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Abstract. We investigate two associative products over the ring of symmetric func-
tions related to the intransitive and Cartesian products of permutation groups. As an
application, we give an enumeration of some Feynman type diagrams arising in Bender’s
QFT (quantum field theory) of partitions. We end by exploring possibilities to construct
noncommutative analogues.

Résumé. Nous étudions deux lois produits associatives sur les fonctions symétriques
correspondant aux produits intransitif et cartésien des groupes de permutations. Nous
donnons comme application l’énumération de certains diagrammes de Feynman appa-
raissant dans la QFT (théorie quantique des champs) des partitions de Bender. Enfin,
nous donnons quelques pistes possibles pour construire des analogues non-commutatifs.

1. Introduction

In a relatively recent paper, Bender, Brody and Meister introduced a special Field
Theory described by
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in order to prove that any sequence of numbers {an} can be generated by a suitable set
of rules applied to some type of Feynman diagrams [1, 2]. These diagrams actually are
2-coloured multigraphs with no isolated vertex.

Expanding one factor of formula (1), one can observe surprising links between: the
normal ordering problem (for bosons), the parametric Stieltjes moment problem and the
convolution of kernels, substitution matrices (such as generalised Stirling matrices) and
one-parameter groups of analytic substitutions [8, 9, 15]. Our aim in this paper is to
make more explicit the connections between symmetric functions (either commutative or
noncommutative) and the Feynman diagrams (either labelled or unlabelled) arising in
Bender and al.’s Quantum Field Theory of Partitions, and used in combinatorial physics
[15].
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The paper is organized as follows. In Section 2, we define two binary operations on
S =

⊔
Sn, respectively related to the intransitive and Cartesian products of permutation

groups. We prove that both operations are associative, hence giving the graded vector
space

⊕
n≥0 Q[Sn] the structure of a 2-associative algebra. In Section 3, we show how the

latter algebraic structure can be carried over to the commutative symmetric functions, and
we further investigate the 2-associative algebra Sym with respect to distributivity. We
also take advantage of the construction to recall, in its proper context, Pólya’s cycle index
theorem; as an application, we use it to establish an inductive formula for the generating
functions of the Feynman diagrams associated with Bender’s QFT of partitions. Section 4
is dedicated to noncommutative analogues of the constructions introduced in Section 3:
we show how the Feynman diagrams obtained by expanding formula (1) are related to
the algebras FQSym and MQSym [6].

2. Actions of a direct product of permutation groups

2.1. Direct product actions. The actions of the direct product of two permutation
groups (in particular, on the structure of the cycles) give rise to interesting properties
related to the enumeration of unlabelled objects [14]. We open this section with the defi-
nition of two actions (namely, intransitive and Cartesian). For greater detail about these
constructions (or for constructions involving the wreath product) the reader is referred to
[4].

Consider two pairs (G1, X1) and (G2, X2), where each Gi is a permutation group acting
on the set Xi, either finite or infinite. The intransitive action of G1×G2 on X1tX2 (here
t means disjoint union) is defined by the rule

(σ1, σ2)x =

{
σ1x if x ∈ X1,

σ2x if x ∈ X2.
(2)

This action will be denoted by (G1, X1)→+ (G2, X2) := (G1 ×G2, X1 tX2).
The Cartesian action of G1 ×G2 on X1 ×X2 is defined by

(σ1, σ2)(x1, x2) = (σ1x1, σ2x2). (3)

This action will be denoted by (G1, X1) ↗↘ (G2, X2) := (G1 × G2, X1 × X2). Note that
neither of the two binary operations just defined is commutative. A natural question
to ask is whether such a structure enjoys some algebraic properties. For example, is ↗↘
distributive over →+ ?

In other words, what is the meaning of

(G1, X1)↗↘ ((G2, X2)→+ (G3, X3)) = (G1 ×G2 ×G3, X1 × (X2 tX3))

and

((G1, X1)↗↘ (G2, X2))→+ ((G1, X1)↗↘ (G3, X3))

= (G1 ×G2 ×G1 ×G3, (X1 ×X2) t (X1 ×X3)).

