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A DIRECT DECOMPOSITION OF 3-CONNECTED PLANAR GRAPHS
MANUEL BODIRSKY, CLEMENS GROPL, DANIEL JOHANNSEN, AND MIHYUN KANG

ABSTRACT. We present a decomposition strategy for c-nets, i. e..etb8tconnected
planar maps. The decomposition yields an algebraic equédiothe number of c-nets
with a given number of vertices and a given size of the outee.falrhe decomposition
also leads to a deterministic and polynomial time algoritonsample c-netsniformly
at random Using rejection sampling, we can also sample isomorphyges of convex
polyhedra, i.e., 3-connected planar graphs, uniformlhaatiom.

REsUME. Nous proposons une stratégie de décomposition pouralgsscpointées 3-
connexes (-réseaux). Cette décomposition permet d’obtenir uneaégn algébrique
pour le nombre de-réseaux suivantle nombre de sommets et la taille de lefeéeieure.

On en déduit un algorithme de complexité en temps polyatagour le tirage aléatoire
uniforme desc-réseaux. En utilisant une méthode a rejet, nous obteaassi un algo-
rithme de tirage aléatoire uniforme pour les graphes plas&-connexes.

1. INTRODUCTION

Three-connected planar graphs are in a one-to-one redaiipio the edge-graphs of
convex polyhedra [24]. The enumeration of such graphs hasgHistory. Already Euler
attempted to find an exact formula for the number of isoma@mltypes of convex poly-
hedra [10], which is still unknown. However, since almostsakch graphs have a trivial
automorphism group [3,27], and since all embeddings of augiaph are equivalent (due
to Whitney; see e.qg. [9]), theasymptotidoehavior of these numbers is the same as for the
number ofc-nets i.e., three-connected planar maps with a distinguishextid edge at
the outer face. The exact and the asymptotic number of cforeisgiven number of edges
was first computed by Tutte [26]. Mullin and Schellenberg] [fbind exact formulas in
terms of vertices and faces. The algebraic equation dethe@ was analyzed by Ben-
der and Richmond in [2], who showed that the growth constamtife number of c-nets
depending on the number of vertices &/27(17 + 7/7) = 21.049042.

Other motivations to study c-nets come froamdom samplingn theoretical computer
sciencé. The only known algorithm to sample labeled planar graplitmly at random
in polynomial time requires a sampling procedure for c-nietigs “inner loop” [4]. A
sampling procedure from [1, 22, 23] for planar maps with ginembers of vertices and
edges was applied for that step in [4], and the analysis shioatghis is the bottleneck
for the performance. Recently, the sampling procedure foets was improved [13].
But still this approach applies rejection sampling, anddfae can only lead texpected
polynomial time sampling procedures.

Key words and phrasefRandom sampling, planar graphs, algorithms.
ln the literature often the word “generating” is used indted “sampling”. We prefer “sampling”
because it is more specific.
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In this paper, we present a new decomposition strategy @®ntimber of c-nets with
a given number of vertices and a given size of the outer face. Wil formulate the
decomposition using the generating function for the nunidfes-nets. The resulting
equations can be solved with the quadratic method [6, 12l{le&generating function for
the number of c-nets is algebraic of degree four, and thexdfas an explicit description
with radicals. Using the computer algebra package GFUN, [@&] compute a linear
differential equation with polynomial coefficients thatsdebes the generating function.
From that we get a single-parameter recurrence for its coefifis that allows to compute
the number of c-nets with more than 100000 vertices withaso@able time. Following
the discussion in the forthcoming book of Flajolet and Sedde [12] we compute the
mentioned growth constant.

With the decomposition strategy we obtain the filsterministigpolynomial time sam-
pling procedure for c-nets. Together with the results invjé] obtain the firstetermin-
istic polynomial time sampling procedure for labeled planar hgapSince almost all
3-connected graphs have a trivial automorphism group fig3,dan also be used in a re-
jection sampling procedure to sample 3-connected plarguhgrinexpectegolynomial
time. The algorithm uses a recursive formula for c-netsorertices with a specified
size of the outer face. Our decomposition strategy is flex@nlough to also control other
parameters of c-nets, for instance the total number of edgess, or the degrees of root
vertices, if needed. From a methodological point of view, decomposition is interest-
ing, since it generalizes the well-known and classical eagh of Tutte to count triangu-
lations [25]. This direct technique was never carried outcfoets — yet it is particularly
suited for therecursive method for samplin@n early reference is [20]; see [8, 11] for
recent developments).

