably the fastest introduction to the cohomology ring of a Grass-
mannian. I am pretty sure that what Alain does in Algebra or Combinatorics
is often deeply motivated by Geometry (of Grassmannians, flag varieties,
Schubert varieties etc.) This is also the case for Schubert polynomials. In
[13], W. Fulton showed that the polynomials Xσ(A, B) are the cohomology
classes of flagged degeneracy loci associated with a morphism of vector bun-
dles with Chern roots A and B. The key point is that divided differences
admit a geometric interpretation as correspondences in flag bundles (loc.cit).
This is also a proper place to mention the results of I.N. Bernstein, I.M.

7By extending the message of this sentence, I was happy (in 1986) to communicate to
Alain that “The Lagrangian Schubert class is a Schur Q-function.” (cf. [51], [52]).
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Gelfand and S.I. Gelfand [1], and M. Demazure [7], [8] from the 70’s, giving
formulas for Schubert classes for flag manifolds in terms of divided differences
(for any semisimple group); however in the SLn-case their expressions were
more complicated than the ones given by Schubert polynomials. In [53], one
can find more details on these and related issues.

As far as I know, one of the main motivations for introducing Schubert
polynomials was the authors’ fascination for Newton interpolation. In [43]
(see also [30], pp. 148–149), the following formula was given. Suppose that
A and B are two alphabets of variables of cardinalities n and ∞, respectively.
Let S∞ be the infinite symmetric group acting in a natural way on B. For
any polynomial f in n variables, we have

f(A) =
∑

σ

f(b1, . . . , bn)∂σ−1 Xσ(A, B) , (26)

where the sum is over σ ∈ S∞ satisfying σ(n + 1) < σ(n + 2) < . . . , and the
operators ∂σ act on the variables from B.

For n = 1, the sum is over the identity permutation and permutations
σ(i) = sisi−1 · · · s1, where i ≥ 1. We have

Xσ(i)(A, B) = (a− b1)(a− b2) · · · (a− bi) .

Therefore (26) reads:

f(a) = f(b1) + f(b1)∂1 · (a− b1) + f(b1)∂1∂2 · (a− b1)(a− b2)

+ f(b1)∂1∂2∂3 · (a− b1)(a− b2)(a− b3) + · · · ,

which is the Newton Interpolation Formula. Note that Newton’s interpo-
lation and that of Lagrange are used in [12], written with Amy M. Fu, to
deduce some new q-identities.

Alain and M-P. Schützenberger invented also Grothendieck polynomials
which evaluate K-theoretic classes of the structure sheaves of Schubert vari-
eties. This was done with the help of isobaric divided differences and led to
Combinatorial K-theory (cf., e.g., [4]). Other important polynomials defined
with the help of isobaric divided differences are Key polynomials. Let A be a
countable alphabet of variables. Given a permutation σ, let c = (c1, c2, . . .)
denote its code, where

ci = card{j > i : σj < σi} (27)

for i = 1, 2 . . .. The group S∞ acts on codes by permuting their components.
Now, if σ is dominant (i.e., c is weakly decreasing), then

Kσ(A) := Xσ(A) = ac = ac1
1 ac2

2 · · · , (28)
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a monomial. Otherwise, if c and i are such that ci < ci+1, then

Kcsi
(A) = Kc(A)πi , (29)

where πi is a (simple) isobaric divided difference defined for f ∈ Z[A] by

fπi =
aif − ai+1f

si

ai − ai+1

. (30)

The Schubert polynomial is a nonnegative combination of Key polynomi-
als. For example,

X2154367... = K30010... + K10210... + K2020... .

Since Key polynomials also have a geometric meaning (they are related to
sections of line bundles on Schubert varieties (cf. [14])), this nonnegativity
should have a geometric explanation.

Finally, note that Key polynomials are used in [29] to give a “Cauchy-
type” quadratic expression for the product:∏

i+j≤n+1

(1− aibj)
−1 .

The Jacobi symmetrizer ∂ω, used above to define the scalar product, is a
“queen mother” of many other symmetrizing operators. Apart from their use
in interpolation theory, numerical analysis, and cohomology theory of flag
manifolds, such operators are useful in algebraic computations. Consider the
operator π = πω (defined using isobaric divided differences and a reduced
decomposition of ω). Using symmetrization, its action on the ring of series
in a1, . . . , an is described as follows:

f 7→
∑

σ∈Sn

(
f ·

∏
i<j

(
1− aj

ai

)−1
)σ

. (31)

Two basic properties of π are:

f symmetrical ⇒ fgπ = f(gπ) , (32)

ai1
1 · · · ain

n π = SI(A) when I ∈ Nn . (33)

Schur functions are eigenfunctions of π, i.e. for m ≤ n, I ∈ Nm, J ∈ Nn−m,
we have

SI(a1 + · · ·+ am) SJ(am+1 + · · ·+ an) π = SIJ(A) . (34)
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where IJ is the element (i1, . . . , im, j1, . . . , jn−m) of Nn. For n ≥ 2, from Eq.
(34) with m = n− 1, I = j0 . . . 0, J = 0, it follows that∏

i≤n−1

(1−ai)
−1π =

∏
i≤n

(1−ai)
−1 . (35)

More directly, writing∏
i≤n−1

(1−ai)
−1 = (1−an)

∏
i≤n

(1−ai)
−1,

we can use (32) and recover Eq. (35):∏
i≤n−1

(1−ai)
−1π = 1−an π ·

∏
i≤n

(1−ai)
−1 =

∏
i≤n

(1−ai)
−1 .

