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Abstract. A sequence is said to be k-automatic if the nth term of
this sequence is generated by a finite state machine with n in base k
as input. A result due to Cobham states that if a sequence is both k-
and `-automatic and k and ` are multiplicatively independent, then
the sequence is eventually periodic. Allouche and Shallit defined
(R, k)-regular sequences as a natural generalization of k-automatic
sequences for a given ring R. In this paper we prove the following
generalization of Cobham’s theorem: If a sequence is (R, k)- and
(R, `)-regular and k and ` are multiplicatively independent, then the
sequence satisfies a linear recurrence over R.

1. Introduction

Given a positive integer k, a sequence is said to be k-automatic if the
nth term of this sequence is generated by a finite state machine with n in
base k as input. Sequences such as the Thue-Morse and Rudin-Shapiro
sequences are famous examples of 2-automatic sequences. Automatic
sequences appear in many diverse areas of mathematics including an
unexpected appearance in paper folding [7], [8], [9].

Arguably the most important theorem in the theory of automatic se-
quences is Cobham’s theorem. This theorem characterizes sequences that
are both k- and `-automatic when k and ` are multiplicatively indepen-
dent integers; that is, when there do not exist positive integers a and b
such that ka = `b.

Theorem 1.1 (Cobham [6]). Let k and ` be multiplicatively independent
integers and let {f(n)} be a sequence which is both k- and `-automatic.
Then {f(n)} is eventually periodic.
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Over the years many different proofs and some generalizations of his
theorem have been given [17], [18], [20], [24], [15], [11], [21], [19], [12]. To
give our generalization of Cobham’s theorem, we need a generalization
of automatic sequences due to Allouche and Shallit [1], [2], [3].

Another way of defining the k-automatic property comes from looking
at the k-kernel of a sequence. The k-kernel of a sequence {f(n)}∞n=0 is
defined to be the collection of sequences of the form {f(kin+j)}∞n=0 where
i ≥ 0 and 0 ≤ j < ki. A sequence is k-automatic if and only if its k-
kernel is finite. Using this definition of k-automatic sequences, Allouche
and Shallit [1], [2], [3] generalized the notion of being k-automatic. We
note that this concept is very closely related to the more general notion
of recognizable series [5].

Let R be a commutative ring. Given a sequence {f(n)}∞n=0 taking
values in some R-module, we create an R-module MR({f(n)}; k) which
is defined to be the R-module generated by all sequences {f(kin+j)}∞n=0,
where i ≥ 0 and 0 ≤ j < ki. Often, we will suppress the R in
MR({f(n)}; k) and just write M({f(n)}; k) when there is no fear of con-
fusion.

Definition 1.2. Let R be a commutative ring and let k be a positive
integer. A sequence is (R, k)-regular if M({f(n)}; k) is finitely generated
as an R-module.

In fact, Allouche and Shallit impose the additional constraint that the
ground ring R be Noetherian when looking at (R, k)-regular sequences,
but this hypothesis is not necessary in obtaining our generalization.

Since the k-kernel of a sequence {f(n)} spans M({f(n)}; k) as an
R-module, we see that a k-automatic sequence with values in R is nec-
essarily (R, k)-regular for any ring R.

Unlike automatic sequences, which only assume finitely many values,
regular sequences can assume infinitely many values. For this reason it
is unrealistic to assume that the correct analogue of Cobham’s theorem
for regular sequences is that an (R, k)- and (R, `)-regular sequence is
eventually periodic if k and ` are multiplicatively independent. There is,
however, a larger class of sequences which gives the correct analogue.

Definition 1.3. Given a commutative ring R and R-module M , we say
that a map

f : N → M

satisfies a linear recurrence over R, if there exist a positive integer m
and constants c1, . . . , cm ∈ R such that

f(n) =
m∑

i=1

cif(n− i) for n ≥ m.
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If {f(n)} satisfies a linear recurrence over a ring R and assumes only
finitely many values, then {f(n)} is eventually periodic (cf. Everest et al.
[14, §3.1]). Furthermore, given an eventually periodic sequence {f(n)}
there exist numbers m and N such that {f(n)} satisfies the linear re-
currence f(n + m) = f(n) for n ≥ N . Our main result is the following
theorem.