The groups G1 × G2 × G1 × G3 and G1 × G2 × G3 are not isomorphic, so distributivity
does not hold, although the set-theoretical Cartesian product is distributive over disjoint
union. However an examination of the structure of the cycles (see [4] for the general
construction or Section 2.2 for a particular case) shows that the cycles are the same.
More precisely, a cycle can appear with different multiplicities according to which group
is acting, but if we focus on the set of the cycles, the two structures are similar.

We now exhibit a construction which accounts for such a phenomenon.
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2.2. Explicit realization. We will denote by ◦N the natural action of Sn on {0, . . . , n−
1}. Let Sn and Sm be two symmetric groups, we note by ◦I the intransitive action
of Sn × Sm on {0, · · · , n + m − 1} and by ◦C the Cartesian action of Sn × Sm on
{0, . . . , nm− 1}. More precisely, for σ1 ∈ Sn and σ2 ∈ Sm,

(σ1, σ2) ◦I i =

{
σ1 ◦N i if 0 ≤ i ≤ n− 1,

(σ2 ◦N (i− n)) + n if n ≤ i ≤ n+m− 1,
(4)

for 0 ≤ i ≤ n+m− 1, and

(σ1, σ2) ◦C (j + nk) = (σ1 ◦N j) + n(σ2 ◦N k) (5)

for 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ m− 1.
The intransitive product is the map →+ : Sn ×Sm → Sn+m defined by

σ1 →+ σ2 = σ1σ2[n], (6)

where σ2[n] denotes σ2 composed with the shifted substitution i 7→ i+ n (here permuta-
tions are considered as words and →+ is nothing else but shifted concatenation).

Example 2.1. Let σ1 = 1320 ∈ S4 and σ2 = 534120 ∈ S6. Here, we denote a permu-
tation of Sn by the word whose ith letter is the image of i under the natural action on
{0, . . . , n− 1}). With this notation, we obtain

σ1 →+ σ2 = 1320978564

and
σ2 →+ σ1 = 5341207986.

Clearly, it turns out that →+ is not commutative.

The following proposition shows that the natural action of (the image under →+ of
Sn ×Sm in) Sn+m coincides with the intransitive action of Sn ×Sm.

Proposition 2.2. We have (σ1 →+ σ2) ◦N i = (σ1, σ2) ◦I i.

Let us introduce a similar construction for the Cartesian action: we define a map
↗↘: Sn ×Sm → Snm by

σ1 ↗↘ σ2 =
∏
i,j

ci ↗↘ c′j, (7)

where σ1 = c1 · · · ck (respectively σ2 = c′1 · · · c′k′) is the decomposition of σ1 (respectively
σ2) into a product of cycles and, for two cycles c = (i0, · · · , il−1), c

′ = (j0, · · · , jl′−1),

c↗↘ c′ =

gcd(l,l′)−1∏
s=0

(φ(s, 0), φ(s+ 1, 1) · · · , φ(lcm(l, l′)− 1, lcm(l, l′)− 1)), (8)

where φ(k, k′) = ik mod l +njk′ mod l′ . Just like the intransitive action, the Cartesian action
coincides with the natural action of (the image under ↗↘ of of Sn ×Sm in) Snm.

Proposition 2.3. We have (σ1 ↗↘ σ2) ◦N i = (σ1, σ2) ◦C i .