It is not hard to check the following identities:∏
i≤n−1

(1−aian)π = 1 (resp. 1−a1 · · · an) for n odd (resp. even) , (36)

an

∏
i≤n−1

(1−aian)π = 0 (resp. a1 · · · an) for n even (resp. odd) . (37)

We illustrate on a classical formula how to use the operator π. Let us
consider

F (n−1) =
∏

i≤n−1

(1−ai)
−1

∏
i<j≤n−1

(1−aiaj)
−1 .

Then

F (n−1)π = (1−an)(1−a1an) · · · (1−an−1an)F (n)π = (1−a1 · · · an)F (n)

thanks to Eqs. (32), (36), and (37). Assuming now by induction that
F (n−1) =

∑
SI(a1+· · ·+an−1), summed over all partitions I = (i1, . . . , in−1),

we transform this identity with the help of π into

(1−a1 · · · an)F (n) =
∑

SI(a1 + · · ·+ an) ,

the sum over the same I’s. Dividing by (1−a1 · · · an), we finally obtain the
identity of Schur:∏

i≤n

(1−ai)
−1

∏
i<j≤n

(1−aiaj)
−1 =

∑
SJ(a1 + · · ·+ an) , (38)
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with the sum now over all partitions J = (j1, . . . , jn).
Also other identities for S-function series can be proven in a similar way.

We refer the reader to [36], where, e.g., the S-function expansion of∏
i≤n

(1− ai + a2
i )
−1

∏
i<j≤n

(1− aiaj)
−1

is given using the same method.

5 Divided differences versus vertex operators

In this section, I will tell you about the biggest mathematical surprise that
came to me from Alain (about 1995).

Let n be a fixed positive integer. Besides the symmetric group (i.e. the
Weyl group of type A) Sn, we shall consider two other Weyl groups.

The hyperoctahedral group (i.e. the Weyl group of type C) Cn, is an
extension of Sn by an element s0 such that s2

0 = 1, s0s1s0s1 = s1s0s1s0, and
s0si = sis0 for i ≥ 2 .

The Weyl group Dn of type D is an extension of Sn by an element s2

such that s2
2 = 1, s1s2 = s2s1, s2s2s2 = s2s2s2, and s2si = sis2 for i > 2.

Let A = (a1, . . . , an) be an alphabet of variables. The groups Sn, Cn, and
Dn act on Z[A]: si(ai) = ai+1, s0(a1) = −a1, s2(a1) = −a2.

Apart from Newton’s divided differences:

f ∂i :=
f − f(. . . , ai+1, ai, . . .)

ai − ai+1

,

we have two other divided differences associated to simple roots of type C
and D:

f ∂0 :=
f − f(−a1, a2, . . .)

2a1

, (39)

and

f ∂2 :=
f − f(−a2,−a1, a3, . . .)

a1 + a2

. (40)

The ∂i, ∂0, ∂2 satisfy the Coxeter relations, together with the relations

∂2
2 = 0 = ∂2

i for 0 ≤ i < n . (41)

Therefore, to any element w of the groups Cn and Dn, there corresponds a
divided difference ∂w. Any reduced decomposition si1 si2 · · · si` = w gives rise
to a factorization ∂i1 ∂i2 · · · ∂i` of ∂w ([1], [7]).
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We now invoke single Schubert polynomials. Here it will be more handy
to index them by the codes of permutations, and for a didactic reason we re-
peat their definition in this setting. Write ρ for the sequence (n−1, . . . , 1, 0).
One defines recursively Schubert polynomials Yα, for any sequence α =
(α1, . . . , αn) ∈ Nn such that αj ≤ n− j for j = 1, . . . , n, by

Yα ∂i = Yβ , if αi > αi+1 , (42)

where
β = (α1, . . . , αi−1, αi+1, αi − 1, αi+2, . . . , αn) , (43)

starting from Yρ = xρ .
If α ∈ Nn is weakly decreasing, then Yα is equal to the monomial xα

– a property already mentioned. If, on the contrary, α1 ≤ · · · ≤ αk and
αk+1 = · · · = αn = 0, for some k ≤ n, then Yα coincides with the Schur
polynomial SI(a1 + · · ·+ ak), where I = (α1, . . . , αk).

Besides Schubert polynomials, we shall need the following Q̃–polynomials
of [54]. We set Q̃i := Λi = Λi(A), the ith elementary symmetric polynomial
in A . Given two nonnegative integers i ≥ j, we put

Q̃i,j := Q̃iQ̃j + 2

j∑
p=1

(−1)pQ̃i+pQ̃j−p . (44)

We have Q̃i,i(A) = Λi(a
2
1 + · · ·+ a2

n).
Given any English partition8 I = (i1 ≥ . . . ≥ ik), where we can assume k

to be even, we set
Q̃I := Pfaffian(M) , (45)

where M = (mp,q) is the k× k skew-symmetric matrix with mp,q = Q̃ip,iq for
1 ≤ p < q ≤ k.