Theorem 1.4 (Generalized Cobham Theorem). Let R be a com-
mutative ring, let k and ` be multiplicatively independent positive inte-
gers, and let {f(n)} be a sequence which is both (R, k)- and (R, `)-regular.
Then {f(n)} satisfies a linear recurrence over R.

In light of the above remarks, this is indeed a generalization of Cob-
ham’s theorem. In the case that R = Z, an (R, k)-regular sequence
is called k-regular. In this case we get a simple characterization of se-
quences which are both k- and `-regular if k and ` are multiplicatively
independent.

Theorem 1.5. Let {f(n)} be an integer valued sequence and let k and
` be two multiplicatively independent positive integers. Then {f(n)} is
both k- and `-regular if and only if

∞∑
n=0

f(n)xn ∈ Z[[x]]

is the power series expansion of a rational function whose poles are all
roots of unity.

Our proof of Theorem 1.4 is ring-theoretic in nature, using a series
of reductions. The argument is first done for the case that the ring R
is a finitely generated integral domain over Z and the sequence {f(n)}
takes values in R. To do this we need some basic facts about such rings;
namely, that all maximal ideals have finite codimension and that the
intersection of all maximal ideals is (0). Next the general version of
the theorem is deduced by showing one can assume that R is a finitely
generated algebra over Z; then, we show that R can also be assumed
to be an integral domain. Finally, using similar arguments applied to
R-modules, we show that one can assume that {f(n)} takes values in
R. Having reduced everything to the case we have already handled, we
obtain our generalization of Cobham’s theorem.

In §2, we give some basic background in the theory of commutative
rings. In §3 we prove Theorem 1.4 for finitely generated integral domains
R over Z with R-valued sequences. In §4 we reduce the problem to the
case handled in §3. Finally in §5 we give an open problem along with
some concluding remarks.
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2. Background in commutative rings

Jacobson rings form an important class of rings and are especially use-
ful in formulating the general Nullstellensatz. We now give the definition
of a Jacobson ring, first recalling that an ideal in a ring is prime if when
we quotient out by this ideal we obtain a integral domain.

Definition 2.1. We say that a commutative ring R is a Jacobson ring
if every prime ideal is the intersection of maximal ideals.

Notice that the ring of integers is a Jacobson ring.

Theorem 2.2. If R is a Jacobson ring and S is a finitely generated R-
algebra, then S is also a Jacobson ring and every maximal ideal I in S
has the property that J := I ∩R is a maximal ideal of R; moveover, S/I
is a finite extension of R/J .

Proof. See Eisenbud [13, Theorem 4.19]. �

Corollary 2.3. Let R be a finitely generated integral domain over Z.
Then:

• (0) is the intersection of maximal ideals;
• R/I is finite dimensional for every maximal ideal I of R.

Proof. A finitely generated Z-algebra is Jacobson by Theorem 2.2. If R
is a integral domain then (0) is a prime ideal and thus is the intersection
of maximal ideals. If I is a maximal ideal in R, then I∩Z = (p) for some
prime p ∈ Z. Then R/I is a finite extension of Z/pZ and is thus a finite
ring. �

For us, the important facts about finitely generated integral domains
over Z are those given in Corollary 2.3 are the fact that such rings are
Noetherian; that is, they satisfy the ascending chain condition on ideals.
This ensures that finitely generated modules over such rings satisfy the
ascending chain condition on submodules. In particular, we can pick
ideals that are maximal with respect to some specified property and
can pick submodules in a finitely generated module that are maximal
with respect to some property. The fact that in a finitely generated
integral domain R over Z all maximal ideals have finite codimension has
important consequences for (R, k)-regular sequences, as is seen in the
following theorem.

Theorem 2.4. Let R be a Jacobson ring and let {f(n)} be an (R, k)-
regular sequence. If I is a maximal ideal in R then {f(n) mod I} is a
k-automatic sequence.
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Proof. Notice that R/I is a finite field and {f(n)} takes values in a finite
dimensional R/I-vector space. It follows that {f(n) mod I} takes on only
finitely many values and thus is k-automatic (cf. Allouche and Shallit [3,
Theorem 16.1.5]). �

3. Proofs for integral domains

In this section, we prove Theorem 1.4 in the case that R is a finitely
generated integral domain over Z and {f(n)} is R-valued. We first give
a few basic results about rational sequences.