The fact that we can control the size of the outer face opensapelications for count-
ing unlabeledplanar graphs. The only approach in question to enumeréabeled planar
graphs exploits the connectivity structure, and was alrgadposed in [28]. As a first
step, we can use the result of the present paper to computarthieer ofunlabeled rooted
2-connectelanar graphs on a given number of edges. Moreover, usingahmpling
procedure for c-nets with a specified size of the outer fagephtain the first expected
polynomial time sampling procedure for unlabeled 2-coteplanar graphs [5]. With
the sampling procedures for c-nets from [13] this is not fixdss

Outline. The paper is organized as follows: We first introduce c-regtd, mention previ-
ous enumerative results. In Section 3, we describe the ardgaomposition strategy for
c-nets, which directly translates into equations for theegating function for the number
of c-nets. In Section 4 we apply the quadratic method to dexigingle algebraic equa-
tion of degree four that defines this generating function, tanderive a single parameter
recurrence. Section 5 uses the decomposition to samplesasngormly at random.

2. PLANAR STRUCTURES AND GNETS

A mapis a graph embedded in the plane.planar graphis a graph that has an em-
bedding in the plane. A graph isconnectedf the graph stays connected after deleting
any k vertices. By Whitney'’s theorem (see e.qg. [9]), all embeddiaf 3-connected pla-
nar graphs are equivalent. rAoted maps a map with a distinguished directed edge
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FIGURE 1. A c-netom + k 4+ 3 vertices

(called the root edge) on the outer face. If we count rootedsnae count them up to
isomorphisms that map the outer face to the outer face anottedge to the root edge.
A c-netis a rooted and 3-connected map on at least three verticesdidaguish
betweenouter vertices which lie on the outer face, amher vertices which do not lie
on the outer face. The outer vertices include the verticab@ftootst and are labeled

s, t,uy,...,u, in clockwise order starting with the root; see Figure 1.

Starting with Tutte’s pioneering work [26], many classeplainar maps were enumer-
ated. Itis possible to compute the number of unrooted plawagis onn edges [18,29,30].
Forrootedmaps, the enumeration is easier. The formulas for 3-coade2tconnected,
connected, and all rooted planar maps are related via a ctivihedecomposition [26].
Mulling and Schellenberg [19] used a bijection between Brexted rooted maps, i.e.,
c-nets, andjuadrangulationswhich can be further decomposed, to enumerate c-nets in
terms of edges and faces (by Euler’'s formula, one can thencaistrol the number of
vertices). The evaluation of their formula, however, iwad the evaluation of a double
summation. In this paper, we present a single parameterrezme that can be com-
puted much faster. Since the generating function is algeltas straightforward to use
singularity analysis (an excellent exposition of which ¢enfound in the forthcoming
book of Flajolet and Sedgewick [12]) to reproduce the aswtiptesults of Bender and
Richmond [2].

3. DECOMPOSITION

In this section we present a unique decomposition strategg-hets. Informally, the
idea is toremovethe root edge, and to describe the remaining graph in termimalfier c-
nets. Tutte [25] applied this technique successfullyear-triangulationswhich general-
ize triangulations. The decomposition proposed by Tutsemple: Either the graph with-
out the root edge is 3-connected, or it is decomposed atatginto 3-connected com-
ponents. In either case the decomposition yields one or sroadler near-triangulations.
The uniqueness of the decomposition is ensured by an imggitaperty of the simple
structure of near-triangulations: The components of a mgosition at a 2-cut are inde-
pendent, i.e., an arbitrary combination of near-triangoes can be composed to obtain a
near-triangulation.
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c-net 1. d-net 2. e-net 3. f-net

FIGURE 2. The basic case distinction: Every c-net (excEp} is either a
d-net, and an e-net, or an f-net.