For special attention of the audience of SLC: Q̃-polynomials form an
interesting basis of the ring of symmetric polynomials. A Q̃-polynomial is
not, in general, a nonnegative combination of Schur S-polynomials. It is,
however, a nonnegative combination of monomials. It would be useful to
establish a combinatorial rule for the coefficients of this expansion. Also, it
is worth studying other combinatorial properties of Q̃-polynomials (cf. [54],
[58]).

8In this section, we use English partitions in order not to offend Ron King who is in
the audience, and D.E. Littlewood whose result will be used here.
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Here is a sign that the Q̃I ’s are well suited to divided differences. Consider
the following operator:

∇ := (∂0∂1 · · · ∂n−1) · · · (∂0∂1)∂0 . (46)

Denote by

〈 , 〉 : Sym(A)×Sym(A) → Sym(a2
1, . . . , a

2
n) (47)

the scalar product defined for f, g ∈ Sym(A) by

〈f, g〉 := fg∇ . (48)

Let ρ(n) denote the strict partition (n, n− 1, . . . , 1). We have the following

orthogonality property of Q̃-polynomials: For strict partitions I, J ⊆ ρ(n),

〈Q̃I , Q̃ρ(n)rJ〉 = ±δIJ , (49)

where ρ(n) r J is the strict partition whose parts complement the parts of
J in {n, n− 1, . . . , 1}. Given another alphabet B of n variables, define

Q̃(A, B) :=
∑

Q̃I(A) Q̃ρ(n)rI(B) , (50)

where the summation is over all strict partitions I ⊆ ρ(n). The polynomial

Q̃(A, B) is a reproducing kernel for 〈 , 〉: for a symmetric polynomial f in n
variables,

〈f(A) , Q̃(A, B)〉 = ±f(B) . (51)

In the beginning of 90’s, computing with SYMMETRICA [16], J. Ratajski
and the author obtained evidence that the following two identities should be
true for a strict partition I ⊂ ρ(n):

Firstly,
Q̃I ∂0∂1 · · · ∂i1−1 = ±Q̃(i2,i3,...) . (52)

Secondly, using standard barred-permutation notation for elements of the
group Cn, we have for w(I) := [i1, . . . , i`(I), j1, . . . , jh] ,

xρQ̃ρ(n) ∂w(I) = ±Q̃I . (53)

We tried to find conceptual proofs of these identities. More generally, let us
consider the following operator for k ≤ n,

∇k(n) := (∂0∂1 · · · ∂n−1) · · · (∂0∂1 · · · ∂n−k) . (54)

The problem is, how to compute with ∇k(n) ? Here is an answer.
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Theorem 3 ([37]) Let k ≤ n and let α = (α1 ≤ · · · ≤ αk) ∈ Nk with
αk ≤ n − k. Suppose that I ⊆ ρ(n) is a strict partition. Then the image of

Q̃I Yα under ∇k(n) is 0 unless n− 0− α1, . . . , n− (k − 1)− αk are parts of

I. In this case, the image is ±Q̃J , where J is the strict partition with parts
{i1, . . . , i`(I)}r {n− 0− α1, . . . , n− (k − 1)− αk}.

For example, for n = 7 and k = 2 ,

Q̃(5,4,3,2,1) Y(2,5)∇2(7)

= Q̃(5,4,3,2,1) Y(2,5) (∂0∂1∂2∂3∂4∂5∂6)(∂0∂1∂2∂3∂4∂5) = Q̃(4,3,2) ;

and for k = 3 , we have

Q̃(7,5,4,3,1) Y(2,3,4)∇3(7) = Q̃(7,4) .

This theorem implies (52) and (53) (loc.cit.).
In fact the “key case” is the case k = 1. Suppose n ≥ p > 0. Let

IpJ ⊆ ρ(n) be a strict partition. Then

xn−p
1 Q̃IpJ ∂0∂1 · · · ∂n−1 = ±Q̃IJ . (55)

If H ⊆ ρ(n) is a strict partition with no part equal to p, then

xn−p
1 Q̃H ∂0∂1 · · · ∂n−1 = 0 . (56)

After digesting our computations, Alain conceived the idea of using vertex
operators 9. These are some (formally) infinite differential operators (mixing
multiplication and differentiation) born in the theory of Kac-Moody algebras
and inspired by Mathematical Physics. In the proof below, where operators
act on symmetric functions, they serve to give “long” but useful expressions
for s0 and ∂0 .

Sketch of proof of (55) and (56) Let ( , ) be the standard inner product
on Sym, the ring of symmetric functions in a countable set of variables
a1, a2, . . .. We shall use the Foulkes’ derivative Df for f ∈ Sym:

(g ·Df , h) = (g, f · h) .