Lemma 3.1. Let {f(n)} be an integer sequence and let a be a positive
integer. Then:

• {f(n)} satisfies a linear recurrence if and only if {f(an + j)}
satisfies a linear recurrence for 0 ≤ j < a;

• {f(n)} satisfies a linear recurrence if and only if {f(n + a)} sat-
isfies a linear recurrence; and

• {f(n)} satisfies a linear recurrence over a ring R if and only if
the R-module spanned by the sequences {f(n + i)} with i ≥ 0 is
finite dimensional.

Proof. The proofs of these facts are straightforward. �

Lemma 3.2. Let R be a Noetherian integral domain with field of frac-
tions K. If {f(n)} is an R-valued sequence satisfying a linear recurrence
over K, then {f(n)} satisfies a linear recurrence over R.

Proof. By assumption there exist c1, . . . , cm ∈ K such that

f(n) =
m∑

i=1

cif(n− i) for n ≥ m.

We define Rm to be the set of all m-dimensional column vectors with
entries in R. For each n ≥ 0, define

v(n) =
[

f(n) f(n + 1) · · · f(n + m− 1)
]T ∈ Rm.

Then there is an m×m matrix B with entries in K such that Bv(n) =
v(n + 1) for all n ≥ 0. Let M denote the R-submodule of Rm spanned
by the vectors v(n) for n ≥ 0. Since R is Noetherian, M is finitely
generated. Hence there exists some d such that the set {v(i) | 0 ≤ i ≤ d}
spans M as an R-module. It follows that there exist r0, . . . , rd ∈ R such
that

v(d + 1) =
d∑

i=0

riv(i).
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Left multiplying both sides by Bn, we see that

v(n + d + 1) =
d∑

i=0

riv(n + i) for n ≥ 0.

Taking the first coordinates of both sides we obtain the R-linear recur-
rence

f(n + d + 1) =
d∑

i=0

rif(n + i) for n ≥ 0.

This completes the proof. �

Lemma 3.3. Let R be an integral domain with field of fractions K,
let k be a positive integer, and let {f(n)} be an R-valued (R, k)-regular
sequence. Suppose that {g(n)} is an R-valued sequence such that there is
an infinite set M of maximal ideals of R with the following properties:

•
⋂

I∈M I = (0);
• for every ideal I ∈ M there exists some some sequence hI ∈

M({f(n)}; k) with the property that g(n) ≡ hI(n) mod I for all
n ≥ 0.

Then {g(n)} ∈ M({f(n)}; k)⊗R K.

Proof. Let I ∈M and let f1(n), . . . , fd(n) be a basis for M({f(n)}; k)⊗R

K as a K-vector space. By assumption, there exist C1, . . . , Cd ∈ R such
that

g(n) ≡ C1f1(n) + · · ·+ Cdfd(n) mod I

for all n ≥ 0. This says that every (d + 1)× (d + 1) minor of the infinite
matrix 

f1(0) f1(1) f1(2) · · ·
f2(0) f2(1) f2(2) · · ·

...
...

... · · ·
fd(0) fd(1) fd(2) · · ·
g(0) g(1) g(2) · · ·


is in I. Since the intersection of all ideals in M is zero, we conclude that
every (d + 1) × (d + 1) minor is 0. It is well-known that a matrix with
entries in some field has rank ≥ m if and only if some m × m minor is
nonzero. It follows that the sequences f1, . . . , fd, g are linearly dependent
over K. Since f1, . . . , fd are linearly independent, we conclude that g is
a K-linear combination of f1, . . . , fd. The result follows. �

We now give a criterion which allows us to deduce when certain (R, k)-
regular sequences satisfy a linear recurrence over R.
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Theorem 3.4. Let R be an integral domain, let k be a positive integer,
and let {f(n)} be an R-valued (R, k)-regular sequence with the property
that {f(n) mod I} is periodic with period relatively prime to k for an
infinite set of maximal ideals I whose intersection is (0). Then {f(n)}
satisfies a linear recurrence R.