The generalization of this decomposition to c-nets facemimévo problems. First,
the objects resulting from the decomposition (i.e., theaeshof the root edge) are not
necessarily c-nets. Second, the components induced byua&ein general not inde-
pendent as described before. We solve these problems Ignasgsdistinct generating
functions to each type of component and by introducing altbase for the decomposi-
tion into dependent components. This leads us to the notibdshets (one 3-connected
component), e-nets (there is a 2-cut that yields two depenmtemponents) and f-nets
(there is a 2-cut that yields two independent componentsigiware depicted in Fig. 3.

In figures, we draw the root edge as a directed edge. Edges that are added to the
graph are indicated as dotted lines. If a pair of verticemfoa 2-cut, we draw a dashed
circle around the two vertices. The set of inner verticeemesented by a closed line
with its size noted inside.

We formulate the decomposition in terms of generating flonst Letc(n, k) be the
number of all c-nets om + 1 inner vertices and: + 2 outer vertices. For technical
reasons, we defindouble rootedc-nets where the root can be a double edge. In par-
ticular, the outer face of a double rooted c-net is boundedhbyrootst and another
single undirected edge. By definition ofn, k) the number of double rooted c-nets
onn + 1 inner and two outer vertices ign,0). Since every double rooted c-net can
be identified with a simple c-net by removing the undirectddes the number of c-
nets onn + 3 vertices in total isc(n) := ¢(n,0). Furthermore, this operation trans-
formsk inner vertices into outer vertices, henge, 0) = >°,_, c(n—k, k). Finally, let
C(t,u) ==Y, Yrso ¢(n, k)t"u* be the ordinary generating function for the number of
c-nets, and le€'(t) := > ., c(n)t".

Decomposition of c-nets. If a c-net has only three vertices, (¢, and an inner vertex)
then it is the K5 with a double root and represents the only initial case ofvthele
decomposition. (The decomposition terminates triviatly iegative values of or k.)
Now consider c-nets on at least four vertices. We distirgtiisee disjoint cases; they are
depicted in Fig. 2.

1. After removing the root edge, the remaining graph is ttike-connected.
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FIGURE 3. The decomposition of d-nets.

2. The vertex is of degree three, and there is a 2-cut in the graph witheutdbt
edge. (The two remaining neighborsiohecessarily form a 2-cut in the graph
without the root.)

3. The vertex is at least of degree four, and there is a 2-cut in the graptiowitthe
root edge.

Now let D(n, k), E(n, k) andF(n, k) be the generating functions representing the c-nets
of the first, second and third case, with coefficietits, k), e(n, k) and f(n, k). For
convenience we call these three different kind of c-det®ts e-netsandf-nets Then the
basic case distinction can be formulated as follows.

(1) C(t,u) =14+ D(t,u) + E(t,u) + F(t,u).

Decomposition of d-nets. Let G be a d-net, i.e.7 is a c-net which is 3-connected after
removing the roott. The decomposition of d-nets is easy. kebe the neighbor of
(different froms) on the inner face that contains the reot There are two distinct cases,
depicted in Fig. 3.
1. The vertex is the only vertex on the inner face ef excepts andt.
DecompositionRemovest and choosev as new root edge.
Result:A c-net with one inner vertex less and one outer vertex maeh
2. There is at least one other vertex thaon the inner face oft excepts andt.
DecompositionRemovest and insertsv as new root edge.
Result:A d-net with one inner vertex less and one outer vertex mae t¢h

According to the case distinction the generating functiof, «) is the sum of the gen-
erating functions” (¢, w) and D(¢, ) multiplied by ¢ for the removed inner vertex and
divided byw for the additional outer vertex. From this we have to subbtéae, 0) and
D(t,0) (again multiplied byt and divided byu), since the resulting graph cannot be a
double rooted c-net.

t t
With exception of the initial case every c-net with a douldges root is a d-net. Hence
(3) D(t,0) = C(t,0) — 1.
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1. €-net 2.d-net 3. P-net 4. f-net

FIGURE 4. The decomposition of e-nets.