We shall treat polynomials as operators acting by multiplication. We have
(cf. [37], Lemma 5.6):

s0 = 1− 2DP1a1 + 2DP2a2 − 2DP3a3 + · · · . (57)

9Perhaps for J-Y. Thibon [59] and some other participants of SLC, this is “bread and
butter”, but for us this was fantastic and absolutely genial!
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Here, Pi is the sum of all hook Schur functions of degree i (called Schur’s
P -functions, well-established among the audience of SLC [32]). Thus

∂0 = DP1 −DP2a1 + DP3a
2
1 − · · · . (58)

Using this equality and

ap
1∂1 · · · ∂n−1 = Sp−n+1(a1 + · · ·+ an) , (59)

we compute for 0 < k ≤ n,

an−k
1 ∂0∂1 · · · ∂n−1 = DPk

−DPk+1
S1 + DPk+2

S2 − · · · . (60)

(after restriction to the first n variables). Now define

US
k := DPk

−DPk+1
S1 + DPk+2

S2 − · · · . (61)

and
UΛ

k := DPk
−DPk+1

Λ1 + DPk+2
Λ2 − · · · . (62)

What is to be shown is:

Q̃IkJ US = ±Q̃IJ or 0 . (63)

Note that US
k is dual to UΛ

k for the involution: SI → SI∼ . So if we define

Q′
I
10 as duals to Q̃I , then it is required to show:

Q′
IkJ UΛ

k = ±Q′
IJ or 0 . (64)

We invoke now a result of Littlewood: The basis {Q′
J}, where J runs over

strict partitions, is conjugate to {PJ}, the basis of Schur’s P -functions. De-
fine

V Λ
k := Pk −DΛ1Pk+1 + DΛ2Pk+2 − · · · . (65)

So finally we must show:
PJ V Λ

k = PkJ (66)

– but this follows from:

PkJ =
∑
j≥0

(−1)j PJDΛj
Pk+j . (67)

We refer to [37] for details. We do not know proofs of Eqs. (52) and (53)
without using vertex operators.

10These functions were studied on another occasion by Alain, B. Leclerc, and J-Y.
Thibon [31].
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The formulas discussed here are important for cohomology classes of La-
grangian Schubert classes and degeneracy loci [54], [37], and, consequently,
for quantum cohomology of Lagrangian Grassmannians (cf., e.g., [58]).

For Weyl groups of type D, there are similar results. As Dn is a subgroup
of Cn, they can be, in fact, deduced from Theorem 3 with the help of some
additional computations with divided differences of type C. It is convenient
to perform them using some planar displays which is the subject of the next
section.

6 Planar displays

First we want to show another derivation of the ribbon determinant from
Section 3 with the help of some deformations of diagrams. Given a skew
diagram, its right corner is the box at the extreme right of the bottom row,
and its left corner is the upper box of the left column. Given two skew
diagrams H, K, let ℵ be the right corner of H and the left corner of K. We
define H I K to be the skew diagram obtained by gluing the two diagrams
by their corners, ℵ, being on the same horizontal, and HHK to be the skew
diagram obtained by gluing the two corners on a vertical:

H I K =

��
����

����
��ℵ�? ? ? ? ?

? ? ? ?
? ?

HHK =

��
����

����
��ℵ

�? ? ? ? ?
? ? ? ?

? ?

Lemma 4 If H and K are two skew diagrams, then

SH · SK = SHIK + SHHK . (68)

This equality (known already to P. MacMahon for ribbon Schur functions)
has a simple justification. The Schur function SH is the sum

∑
t of all the

tableaux of diagram H, and similarly SK is the sum
∑

t′ of all the tableaux
of diagram K. For any pair of tableaux t, t′, let y be the letter in the box
ℵ of t and z the letter in the box of t′. According as y ≤ z or y > z,
the product of (monomials of) tableaux is a tableau of the diagram H I K
or HHK and conversely, cutting into two pieces all the pairs of tableaux of
diagrams H I K or HHK, one obtains all the pairs of tableaux of respective
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diagrams H, K (all this is a trivial consequence of the Jeu de Taquin which
allows one to move the parts of tableaux (cf. [56]).

Jeu de Taquin is a favourite “jeu” of Alain; it is ultimately related to the
notion of Le monöıde plaxique – an important subject developed with M-
P. Schützenberger, which offers us, among other things, a noncommutative
lift of Schur functions (cf. the original paper [41] and [33] which contains a
more didactic exposition of these issues). The “plactic point of view” gives,
according to Alain, the simplest, most natural, and most transparent proof
of the famous Littlewood-Richardson rule (loc.cit.).

We now show another way of obtaining the ribbon determinant expressing
a Schur function. Take, e.g., I = 13557. The decompositions of the diagram
of I into respectively hooks and ribbons are:

�
�?�
�?���
��? ? ?
�������

and

�
���
? ?���
��? ?�
���?���

We have

S13557 =

∣∣∣∣∣∣
S13 S14 S17

S113 S114 S117

S1113 S1114 S11117

∣∣∣∣∣∣
=

∣∣∣∣∣∣
S13 S13H1 S13H1H3

S113 S113H1 S13H1H3

S11113 S11113H1 S11113H1H3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
S13 S13H1 S13H1H3

S1I13 S1I13H1 S1I3H1H3

S11I1I13 S11I1I13H1 S11I1I13H1H3

∣∣∣∣∣∣ ,

which is the desirable ribbon determinant. This is a direct consequence
of Lemma 4 combined with elementary operations on columns and rows of
the determinants involved. We refer to [35] for more applications of such
deformations of planar diagrams.

During our mathematical discussions, Alain often mentioned the Gessel-
Viennot “planar” interpretation of binomial determinants in terms of nonin-
tersecting paths in N× N (cf. [15]).