Proof. Let K be the field of fractions of R and let M be the set of
maximal ideals I such that {f(n) mod I} is a periodic sequence with
period relatively prime to k. Let I ∈ M and let e denote the period of
{f(n) mod I}. Since k is relatively prime to e, there exists some a > 0
such that ka ≡ 1 mod e. Hence f(kan + 1) ≡ f(n + 1) mod I for all
n ≥ 0. It follows that for each ideal I in M, there exists some sequence
hI ∈ M({f(n)}, k) such that f(n+1) ≡ hI(n) mod I for all n ≥ 0. From
Lemma 3.3, we deduce that {f(n + 1)} ∈ M({f(n)}; k)⊗R K. An easy
induction argument shows that {f(n + i)} ∈ M({f(n)}; k)⊗R K for all
i ≥ 0. Since M({f(n)}; k)⊗R K is finite dimensional over K we see that
the subspace generated by

{{f(n + i)} | i ≥ 0}
is finite dimensional. Hence f(n) satisfies a linear recurrence over K.
The result now follows from Lemma 3.2 �

Definition 3.5. Given an eventually periodic sequence {f(n)}, we define
the index of {f(n)} to be the minimal i such that the sequence {f(n +
i)}n≥0 is periodic. We define the minimal period of a periodic sequence
{f(n)} to be the smallest positive integer e such that f(n + e) = f(n)
for all n ≥ 0.

We now show how to obtain periodic sequences from eventually peri-
odic ones.

Lemma 3.6. Let {f1(n)}, . . . , {fm(n)} be nonzero eventually periodic
sequences taking values in a field K and which have distinct indices
a1, . . . , am respectively. Then {f1(n)}, . . . , {fm(n)} are linearly indepen-
dent over K.

Proof. Suppose this is not the case. Then choose m minimal with respect
to the property that there exist f1, . . . , fm satisfying the hypotheses of
lemma that are linearly dependent over K. By relabelling if necessary,
we may assume that a1 < · · · < am. Let L denote the lcm of the minimal
periods of f1, . . . , fm. Suppose that

c1f1(n) + · · ·+ cmfm(n) = 0 for all n ≥ 0.

Then
c1f1(am − 1) + · · ·+ cmfm(am − 1) = 0,



8 JASON P. BELL

and
c1f1(am − 1 + L) + · · ·+ cmfm(am − 1 + L) = 0.

Observe that fi(am − 1) = fi(am − 1 + L) for i < m since f1, . . . , fm−1

all have index at most am − 1 and have period dividing L. Thus

cmfm(am − 1) = cmfm(am − 1 + L).

But notice, that f(j + L) = f(j) for j ≥ am and hence f(am − 1 + L) 6=
f(am−1), or else {f(n+am−1)} would be periodic with period dividing
L. It follows that cm = 0. But this says that f1, . . . , fm−1 are linearly
dependent. This contradicts the minimality of m. The claim follows. �

Lemma 3.7. Let {f(n)} be an eventually periodic sequence taking values
in a field K, and let k be a positive integer. If dimKMK(f ; k) ≤ d, then
the index of {f(n)} is at most kd.

Proof. Let m denote the index of {f(n)} and let p denote the minimal
period of {f(n + m)}n≥0. We claim that for each a < logm k, there is
some b < ka such that {f(kan+b)} has index dm/kae. To see this, notice
that for any b < ka and i = dm/kae,

f(ka(n + i + p) + b) = f(kan + kai + kap + b)

= f(kan + kai + b)

= f(ka(n + i) + b),

where the penultimate step follows from the fact that kai + b is greater
than or equal to the index of {f(n)}. Thus for any b < ka, the index of
{f(kan + b)} is at most dm/kae. We claim that there exists some b < ka

such that the index of {f(kan + b)} is at least dm/kae. If this is not the
case then there exist some i < m/ka such that f(ka(n + i + p) + b) =
f(ka(n+i)+b) for all n ≥ 0 and all b < ka. Hence f(kan+b+kai+kap) =
f(kan + b + kai) for all n ≥ 0. But since this is true for all b < ka and
any integer j has a unique expression as kan + b, we see that

f(j + kai + kap) = f(j + kai) for all j ≥ 0.

Hence the index of {f(n)} is at most kai < m, a contradiction. Thus for
each a there is some b < ka such that the index of {f(kan+b)} is exactly
dm/kae. If kd < m, then {dm/kie | 0 ≤ i ≤ d} has d+1 distinct elements.
Moreover, there exist f0, . . . , fd ∈ M({f(n)}; k) such that fi has index
dm/kie. By Lemma 3.6, these sequences are linearly independent over
K, since they are necessarily nonzero. But by assumption MK({f(n)}; k)
has dimension at most d, a contradiction. We conclude that m ≤ kd. �

Corollary 3.8. Let R be a ring, let k be a positive integer, and let {f(n)}
be an R-valued (R, k)-regular sequence. Suppose that there is a maximal
ideal I of R such that:
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• {f(n) mod I} is eventually periodic;
• MR(f ; k)⊗RR/I has dimension at most d as an R/I-vector space.