Decomposition of e-nets. Let G be an e-net, i.e(s is a c-net and is of degree3. The
two neighbors ot apart froms areu; on the outer and on the inner face anflv, u, }
forms a 2-cut or¢ without st. We now introduce the last two kinds of c-nets that appear
in the decompositione™-nets(represented by* (¢, «)) are defined as e-nets where the
two neighbors (other thas) of ¢ are connected by an edge, whert&sets(represented

by F°(¢,u)) are defined as f-nets wherg has to be one of the cut vertices. In the
decomposition of d-nets there are four distinct cases; dneylepicted in Fig. 4.

1. There is an edgeu; in G.
Result:An €*-net with the same number of vertices like

2. There is no edgeu; andG withoutt is 3-connected.
DecompositionRemovet, insert the edgew; and insertsu; as new root edge.
Result:A d-net with one outer vertex less théh

3. There is no edgeu; andG withoutt has a 2-cut including;.
DecompositionRemovet, insertvu; and insertsv as new root edge.
Result:An f%-net with one inner vertex less th&h

4. There is no edgeu; andG withoutt has a 2-cut, where, is no cut vertex.
DecompositionRemovet, insertvu; and insertsu; as new root edge.
Result:An f-net with one outer vertex less thah

The decomposition of e-nets yields the following equatidrere the four terms corre-
spond to the respective cases and the factarslu account for the removed vertices.

4) E(t,u) = E*(t,u) +u D(t,u) +t FO(t,u) +u F(t,u).

Decomposition of e"™-nets. Next, letGG be an é-net, i.e., an e-net with an edge;. Again,
there are four distinct cases; they are depicted in Fig. 5.

1. The degrees af andu; in G are both three.
DecompositionRemovet andu,, insert the edgeu, (which cannot exist i)
and insertsv as new root edge.
Result:An e-net with one inner and one outer vertex less t¥an

2. The degree of in G is three and the degree of in G is at least four.
DecompositionRemovet and insertsv as new root edge.
Result:An e-net with one inner vertex less thah



A DIRECT DECOMPOSITION OF 3-CONNECTED PLANAR GRAPHS 7

S Uk S Uk

et-net 1. e-net 2. e-net 3. c-net 4. P-net

FIGURE 5. The decomposition of‘enets.

3. The degree of in GG is at least four, and, is not a cut-vertex of any 2-cut i@
withoutt.
DecompositionRemovet and insertsu; as new root edge.
Result:A c-net with one outer vertex less théh

4. The degree aof in GG is at least four, and, is a cut-vertex of a 2-cut i@ withoutt.
DecompositionRemovet and insertsv as new root edge.
Result:An f%-net with one inner vertex less thah

In the equation definind’ (¢, ) the four terms again correspond to the respective cases
and the factorg andu account for the removed vertices.

(5) E*(t,u) =tu E(t,u) +t E(t,u) + u C(t,u) +t FO(t,u).

Decomposition of f-nets and f°-nets. Let G be an f-net, i.e.(7 is a c-net where the de-
gree oft is at least four and which has a 2-cut after remowngBecause of planarity
there exists a unique 2-cut;; 1, (0 < j < k — 1) that is closest t@ (see Figure 6). As
introduced above is an -net if j = 0. G withoutv andu;., has two components, one
of which includeg and: inner vertices and the other includeandn — i inner vertices.
Let G, be the subgraph induced by «;,; and the component containiigand letG,
be the subgraph induced byw,,; and the component containisg Note that the edge
v+ might or might not be present i@.
Decomposition: If vu;,; is not an edge of7, then insert it into botlG, andG,. In-
serttu;.; as root edge intd~,. Add a new vertex’ to G, insert the edgest’, t'v
andt'u;,, and chooset’ to be the root edge aF .
Result: G; is a d-net withi inner and; outer vertices G, is an €-net withn — i inner
andk — j outer vertices. For given parameteérand; the choice whetheru,, is an
edge ofGG, the choice of7; and the choice of7, are all independent, i.e., changing any
of these choices in an f-net yields a different f-net with $hene parameters.