Now we want to discuss reduced decompositions and divided differences.
Relations between reduced decompositions in the Weyl groups can be rep-
resented planarly. Let us explain it through the example of the symmetric
group Sn. By definition, a planar display will be identified with its read-
ing from left to right and top to bottom (row-reading). We shall also use
column-reading, that is, reading successive columns downwards, from left to
right.
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For example, we shall write

2
1 2

≡ 1 2
1

for the following equality for simple transpositions:

s2 s1 s2 = s1 s2 s1 .

Suppose that a rectangle is filled row-wise from left to right, and column-
wise from bottom to top with consecutive numbers from {1, . . . , n− 1}.

Then one easily checks that its row-reading and column-reading produce
two words which, interpreted as words in the si, are congruent modulo the
Coxeter relations.

Here is an example of such a congruence:

3456
2345

1234
≡

3
2
1
·
4
3
2
·
5
4
3
·
6
5
4

the congruence class being conveniently denoted by the rectangle

3456
2345
1234

More generally, the planar arrays that we shall write, will have the prop-
erty that their row-reading and column-reading are congruent modulo Cox-
eter relations (this is a “Jeu de Taquin” for reduced decompositions). In
this notation, we have, for any integers a, b, c, d, k such that

1 ≤ a < b, c < d ≤ n, a + d = b + c, k < d− b,

the congruence

b + 1 · · · b + k
b · · · · · · · · · d
...

...
a · · · · · · · · · c

≡

b · · · · · · · · · d
...

...
a · · · · · · · · · c

c− k · · · c− 1

(69)

We shall display divided differences of type C planarly according to the
same conventions as for products of si’s. For example, the divided difference:

∂0∂1∂2∂3∂0∂1∂2∂0∂1
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will be displayed as
∂0∂1∂2∂3

∂0∂1∂2

∂0∂1

As said before, the displays that we write have the property that their row-
reading is congruent to their column-reading, and thus the preceding one
encodes the equality

∂0∂1∂0∂2∂1∂0∂3∂2∂1 = ∂0∂1∂2∂3∂0∂1∂2∂0∂1 .

When one wants to get an analog of Theorem 3 for type D, the following
relation is, e.g., needed (cf. [38]):

∂0∂1∂2∂3∂4∂5∂6

∂0∂1∂2∂3∂4∂5

∂0∂1∂2∂3∂4

∂1∂2∂3

= ∂4∂5∂6

∂0∂1∂2∂3∂4∂5∂6

∂0∂1∂2∂3∂4∂5

∂0∂1∂2∂3∂4

(70)

Now, thanks to the relations (69) written in terms of divided differences, we
have

∂0∂1∂2∂3∂4∂5∂6

∂0∂1∂2∂3∂4∂5

∂0∂1∂2∂3∂4

∂1∂2∂3

=

∂0∂1∂2

∂0∂1

∂0




∂3∂4∂5∂6

∂2∂3∂4∂5

∂1∂2∂3∂4

∂1∂2∂3

 =

∂0∂1∂2

∂0∂1

∂0




∂4∂5∂6

∂3∂4∂5∂6

∂2∂3∂4∂5

∂1∂2∂3∂4


=

∂0∂1∂2

∂0∂1

∂0

 (∂4∂5∂6)

∂3∂4∂5∂6

∂2∂3∂4∂5

∂1∂2∂3∂4


Since ∂4∂5∂6 commutes with the divided differences on its left, the last ex-
pression may be rewritten as

∂4∂5∂6

∂0∂1∂2∂3∂4∂5∂6

∂0∂1∂2∂3∂4∂5

∂0∂1∂2∂3∂4

which is what we need for (70). You see that with planar displays it is much
easier to compute with reduced decompositions and divided differences for
Weyl groups.
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Also a permutation can be displayed in a planar way using its Rothe dia-
gram. This leads to Alain’s favourite combinatorial presentation of Schubert
polynomials with the help of Weintrauben of A. Kohnert [18].

7 Euclid’s algorithm

Already during his first visit to Poland in 1978, Alain said me:

“Even in elementary Mathematics there are interesting
things still to be discovered!”

The present section seems to be a confirmation of this sentence. I will tell
you about our recent work [39], [40] on some aspects of Euclid’s algorithm.

Let A and B be two alphabets of cardinalities m and n. (We can think of
A and B as multi-sets of complex numbers.) Consider two monic polynomials
f(x) = Sm(x− A) and ϕ(x) = Sn(x− B). Assume that m ≥ n. Let us look
at the iterated division of f and ϕ:

f = ∗ ϕ+c1R1 , ϕ = ∗ R1+c2R2 , R1 = ∗ R2+c3R3 , . . . . (71)

The successive coefficients “ ∗ ” are the unique polynomials such that

n > degR1 > degR2 > degR3 > · · · .

Instead of the usual Euclidean algorithm, where c1 = c2 = c3 = · · · = 1
and where Ri are rational functions in the roots A and B of f and ϕ, we
choose the constants ci in such a way that the successive remainders Ri are
polynomials in A and B with the top coefficient equal to Sim−n+i(A − B).
The problem is to give explicit expressions for such normalized polynomial
remainders in terms of roots.