Proof. From (7), it suffices to prove the property when σ1 = c and σ2 = c′ are two cycles.
But (8) is equivalent to

c↗↘ c′ =

gcd(l,l′)−1∏
s=0

(is + nj0, (c, c
′) ◦C (is + nj0), . . . , (c

lcm(l,l′)−1, c′
lcm(l,l′)−1

) ◦C (is + nj0))

=

gcd(l,l′)−1∏
s=0

(is + nj0, c ◦C is + nc′ ◦N j0, . . . , c
lcm(l,l′)−1 ◦N is + nc′

lcm(l,l′)−1 ◦N j0)),

which completes the proof. �
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Example 2.4. Consider the two permutations σ1 = 2031 ∈ S4 and σ2 = 01723456 ∈ S8.
The permutation σ1 consists of a unique cycle c1 = (0, 2, 3, 1) and σ2 = c′1c

′
2c
′
3 is the

product of the three cycles c′1 = (0), c′2 = (1) and c′3 = (7, 6, 5, 4, 3, 2). Hence, the
permutation σ1 ↗↘ σ2 is the product of four cycles given by

(1) c1 ↗↘ c′1 = (0, 2, 3, 1),
(2) c1 ↗↘ c′2 = (4, 6, 7, 5),
(3) c1 ↗↘ c′3 = (28, 26, 23, 17, 12, 10, 31, 25, 20, 18, 15, 9)

(30, 27, 21, 16, 14, 11, 29, 24, 22, 19, 13, 8).

To illustrate Proposition 2.3, it suffices to draw the cycles in the Cartesian product
{0, . . . , n−1}×{0, . . . ,m−1} whose elements are re-labelled through (i, j) 7→ i+nj. For
example, the two cycles appearing in c1 ↗↘ c′3 give the following partition of {0, 1, 2, 3} ×
{2, 3, 4, 5, 6, 7}.
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On the other hand, the permutation σ2 ↗↘ σ1 is the product of the four cycles

(1) c′1 ↗↘ c1 = (0, 16, 24, 8),
(2) c′2 ↗↘ c1 = (1, 17, 25, 9),
(3) c′3 ↗↘ c1 = (7, 22, 29, 12, 3, 18, 31, 14, 5, 20, 27, 10)

(6, 21, 28, 11, 2, 23, 30, 13, 4, 19, 26, 15).

Clearly, σ1 ↗↘ σ2 6= σ2 ↗↘ σ1 : the binary operation ↗↘ is not commutative.

2.3. Algebraic structure. The advantage of the new structures over the ones defined
in Section 2.1 consists in the omission of the operations over the groups. Hence, algebraic
properties come into light quite naturally.

First, the two operations are associative.

Proposition 2.5. Associativity.
Let σ1 ∈ Sn, σ2 ∈ Sm and σ3 ∈ Sp be 3 permutations

(1) σ1 →+ (σ2 →+ σ3) = (σ1 →+ σ2)→+ σ3

(2) σ1 ↗↘ (σ2 ↗↘ σ3) = (σ1 ↗↘ σ2)↗↘ σ3

Proof. 1) Set η1 = σ1 →+ (σ2 →+ σ3) and η2 = (σ1 →+ σ2)→+ σ3. One has

η1 ◦N i =


σ1 ◦N i if 0 ≤ i ≤ n− 1,

σ2 ◦N (i− n) + n if n ≤ i ≤ m+ n− 1,

σ3 ◦N (i− n−m) + n+m if n+m ≤ i ≤ n+m+ p− 1,

for each 0 ≤ i ≤ n+m− 1, and the same holds for η2 ◦N i. It follows that η1 = η2.

2) The strategy is the same. First, we set η1 = σ1 ↗↘ (σ2 ↗↘ σ3) and η2 = (σ1 ↗↘ σ2)↗
↘ σ3. The action of η1 can be computed as follows

η1 ◦N (i+ ni′) = σ1 ◦N i+ n(σ2 ↗↘ σ3) ◦N i′ = σ1 ◦N i+ nσ2 ◦N j + nmσ3 ◦N k,



FREE QUASI-SYMMETRIC FUNCTIONS, PRODUCT ACTIONS AND QUANTUM FIELD THEORY 5

where 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ mp− 1, 0 ≤ j ≤ m− 1 and 0 ≤ k ≤ p− 1.
On the other hand, the action of η2 is

η2 ◦N (k′ + nmk) = (σ1 ↗↘ σ2) ◦N k′ + nmσ3 ◦N k = σ1 ◦N i+ nσ2 ◦N j + nmσ3 ◦N k,

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1, 0 ≤ k ≤ p − 1 and 0 ≤ k′ ≤ nm − 1. Hence,
η1 ◦N i = η2 ◦N i for 0 ≤ i ≤ nmp− 1 and η1 = η2. �

From Examples 2.1 and 2.4, neither →+ nor ↗↘ is commutative. But, one has the
property of left distributivity.