The later two choices account for the product/afi, v) and E*(¢, ) in the equation
defining F'(¢, u) while the first choice contributes a factor of two.

(6) F(t,u) =2 D(t,u)E*(t,u) .
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FIGURE 6. The decomposition of f-nets an@fets.

The decomposition for’tnets is the same, and since &met is an f-net withj = 0, we
have

(7) FO>t,u) =2 D(t,0)E*(t,u)

4. GENERATING FUNCTIONS

We now use the equations (1)—(7) to derive an algebraic sguand an explicit de-
scription forC'(t, w) and forC(t) = C(t,0). First, we eliminate the auxiliary generating
functions D(¢,u), D(t,0), E(t,u), E*(t,u), F(t,u) and F°(t,u) within the equations
in (1)—(7). The following list gives the order in which thenittions can be eliminated,
together with the equations that are solved for the spedifiction. D(¢,0), (3); D(t, u),
(2); F(t,u), (6); FO(t, u), (7); E(t,u), (4); E*(t,u), (5).

The modified equation (1) where all functions exceptdtr, «) andC(t) are elimi-
nated is

i C(t,u)? +ry C(4)2 +r3C(t,u) C(t) +ry Ct,u) +1r5 C(t) + 76

® 0= s1C(t,u) 4+ s2C(t) + s3 , where
ri(t w) = 2tu + 2% + 2tu® + 2623,
ro(t,u) = 4% + 4% + 4t%u + 4t%u,
ra(t,u) ;= — 4% — 43 — 2tu — 6t%u — 4tPu — 2tu® — 2t%u?,
ra(t,u) =2t + 267 + 4t® — u + tu + 4t3u + u? + tu? — 2623,
rs(t,u) = — 2t — 2% — 4t® — dtu — 2t*u — 4t3u + 2623,
r6(t, u) = u + 2tu + 2t7u — tu?,
s1(t,u) := 2t%u + 2t*u?,
so(t,u) = — 2t% — 2t + 2ty — 2t%u — 2t°u — 2t*u*, and
(

We now look for a solutior (¢, u) of (8), such that the numerator equals zero for all
andu and the denominator differs from zero. A%t, v) andC(t) are both of degree two
in (8), we can rewrite the equation as
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(9) = (91 (t,u) C(t,u) + go(t,u) )2 — gs(t,u), where
(t,u) = Atu(t+1)(u+1),
G2 (t, u) = 2622+ 48 —uttu+ At ut+u +tu? —2t2u® — 2t(t+1) (u+1)(2t+u) C(t),
g3(t,u) == 4t* (u+1)? (42 —4tu+u? +4t—4u+5) +2tu(u® —4u® —3u—2)+u? (u—1)>

+413 (ut —5u® —9u? —u+2) -+ (5ut —10u’ —15u*+-4)
+ 42 (1) (u+1)? (2t—u)? O(t)? — 4t (t+1) (u+1) (482 +4¢ + 8¢
—dtu—dtPu+8t u—u® —5tu® —2t*u* —8t°u +u +tut+-2t°u?) C(t).

Both C'(¢,u) and C(t) appear in (9), and we cannot solve directly for one of these
functions int andw only. Settingu = 0 we only yield the trivial equatiofl = 0. Instead,
we apply the quadratic method due to Tutte [25], and folloe pinesentation in [15].
We assume that there exists a functign= w(t¢) such thatys(¢,u;) = 0. Equation (9)
directly yieldsO = g3(t,u;) = (g1 C + ¢2)*(t,u:), henced = (g; C + g2)(¢,u;) and
then(g:gs)(t, ur) = #7(910 + g2)(t, ue) = (2(91C + g2) 4 (91C + g2)) (¢, us) = 0 holds
as well. We now have the following pair of simultaneous et 0 = g3(¢, u;) and
0 = (£g3)(t,u), depending o’(t), t andu. We eliminate: by calculating the resultant,
i.e., the Sylvester determinant, @f(¢, u,) and(Z g)(¢, u,) with respect ta, and obtain
one polynomial inC' := C(t) andt, the roots of which include the common roots of
g5(t,ue) and (2 gs)(t, uy); see [12] for details on resultants and generating funstion
The resultant has several nontrivial factors, but only tikfing factorp(C, t) will be
relevant for us, as the other factors do not match the inérahs ofc(n).