Then {f(n + kd) mod I} is periodic.

Proof. The result follows easily from Lemma 3.7. �

We now show how to get periods relatively prime to k.

Lemma 3.9. Let {f1(n), . . . , fd(n)} be nonzero periodic sequences taking
values in some field K. Suppose that fi has period ai for 1 ≤ i ≤ d
and that a1|a2| · · · |ad and a1, . . . , ad are all distinct. Then f1, . . . , fd are
linearly independent over K.

Proof. Suppose not. Then we can choose d minimal with respect to
the property that there exist such f1, . . . , fd that are linearly dependent.
Then there exist integers c1, . . . , cd such that

c1f1(n) + · · ·+ cdfd(n) = 0 for all n ≥ 0.

Notice that fi(n + ad−1) = fi(n) for i < d. Thus

c1f1(n) + · · ·+ cd−1fd−1(n) + cdfd(n + ad−1) = 0.

Subtracting we see that cd

(
fd(n + ad−1)− fd(n)

)
= 0 for all n. Since fd

has period ad > ad−1, we conclude that cd = 0. But this contradicts the
minimality of d. The result now follows. �

Proposition 3.10. Let {f(n)} be a periodic sequence taking values in
a field K and let k be a positive integer. If dimKMK(f ; k) ≤ d then for
0 ≤ j < kd, the sequence {f(kdn + j)} is periodic with minimal period
relatively prime to k.

Proof. Let e denote the minimal period of {f(n)}. Suppose that the
period of f(kdn + j) is not relatively prime to k. Then the sequence is
necessarily nonzero. Pick 0 = j0, j1, . . . , jd = j with the property that
0 ≤ ji < ki and j ≡ ji mod ki. We claim that the (nonzero) sequences

{{f(kin + ji)} | 0 ≤ i ≤ d}
are linearly independent over K. Let qi denote the minimal period of the
sequence {f(kin+ji)}. Observe that qi+1 divides qi/ gcd(k, qi). Moreover,
by assumption {f(kdn + jd)} does not have minimal period relatively
prime to k and thus q0, q1, . . . , qd must all have some factor in common
with k. Hence

qd < qd−1 < · · · < q0.

Thus by Lemma 3.9, we see that the sequences

{{f(kin + ji)} | 0 ≤ i ≤ d}
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are linearly independent over K. But M({f(n)}; k) has dimension at
most d and so we get an immediate contradiction. �

We are now ready to give our most important result about rational
k-regular sequences.

Theorem 3.11. Let R be a finitely generated integral domain over Z, let
k be a positive integer, and let {f(n)} be a (R, k)-regular sequence taking
values in R. Then {f(n)} satisfies a linear recurrence over R if and only
if {f(n) mod I} is eventually periodic for infinitely many maximal ideals
I whose intersection is (0).

Proof. Suppose that {f(n)} satisfies a linear recurrence over R and let
I be a maximal ideal in R. Then {f(n) mod I} takes values in R/I,
which is a finite field by Corollary 2.3. It follows that {f(n) mod I} is
eventually periodic for every maximal ideal I (see Everest et al. [14, pp.
45-46]).

Conversely, suppose that {f(n)} is eventually periodic mod I for infin-
itely many maximal ideals I whose intersection is (0) and let M denote
the set of such ideals. Let d be the size of a minimial generating set for
M({f(n)}; k) as an R-module. We define g(n) = f(n + kd) for n ≥ 0.
We note that {g(n)} is an (R, k)-regular sequence. By Corollary 3.8,
{g(n) mod I} is periodic for each maximal ideal I in M. By Proposition
3.10, for 0 ≤ j < kd we have that gj(n) := g(kdn + j) is periodic mod I
with period relatively prime to k for each maximal ideal I in M. Hence
{gj(n)} satisfies a linear recurrence for 0 ≤ j < kd by Theorem 3.4. By
Lemma 3.1, we see that {g(n)} satisfies a linear recurrence and so {f(n)}
satisfies a linear recurrence, again by Lemma 3.1. �

4. Reduction to finitely generated integral domains

Proposition 4.1. Let R be a commutative ring, let k be a positive inte-
ger, and let f be an (R, k)-regular sequence taking values in an R-module
A. Then f is (S, k)-regular for some finitely generated Z-subalgebra S
of R. Furthermore there is some finitely generated S-submodule B of A
such that f takes values in B.