Proposition 2.6. Semi-distributivity.
Let σ1 ∈ Sn, σ2 ∈ Sm and σ3 ∈ Sp be three permutations

σ1 ↗↘ (σ2 →+ σ3) = (σ1 ↗↘ σ2)→+ (σ1 ↗↘ σ3).

Proof. We use the same method as in the proof of Proposition 2.5. First, let us define
η1 = σ1 ↗↘ (σ2 →+ σ2) and η2 = (σ1 ↗↘ σ2)→+ (σ1 ↗↘ σ3). The action of η1 is

η1 ◦N (i+ nj) = η1 ◦N i+ n(σ2 →+ σ3) ◦N j

=

{
σ1 ◦N i+ nσ2 ◦N j if 0 ≤ j ≤ m− 1,

σ1 ◦N i+ nσ3 ◦N (j −m) +m if m ≤ j ≤ p+m− 1,
(9)

where 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m+ p− 1.
On the other hand, one has

η2 ◦N k =

{
(σ1 ↗↘ σ2) ◦N k if 0 ≤ k ≤ nm− 1,

(σ1 ↗↘ σ3) ◦N (k − nm) + nm if nm ≤ k ≤ n(m+ p)− 1.
(10)

If 0 ≤ k ≤ mn− 1, we set k = i+ nj where 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. Hence,

(σ1 ↗↘ σ2) ◦N k = σ1 ◦N i+ nσ2 ◦N j. (11)

Similarly, if nm ≤ k ≤ n(m+ p)− 1, we set (k − nm) = i+ nj where 0 ≤ i ≤ n− 1 and
0 ≤ j ≤ p− 1. Hence,

(σ1 ↗↘ σ3) ◦N (k − nm) + nm = σ1 ◦N i+ n(σ3 ◦N (j −m) +m). (12)

Substituting (11) and (12) in (10), one recovers the right hand side of (9). It follows
immediately that η1 = η2. �

The two binary operations can be extended by linearity to the graded vector space⊕
n≥0 Q[Sn] and endow this space with the structure of a 2-associative algebra, i.e., a

vector space equipped with 2 associative products [11]). In the next section, we construct
a product ? in Sym (the algebra of symmetric functions) defined on the power sums and
appearing when one examines the cycle index of a Cartesian product. This product is the
image of ↗↘ under a particular homomorphism of 2-associative algebras. We will prove
that this last property implies the associativity of ? and the distributivity of ? over ×
(the natural product in Sym) and +.

3. Cycle index algebra

3.1. Cartesian product in Sym. We first construct a homomorphism of 2-associative
algebras

⊕
n≥0 Q[Sn]→ Sym.

The arrow maps a permutation σ ∈ Sn to a product of power sums. For j ≥ 1, let
cj(σ) be the number of cycles of length j in σ and set

Z(σ) =
∞∏

j=0

p
cj(σ)
j , (13)

where pi denotes the ith power sum symmetric function. We claim that Z is a homo-
morphism of algebras mapping →+ to × (the usual product in Sym) and such that ↗↘
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is compatible with Z to the extent that there exists an associative product on Sym such
that Z is also a homomorphism mapping ↗↘ to it. This second law is given on the power
sums basis by ∏

1≤i≤∞

pαi
i ?