p(C, 1) = (8t +72t*4-264°+-5041°+528t"+288t° +641°) C*
+ (12t —228* —988t* —1756t° —2032t° —1792t" — 10245 —256t") C*
+ (6142184894t 4+-2190t* +3284¢°+3120¢5+2304¢ " +1344t54-384¢t") C*
+ (1-43t—337t2—1021¢> —1828t" —2404¢°—2128t°— 1344t —768t*—256t°) C
+ (= 1436t +131¢*+350t>+540t* +616t°+536t°+ 304t +160t>+64¢") .

As the order op(C, t) as a polynomial irC' is four, andp(C, t) = 0 yields four algebraic
solutions forC'. Comparing initial coefficients, we find that the followingthe explicit
form of the generating functio@'(t).
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1 qa(t) \1
_m<q2(t)+ V() + (3a3(t) — h(t) + h<t>) )

(D as(0) — a6 — (as0) + a0(0))) () + aslt)

t
2t(1+1)(1 4 2t)
(

—~

~

SN—
|

+ 62016t° — 63488t" — 32768t°)
— 729 — 49113t — 61936¢% — 137856¢> + 6144t* + 8192t°

(1)

6(1)

t—1)(— 2(3275 + 17— TVT)(32t + 17 + 7ﬁ))3 .

An explicit form for C'(¢, u) can be obtained by solving equation (9) fo(t, «), and
substituting”'(¢) by its explicit form.

Having the algebraic equation at hand, we can apply singgtaralysis: The dominant
singularity lies in the exceptional set of the algebraicveurand can be computed by
evaluating the resultart of p(C, t) and % p(C, t) with respect ta. The solutions fot
in the equatior? = 0 can be computed symbolically with Mathematica, and the lesial
real solutiont,, where additionally the equatiop$C’, to) = 0 and-Zp(C, o) = 0 have a
simultaneous solution, is a dominant singularity ). In this way, it is easy to compute
the dominant singularity af'(¢), which is att, = 1/32(7+/7 — 17) = 0.047508 (that was
computed before from the equations of Mullin and Schellegibsee [2]), and proves the
following.

Theorem 1 (essentially from [2]) The number of c-netgn) is in (1/t;)"+°™), where
1/tg = 16/27(17 + 73/7) = 21.049042.

Using the Maple package GFUN [21], the algebraic equati@i, ) can be trans-
formed automatically into a linear differential equatiomttwpolynomial coefficients,
which in turn translates to a one parameter recurrence flarfiou c,,. Using Horner’s
method and this formula we computed the value(@h0000) in 100 seconds on a PC.
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Theorem 2. For the coefficients(n) of C'(t) the following recursion holds.

c(0) =1, c(1) =1, ¢(2) =7, ¢(3) = 73, c(4) = 879, ¢(5) = 11713,
c(6) = 167423, ¢(7) = 2519937, and forn > 8,
c(n) = ((42147840 + 49975296(n—7) + 19267584(n—7)% + 2408448(n—17)*) c(n—7)
+ (291529728 + 269461504(n—7) + 83615232(n—"7)? + 8692736(n—7)%) c(n—6)
+ (533308032 + 435701440(n—7) + 119431200(n—7) + 11026784(n—7)>) ¢(n—>5)
+ (259749888 + 220560168(n—7) + 59988636(n—"7)? + 5361276(n—7)%) c(n—4)
+ (—45552288 — 9821452(n—7) + 1941468(n—7)2 + 418816(n—17)*) c(n—3)
+ (—16057320 — 11696062(n—7) — 2582841(n—7)% — 180467(n—7)3) ¢(n—2)
+ (5063688 4 2370408(n—7) + 367734(n—7)% + 18930(n—7)%) c(n—l))
/ (255024 + 99918(n—7) 4 13041(n—7)% + 567(n—"7)*).