Proof. Since {f(n)} is (R, k)-regular, there exist a positive integer d, R-
valued d × d matrices X0, . . . , Xk−1, and sequences {ai(n)}, 1 ≤ i ≤ d
such that if

v(n) =


a1(n)
a2(n)

...
ad(n)
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then v(kn + j) = Xjv(n) for 0 ≤ j < k (cf. Allouche and Shallit [3,
Theorem 16.1.3]).

Let S be the Z-subalgebra of R generated by the entries in X0, . . . , Xk−1

and let B be the S-submodule of A spanned by the entries in v(0). Then
by construction {f(n)} is (S, k)-regular and takes values in B (cf. Al-
louche and Shallit [3, Theorem 16.1.3]). �

We note that this interpretation of regular sequences in terms of mon-
oid homomorphisms from {0, 1, 2, . . . , k− 1}∗ to Md(R) is closely related
to recognizable series [5].

Lemma 4.2. Let R be a commutative ring, let k be a positive integer, and
let {f(n)} be an (R, k)-regular sequence taking values in a principle ideal
Ra of R. If {g(n)} is an R-valued sequence satisfying f(n) = ag(n) for
all n ≥ 0, then {g(n) mod J} is R/J regular, where J is the annihilator
of a.

Proof. Pick a finite set of generators {f1, . . . , fd} for M(f ; k). For each
i, there is some function gi in M(g; k), corresponding to fi, with the
property that fi = agi. We claim that {g1(n) mod J, . . . , gd(n) mod J}
spans MR/J({g(n) mod J}; k) as an R/J-module. To see this, suppose
that h(n) ∈ M(g; k) has the property that h(n) mod J is not in the span
of this set. We have ah(n) ∈ M(f ; k), and hence there exist r1, . . . rd ∈ R
such that

ah =
d∑

i=1

rifi.

Equivalently,

ah =
d∑

i=1

arigi.

Thus h(n)−
∑

rigi(n) annihilates a for all n. Consequently,

h ≡
d∑

i=1

rigi mod J,

a contradiction. �

Proof of Theorem 1.4. The proof of this result uses a series of reductions.

First Reduction: We may assume that R is finitely generated as a
Z-algebra and f(n) takes values in a finitely generated R-module.

By Proposition 4.1, we see that {f(n)} is (S, k)- and (S, `)-regular for
some finitely generated Z-subalgebra of R; moreover, {f(n} takes values
in some finitely generated S-module A. Since a linear recurrence over S
is also a linear recurrence over R, it is no loss of generality to assume
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that R is a finitely generated Z-algebra and that {f(n)} takes values in
a finitely generated R-module A.

Second Reduction: We may assume that the {f(n) mod J} satisfies
a linear recurrence over R/J for every nonzero ideal J .

We may assume that f(n) does not satisfy a linear recurrence over
R. Since R is finitely generated over Z, it is Noetherian. Thus we can
pick an ideal I maximal with respect to the property that there exists a
sequence which is both (R/I, k)- and (R/I, `)-regular and yet does not
satisfy a linear recurrence. Replace R with R/I and pick a sequence
{f(n)} which is both (R, k)- and (R, `)-regular and yet does not satisfy a
linear recurrence over R. Then {f(n) mod J} satisfies a linear recurrence
over R/J for every nonzero ideal J in R.

Third Reduction: We may assume that R is an integral domain.

Suppose that this is not the case. Then there is a nonzero element a
whose annihilator J is nonzero. By assumption, f(n) mod aR satisfies a
linear recurrence and hence there exist c1, . . . , cm ∈ R such that

f(n) =
m∑

i−1

cif(n− i) mod aR.

Let g(n) = f(n) −
∑

cif(n − i). Then {g(n)} is (R, k)-regular and
(R, `)-regular and takes values in aR. Pick an R-valued sequence {h(n)}
satisfying g(n) = ah(n) for all n ≥ 0. By Lemma 4.2, h(n) mod J
is (R/J, k)- and (R/J, `)-regular and hence satisfies a linear recurrence
over R/J ; that is, there exist d > 0 and r1, . . . , rd ∈ R such that

h(n) ≡
d∑

i=1

rih(n− i) mod J for n ≥ d.