An interesting solution to the above problem was proposed by Sylvester
about 160 years ago, who found “the successive residues, divested of their
allotrious factors . . . ” that is, who also normalized the remainders in such
a way as to obtain polynomials in the roots, the last “residue” being the
resultant. To state Sylvester’s solution, we need the following notation. For
two finite sets A and B of elements in a commutative ring, we set

R(A, B) :=
∏

a∈A,b∈B

(a− b) . (72)

Let now A = (a1, . . . , am), B = (b1, . . . , bn) be two alphabets of (commuting)
variables. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n be two integers. Define, after Sylvester,
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the following double sum:

Sylvp,q(A, B; x) :=
∑
A′⊂A

∑
B′⊂B

R(x, A′)R(x, B′)
R(A′, B′)R(A−A′, B−B′)
R(A′, A−A′)R(B′, B−B′)

, (73)

the sum being over all subsets A′ of cardinality p and B′ of cardinality q.
Sometimes, we will also use the notation Sylvp,q(x) or Sylvp,q for this sum.
The Sylvester sum Sylvp,q(A, B; x) is a polynomial in A, B, and x; moreover
degx Sylvp,q = p + q . Observe that Sylv0,0 = R(A, B) and if p = 0 or q = 0
then the Sylvester sum reduces to a single sum. For example,

Sylv0,q(A, B; x) =
∑
B′⊂B

R(x, B′)
R(A, B−B′)
R(B′, B−B′)

, (74)

the sum being over all subsets B′ of cardinality q. In this case, the assertion
of the next theorem was already proved by C.W. Borchardt in 1860.

Note that
R(A, B−B′) =

∏
b∈BrB′

f(b) . (75)

For q = n− 1, one recovers Lagrange interpolation (cf., e.g., [30]):

±R1 =
n∑

i=1

f(bi)
∏
j 6=i

x− bj

bi − bj

. (76)

Let us come back to double Sylvester sums. For m = 3, n = 2, the
Sylvester sum Sylv1,1(A, B; x) equals:

(a1 − b1)(a2 − b2)(a3 − b2)

(a1 − a2)(a1 − a3)(b1 − b2)
(x− a1)(x− b1)

+
(a1 − b2)(a2 − b1)(a3 − b1)

(a1 − a2)(a1 − a3)(b2 − b1)
(x− a1)(x− b2)

+
(a2 − b1)(a1 − b2)(a3 − b2)

(a2 − a1)(a2 − a3)(b1 − b2)
(x− a2)(x− b1)

+
(a2 − b2)(a1 − b1)(a3 − b1)

(a2 − a1)(a2 − a3)(b2 − b1)
(x− a2)(x− b2)

+
(a3 − b1)(a1 − b2)(a2 − b2)

(a3 − a1)(a3 − a2)(b1 − b2)
(x− a3)(x− b1)

+
(a3 − b2)(a1 − b1)(a2 − b1)

(a3 − a1)(a3 − a2)(b2 − b1)
(x− a3)(x− b2) .
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This is equal to −2(x − b1)(x − b2), so you see that these sums are quite
tricky. Summations of this type play nowadays an important role, for exam-
ple, in representation theory, and in the description of Gysin maps (called
also “integrations over a fiber”) for fibrations with homogeneous spaces as
fibers.

The main result connecting the polynomial remainders and Sylvester
sums is the following theorem.

Theorem 5 ([39]) If p + q < n, then specializing A and B to the roots of
the polynomials f and ϕ respectively, we have

Sylvp,q = ±
(

p + q

p

)
Rn−(p+q) . (77)

This result was stated without complete proof in Sylvester’s papers (cf., e.g.,
[57]). Our proof uses the following presentation ofRn−d for d = 0, 1, . . . , n−1:

Rn−d = ±S1d;(m−d)n−d(B− x; B− A) .

(Cf. [30], [39].) This determinantal presentation will allow us to run induc-
tion (on n). Before giving a sketch of the proof of the theorem, we state some
results that we shall need. Suppose that B = (b1, . . . , bn) is an alphabet of
variables. In the following, divided differences act on the variables from B.

1) For every k ∈ N, and an alphabet A which is independent of B, we have

Sk(Bi − A)∂i = Sk−1(Bi+1 − A) . (78)

2) The first remainder R1 of the division of f(x) = Sm(x − A) by ϕ(x) =
Sn(x− B) equals

R1 =
(
f(b1)R(x, B− b1)

)
∂1 · · · ∂n−1 . (79)

This is again an incarnation of the Lagrange interpolation in the points a ∈ A.
For example, for n = 3, R1 equals

f(b1)
(x−b2)(x−b3)

(b1−b2)(b1−b3)
+ f(b2)

(x−b1)(x−b3)

(b2−b1)(b2−b3)
+ f(b3)

(x−b1)(x−b2)

(b3−b1)(b3−b2)
. (80)

3) The specialization Sylvp,q(A, B; b), b ∈ B, is equal to ±R(b, A)c, where c
is the top coefficient of Sylvp,q(A, B− b; x).

Sketch of proof of the theorem Write d := p+ q. It is necessary to show
that

Sylvp,q(A, B; x) = ±
(

d

p

)
S1d;(m−d)n−d(B− x; B− A) (81)
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if d < n. I will give you a rather detailed computation because it gathers
together several tricks useful while calculating with multi-Schur functions.