5. SAMPLING

We now discuss how to use the presented decomposition tolsaamets uniformly
at random. (As usual@(-) denotes growth up to logarithmic factors.) Note that the
analysis of [13] applies to expected running time, wheraasbound is deterministic.
Moreover, they have parameters for vertices and faces,eabexe have parameters for
the number of vertices and the size of the outer face. Thusethdts are not directly
comparable. Their upper bounddgn?) for n vertices, and reduces t(n) if the ratio
of vertex number to face number is fixed to a constant. Thetvaase is attained for
triangulations.

Theorem 3. There exists a deterministic polynomial time algorithmamsle c-nets on
a given number of vertices and a given number of vertices erothier face uniformly
at random. The algorithm runs i (n°) time andO(n®) space. If we allow a pre-
computation, the algorithm can sample a c-nefim?) time andO (n°) space.

Proof. The decomposition yields recursive counting functionsdarets, d-nets, e-nets,
e'-nets, f-nets, and*fnets. For all, & > 0:



12 MANUEL BODIRSKY, CLEMENS GROPL, DANIEL JOHANNSEN, AND MIHYUN KANG

1 fn=%k=0,
e(n k) = {d(n, k) +e(n, k) + f(n,k) else.

dn,k)=cn—1Lk+1)+dn—1,k+1).
e(n, k) =e*(n, k) +d(n,k—1)+ fO(n—1,k)+ f(n, k —1).
ef(n,k)=e(n—1,k—1)+e(n—1,k) +cnk—1)+ fon—1,k).
Fln k) =23 "d(i, j)e(n—i k — j).

i=0 j=0

fo(n, k) =2 Z d(i,0)e*(n — i, k).

By induction on the lexicographically ordered péir, k), the decomposition reduces to
the initial case withinO(nk) steps of recursion. Hence we can evaluate the functions
using dynamic programming. The representation size ofatmuted numbers is lin-
ear, because it is bounded by the logarithm of the number labeted c-nets, which is
0(2°™) according to Theorem 1. Note that the functiais, e*, f, andf° are at most
as large as according to their definitions. Since we employ a constamlver of two-
dimensional tables, the total space requiremenit(is*). Concerning the running time,
each summation runs over at most two indices, and for eachsmahwe have to perform
one multiplication withO(n) bit numbers. We assume &l{n log n log log n) multiplica-
tion algorithm (see e.qg., [7]). Thus the running time for doenputation of the values is
within O(n?).

The values in the dynamic programming tables can be usedke tha correct proba-
bilistic decisions in a recursive construction of c-netkich is essentially the inversion of
the presented decomposition — this method is standard awikas theecursive method
for sampling [8, 11, 20]. For each entry, we scan over all theies from which it was
computed (there are at mast of them). We compute partial sums in another pass over
these entries and build a balanced binary tree, where iniatainal node the maximum
over its left-hand siblings is stored. This will tak&(n®) time in total, since we have
O(n?) table entries, each witf(n?) dependencies, and each tree node storés(anbit
number. After that, when given a random number between ltetheximum (i. e., the
value of the entry for which the tree was built), we can find¢dbeesponding table entry
in one pass through the tree, while reading each bit of théormumber only a constant
number of times, and hence (n) time. Then the procedure calls itself recursively.
In the case off and f°, we have to trace back two separate lines, as the randomggibli
corresponds to a choice of the summation indigésr f), respectivelyi, j) (for £°) and
the actual summand is a product of two entries (€(@,,j) ande*(n—i, k—j) for f(n, k)
and(i, 7)). Note that the sum of the bit lengths of both factors is linaghe bit length
of the entry. It follows that the total running time for geating the decomposition tree
is O(nz). If the decomposition tree is stored appropriately, we catput the sampled
random graph irD(n) time.
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It is not necessary to create the binary trees physicallyefmh entry of the tables.
Instead, we can just redo the computations from the prepstoug and stop if the partial
sum exceeds the random number. This way, the algorithm@ge?) time andO(n?)
space. O