Multiplying both sides by a gives

g(n) =
d∑

i=1

rig(n− i),

and so {g(n)} satisfies a linear recurrence over R. This immediately
gives a linear recurrence satisfied by {f(n)} over R. Thus it is no loss of
generality to assume that R is an integral domain.

Fourth Reduction: We may assume that {f(n)} is R-valued.

We already may assume that {f(n)} takes values in a finitely generated
R-module A. Since A is Noetherian, we can pick a submodule B of A
maximal with respect to the property that {f(n)+B} does not satisfy a
recurrence over R. Replacing A with A/B, we can assume that {f(n) +
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A′} satisfies a recurrence over R for all nonzero submodules A′ of A. Pick
a nonzero a ∈ A and consider the short exact sequence

0 → Ra → A → A/Ra.

Notice that the reduced sequence {f(n)+Ra} satisfies a recurrence over
R. Let g(n) be a sequence satisfying a linear recurrence over R which
takes values in A such that g(n) − f(n) ∈ Ra for all n ≥ 0. (Note
that this can be done simply by “pulling back” the initial values of
{f(n) + Ra} in A/Ra to initial values in A and then declaring that
g(n) satisfies the same recurrence as the one satisfied by {f(n) + Ra}.)
Notice h(n) := f(n) − g(n) cannot satisfy a linear recurrence over R as
f(n) does not; moreover, it takes values in the module Ra. This module
is isomorphic to R/Ann(a). Observe that h(n) can be regarded as an
(R/Ann(a), k)- and (R/Ann(a), `)-regular sequence and thus if Ann(a)
is nonzero, then it satisfies a linear recurrence over R/Ann(a) by our
choice of R. Moreover, this linear recurrence lifts to a linear recurrence
over R by the fact that h(n) takes values in a module that is annihilated
by Ann(a). Thus Ann(a) = 0. Replacing, f(n) by h(n), we may assume
that f(n) is R-valued.

And so we may assume that f(n) is an (R, k)- and (R, `)-regular se-
quence taking values in R and R is a finitely generated domain over Z.
Since R is a finitely generated domain over Z, we have that R/I is finite
dimensional for each maximal ideal I of R and the intersection of all max-
imal ideals is (0) by Corollary 2.3. Hence {f(n) mod I} is both k- and
`-automatic for every maximal ideal I. It follows from Cobham’s theorem
that {f(n) mod I} is eventually periodic for every maximal ideal I. Since
the intersection of all maximal ideals is (0), we see that {f(n)} satisfies
a linear recurrence over R by Theorem 3.11. The result follows. �

Proof of Theorem 1.5. Suppose first that {f(n)} is k- and `-regular. By
Theorem 1.4

F(x) :=
∞∑

n=0

f(n)xn ∈ Z[[x]]

is the power series expansion of a rational function p(x)/q(x) with p, q ∈
Z[x] and q(0) = 1. Note that f(n) = O(nd) for some positive integer
d (see Allouche and Shallit [3, Theorem 16.3.1]). Hence F(x) has no
poles inside the unit circle and so q(x) must have leading coefficient ±1.
Since q(0) = 1, we conclude that F(x) has all of its poles on the unit
circle. Since q(x) has integer coefficients, these poles must all be roots
of unity. Conversely, Allouche and Shallit [3, Theorem 16.4.2] show that
the power series expansion of a rational function having all its poles at
roots of unity is k-regular for all k ≥ 1. �
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5. Concluding remarks

We note that Theorem 1.5 appears as a conjecture in Allouche and
Shallit [3, §16.8, item 16.3]. In this form, it is a special case of a conjecture
due to van der Poorten. Given a power series

F(x) =
∞∑

n=0

f(n)xn ∈ Z[[x]],

we say that F(x) is k-Mahler if F(x) satisfies a functional equation of
the form

(5.1) F (xkm

) =
m−1∑
i=0

pi(x)F(xki

).

k-regular sequences are a special subset of the set of k-Mahler sequences.

Conjecture 5.1 (van der Poorten [22]). Let F(x) be a power series
which is both k- and `-Mahler. If k and ` are multiplicatively independent
then F(x) is the power series expansion of a rational function.

Some work has been done on this by various authors [23], [24], [10],
[4]. In fact, van der Poorten [22] outlined a proof of the conjecture, but
the proof is incomplete.
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