Since degx Sylvp,q < n, Sylvp,q coincides with its first remainder modulo
R(x, B). By Eq. (79),

Sylvp,q(x) =
(
Sylvp,q(b1)R(x, B− b1)

)
∂1 · · · ∂n−1 . (82)

By property 3), we have

Sylvp,q(b1) = ±R(b1, A)× the top coefficient c in Sylvp,q(A, B− b1; x) . (83)

If d < n− 1, then by the induction assumption,

c = ±
(

d

p

)
S�(B− b1 − A) , (84)

with � = (m− d)n−d−1. This is also true if d = n− 1 (cf. [39]). We are left
with the computation of(

R(x, B− b1)R(b1, A)
)
S�(B− b1 − A)∂1 · · · ∂n−1 .

In this computation, we use three simple identities:

R(x, B− b1) = ±
n−1∑
i=0

(−1)iS1n−i−1(B− x)bi
1 , (85)

bi
1R(b1, A) = Sm+i(b1 − A) , (86)

Sm+i(b1 − A)S�(B− b1 − A) = S�;m+i(B− A; b1 − A) . (87)

Finally, using (78),

Sylvp,q(b1)R(x, B− b1) = ±
(

d

p

) n−1∑
i=0

(−1)iS1n−1−i(B−x)S�;m+i(B−A; b1−A)

is sent via ∂1 · · · ∂n−1 to

±
(

d

p

) n−1∑
i=0

(−1)iS1n−1−i(B− x)S�;m+i−(n−1)(B− A) . (88)

In the sum (88), the terms for i = 0, . . . , n−d−2 disappear. In the remaining
sum for i = n− d− 1, . . . , n− 1:

d∑
j=0

(−1)jS1d−j(B− x)S�;m−d+j(B− A) ,
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one recognizes a Laplace expansion of S1d;(m−d)n−d(B− x; B− A) .
This computation shows the importance of having a proper determinantal

expression (here for a normalized polynomial remainder) that allows us to
use induction.

Perform now the Euclidean algorithm with nonstandard signs:

f = Q0ϕ−R1, ϕ = Q1R1 −R2, R1 = Q2R2 −R3 , ...

...,Rn−2 = Qn−1Rn−1 −Rn, Rn−1 = QnRn .

We may rewrite the first equation as follows:

ϕ

f
=

1

Q0 − R1

ϕ

.

Iterating, we get a continued fraction:

ϕ

f
=

1

Q0 −
1

Q1 −
1

. . . 1

Qn

.

For i = 1, . . . , n, we denote by Ni and Di the numerator and denominator
of the ith convergent of this continued fraction. For i = 1, . . . , n, we have
(cf., e.g., [40])

Ri = ϕDi − fNi . (89)

Suppose, from now on, that A and B (the multi-sets of roots of f and ϕ)
are alphabets of cardinalities n + 1 and n. One finds in the book of Brioschi
[3], p. 167, the following identities: for a fixed i,∑

a∈A

Di(a)Ni(a)
ϕ(a)

R(a, A−a)
= 0 , (90)

∑
a∈A

Di(a)Di−1(a)
ϕ(a)

R(a, A−a)
= 0 , (91)

∑
a∈A

D2
i (a)Qi(a)

ϕ(a)

R(a, A−a)
= 0 . (92)

These three identities make use of the following functional on C[x]:

µ : g(x) 7→
∑
a∈A

g(a)
ϕ(a)

R(a, A−a)
. (93)
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The functional µ is an incarnation of the Lagrange interpolation in the points
a ∈ A. It is characterized by the fact that it sends each xi, i ∈ N, onto the
complete function Si(A−B).

Given a linear functional, it is known how to write an orthogonal basis
in terms of moments :

Proposition 6 The Schur polynomials Sii(A−B−x) for i = 0, 1, . . . , n, form
a unique (up to normalization) orthogonal basis with respect to the functional
µ, of polynomials of respective degrees 0, 1, . . . , n.

(More precisely, this is a rewriting, in terms of Schur functions, of the clas-
sical expressions of orthogonal polynomials in terms of Hankel determinants
involving moments.)

By combining Eq. (89) with

Ri ≡ ϕ Sii(A−B−x) mod f , (94)

(cf. [30], p. 49), we thus get the following basic result.

Proposition 7 For any fixed 0 ≤ i < j ≤ n, the following relations hold:∑
a∈A

aiDj(a)
ϕ(a)

R(a, A−a)
= 0 , (95)

∑
a∈A

Di(a)Dj(a)
ϕ(a)

R(a, A−a)
= 0 . (96)

Brioschi’s relation (91) is just a particular case of Eq. (96) with consecutive
i and j. Similarly, the two remaining relations follow from the proposition
(cf. [40]).

In terms of Euclidean remainders, the proposition is rewritten as follows:
for any fixed 0 ≤ i < j ≤ n,∑

a∈A

aiRj(a)
1

ϕ(a)R(a, A−a)
= 0 , (97)

∑
a∈A

Ri(a)Rj(a)
1

ϕ(a)R(a, A−a)
= 0 . (98)

We want now to discuss Christoffel-Darboux kernels associated with these
orthogonal polynomials. This will be done by investigating some bivariate
polynomials called Bézoutians.
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Suppose that f, ϕ is an arbitrary pair of univariate polynomials. Denoting
by ∂xy the Newton divided difference acting on the variables x and y, we set
(after Bézout [2]):

Bez(f, ϕ) := f(x)ϕ(y)∂xy , (99)

and call this bivariate polynomial (in x and y) the Bézoutian (of f and ϕ).
In [40] the following formula (missed by classics) was proved:

Theorem 8 With the above notation,

Bez(f, ϕ) = p0ϕ(x)ϕ(y) +
n∑

i=1

piRi(x)Ri(y) , (100)

where pi := Qi(x)∂x,y.