To sample unlabeled, unrooted 3-connected planar grapfsmty at random, we
apply rejection sampling That is, we generate a c-net uniformly at random, but the re-
sulting graph is accepted only with a probability that iserse proportional to the size
of the orbit of the root edge together with an incident facehenautomorphism group of
the graph. (It is well-known that the automorphism group pfanar graph can be com-
puted efficiently, see e.g., [16].) If we do not output thepdrave restart the algorithm.
Clearly, the output of this procedure are uniform randomamfrom the class of all
3-connected planar graphs. Since a 3-connected plandr gespwith high probability a
trivial automorphism group [3], the expected number ofadstis constant.

Corollary 1. Using rejection sampling, we can sample 3-connected plgregphs using
the algorithm of Theorem 3 in an expected constant numberunfds.

6. CONCLUSION

Our main structural result is a new decomposition of rooted8nected planar graphs,
which can easily be expressed in terms of recursive couftimgulas, or equations for
their generating functions. We use these equations to @learivalgebraic equation of
degree four that determines the generating function fontmeber of rooted 3-connected
planar graphs on vertices. Here we apply computer algebra systems, and alsged
single parameter recurrence formula, which allows to campliese numbers for much
largern than the previously known formulas of Mullin and Schellergjé 9].

The main algorithmic result is the first deterministic pajymal time algorithm to sam-
ple c-nets with a given number of vertices and a given sizé@buter face uniformly at
random. Since the recurrences of the decomposition do wolvie any subtractions, the
decomposition immediately translates into a samplingrélym that produces a rooted
3-connected planar graph uniformly at random. The recersmnting formulas were im-
plemented by top-down dynamic programming in C++ using tMPGibrary for exact
arithmetic [14]. A table for small values afand# is given in Figure 7.

It is fairly straightforward to see that the decompositian ®e refined to control more
parameters of the graph, e. g., the number of edges, or theedefja root vertex [17].
Each parameter comes at the cost of another dimension ialthestand hence increases
the pre-computation time by a quadratic factor. The regarsounting formulas with an
additional parameter for the number for edges were alsoemehted, and we used the
numbers of Mullin and Schellenberg [19] to check both imptatations.

The algorithm can be used to obtain a faster and now fullyraetestic polynomial
time sampler for labeled planar graphs [4]. Also, using #jeation sampling method,
we obtain an expected polynomial time algorithm for 3-carteé planar graphs (isomor-
phism types of convex polyhedra).
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c(n,k) | 0 1 2 3 4 5 n==6
01 1 7 73 879 11713 167423
111 6 56 640 8256 115456 1710592
211 16 208 2848 41216 624384 9812992
311 30 560 9440 156592 2613664 44169600
4 |1 48 1240 25864 496944 9234368 169378560
511 70 2408 61712 1377600 28663040 574139904
6 | 1 96 4256 132480 3430528 80104448 1758695424
711 126 7008 261648 7826544 205083936 4944057984
8 | 1 160 10920 483080 16600944 487362496 12906193920
9 | 1 198 16280 843744 33111232 1086226944 31579350528
k=10 | 1 240 23408 1406752 62659200 2289692416 72985375744
c(n, k) 7 8 9 n =10
0 2519937 39458047 637446145 10561615871
1 26468352 423641088 6966960128 117148778496
2 158883840 2636197888 44640468992 769058340864
3 756712960 13136471040 230851792896 4102116843520
4 3095526912 56624998400 1039080697856 19147850612736
5 11259283200 218198045184 4201424145408 80643838062592
6 37158281984 765948707328 15534537453568 311681600004096
7 112834665216 2481031718144 53154302311936  1117907385569280
8 318621198720 7487670554880  169818439763968  3751908804540416
9 843790483712 21217661003264 510172604564480 11860405982539776
k=10 | 2110406347008 56815355557376 1449735177678848 35506327812194304

FIGURE 7. A table ofc(n, k) for small c-nets on up t@3 vertices. The
number of vertices on the outer facekis- 2. The total number of vertices
isn+k+ 3.
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