We say that a pair (f, ϕ) is general if the Euclidean quotients Qi are of
degree 1 for i = 1, . . . , n. From now on, we assume that (f, ϕ) is a general
pair of monic polynomials of degrees (n+1, n) with alphabets of roots A and
B. The theorem gives:

Bez(f, ϕ) = ϕ(x)ϕ(y) +
n∑

i=1

αiRi(x)Ri(y) , (101)

where αi is the coefficient of x in Qi(x).
Using Eq. (101), the congruence (94), and an expression for αi from [30],

we infer (cf. [40]):

Theorem 9 With the above assumptions, we have the following congruence
modulo the ideal (f(x), f(y)):

Bez(A, B) ≡ ϕ(x)ϕ(y)
(
1 +

n∑
i=1

(−1)i Sii(A−B−x)Sii(A−B−y)

S(i−1)i(A−B)Sii+1(A−B)

)
. (102)

We recall now an important notion from the theory of orthogonal polyno-
mials. Given a family of orthogonal polynomials P0(x), . . . , Pn(x) associated
with a linear functional µ, then the Christoffel-Darboux kernel is:

K(x, y) :=
n∑

i=0

Pi(x)Pi(y)/
(
Pi(x)2 µ

)
. (103)

To compute the Christoffel-Darboux kernel in the present situation, we
record the following normalization property:
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Lemma 10 With the above notation,

Sii(A−B−x)2 µ = (−1)iS(i−1)i(A−B)Sii+1(A−B) . (104)

By combining the congruence (102), Proposition 6 and Lemma 10, we
infer the following congruence modulo the ideal (f(x), f(y)):

Bez(A, B) ≡ ϕ(x)ϕ(y) K(x, y) . (105)

This congruence suggests that Bez(A, B) (similarly to K(x, y)) should have
a reproducing property.

Theorem 11 ([40]) For a polynomial g(x),

g(x) Bez(A, B) µ ≡ ϕ(y)2 g(y) mod f(y) . (106)

Sketch of proof It follows from the Leibniz rule that Bez(A, B) is congruent
to f(x)∂xy ·ϕ(x) modulo f(y). Recall that f(x)∂xy = Sn(x+ y−A). For any
i ≥ 0, we have, modulo f(y),

xi ϕ(y) Sn(x + y − A) µ ≡ ϕ(y)Si+n(A− B + y − A) = ϕ(y)2 yi .

So we have arrived at another reproducing property, this time for Bézou-
tians. There are similar results for a (general) pair of monic polynomials of
the same degree (cf. [40]).

8 Concluding remarks

I hope that I will not offend much the audience of SLC by saying that Alain is
rather algebraist than combinatorialist. To be a bit more precise, I think that
Alain is doing Combinatorial Algebra. His favourite mathematicians (read:
algebraists) are mentioned already J.M. Hoene-Wroński and the Italian al-
gebraic geometer G.Z. Giambelli (1879-1953). They both did very original
mathematics that, to a large extent, was not accepted by the mathematical
establishment of their time (cf. [28] and [20]). This is often the price you
must pay for your originality:

“To reach the source you must go against the stream.”

Alain is now, and has been for several years, very much involved in teach-
ing young Chinese mathematicians at the Center of Combinatorics of Nankai
University in Tianjin in the People Republic of China. The following pic-
ture of him and some of his students was taken on the occasion of his 59th
Birthday in Tianjin:
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Here are two other pictures from Nankai University. The first one is with
S.S. Chern11, a mathematician who translated many geometric problems to
Algebra by inventing the famous Chern characteristic classes:

Since, by the splitting principle the Chern classes of a vector bundle are
elementary symmetric functions in its Chern roots, many computations of
Chern classes amount to calculations of symmetric functions. Given a vec-
tor bundle E and partition I, we define SI(E) to be the Schur polynomial
SI(A) with A specialized to the Chern roots of E. The following problem is
central here. Determine the integer coefficients cK in the Schur polynomial
expansion: SI(VJ(E)) =

∑
cKSK(E), where VJ stands for a Schur functor.

For the Chern (resp. Segre) classes of S2(E) and ∧2(E) this was done in [25]
(resp. [51], [21]). By [53], §7, we know that cK ≥ 0. Note that the expansion
of the top Chern class of VJ(E) determines those of all other Chern classes
(cf. [53], Proposition 2.1).

11S.S. Chern passed away in Tianjin on December 3, 2004 at the age of 93.
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The second picture is with Sir M. Atiyah:

Atiyah said in 1993 (on the occasion of Hirzebruch’s 65th Birthday):

“It is reassuring to know that the algebraic virtuosity
of our ancestors is still present in our genes.”

I wish heartily the Séminaire Lotharingien de Combinatoire, and
in particular Alain, that this will be the case for Alain Lascoux’s
ingenious computations in Combinatorial Algebra!
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