∏
1≤j≤∞

p
βj

j =
∏

1≤i,j≤∞

p
αiβj gcd(i,j)

lcm(i,j) . (14)

(The sequences (αi)i≥1, (βj)j≥1 have finite support.) It is straightforward to check the
following facts.

Proposition 3.1. i) The map Z :
⊕

n≥0 Q[Sn] → Sym is a homomorphism of 2-
associative algebras mapping the two products →+ ; ↗↘ respectively to ×; ? . (Recall that
× denotes the usual product of Sym.) More precisely, for σ, τ ∈ tn≥0Sn = S one has

Z(σ →+ τ) = Z(σ)Z(τ) ; Z(σ ↗↘ τ) = Z(σ) ? Z(τ). (15)

ii) The product ? is associative, commutative and distributive over ×.

Proof. i) For the first relation of (15), one just notices that cj(σ →+ τ) = cj(σ) +
cj(τ). For the second relation, one observes that the Cartesian product of a i-cycle
and a j-cycle produces gcd(i, j) cycles of length lcm(i, j). Thus, one has cr(σ ↗↘ τ) =∑

lcm(p,q)=r gcd(p, q)cp(σ)cq(τ), whence (15).

ii) When σ ∈ Sn is a cycle of maximum length, one has Z(σ) = pn, hence the image
of Z contains also all the products of power sums and we get Im(Z) = Sym. Then,
by Proposition 3.1(i), ? is distributive on the left over ×. Complete distributivity is a
consequence of the commutativity of ?, which straightforwardly follows from the definition.

�

The following structural result goes into particulars of the distributivity of ? over ×.

Proposition 3.2. Let N∗ and p respectively stand for the set of positive natural numbers
and the set of prime numbers. Let N(N∗) (respectively N(p)) denote the set of sequences
of natural numbers indexed by N∗ (respectively indexed by p) with finitely many non-zero
elements. Let P be the set of products of power sums, i.e., P = {

∏∞
i=1 p

αi
i }(αi)i≥1∈N(N∗).

Then P is closed under × and ?: more precisely (P,×, ?) is isomorphic to a subsemiring
of the Z-algebra Z[N(p)] of the monoid (N(p), sup) (where sup stands for the componentwise
supremum).

Proof. The fact that P is closed under × and ? follows from the definition and (14). Now
P contains the two units (1 and p1) of the 2-associative algebra Sym, therefore (as a
consequence of the properties established for the products ×, ?) it is a semiring. For
every q ∈ p and n ∈ N∗, let νq(n) denote the exponent of q in the decomposition of n in
prime factors (n =

∏
q∈p q

νq(n)); for a fixed n, we naturally identify q 7→ νq(n) with the

sequence (ν2(n), ν3(n), . . .) ∈ N(p). Define an arrow φ : P → Z[N(p)] by

φ(
∏

1≤i≤∞

pαi
i ) =

∑
1≤i≤∞

iαi(q 7→ νq(i)). (16)

As φ(m1m2) = φ(m1) + φ(m2) by construction (16), it suffices to prove that

φ(pi ? pj) = φ(pi)×sup φ(pj),
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where ×sup stands for the product in Z[(N(p), sup)]. But

φ(pi ? pj) = φ(p
gcd(i,j)
lcm(i,j))

= gcd(i, j)φ(plcm(i,j))

= gcd(i, j) lcm(i, j)(q 7→ νq(lcm(i, j))

= gcd(i, j) lcm(i, j)(q 7→ sup(νq(i), νq(j)))

= ij(q 7→ sup(νq(i), νq(j)))

= φ(pi)×sup φ(pj).

Since the arrow φ is clearly into, the claim is proved. �

3.2. Cycle index. Let S =
⊔

n≥0 Sn be the disjoint union of all the symmetric groups
and Ssg =

⋃
n≥0 (Sn)sg be the set of all the subgroups of all symmetric groups. For

the sake of simplicity, we identify a permutation group G ∈ (Sn)sg with its action

(G, {0, . . . , n − 1}) (see Section 2.1). The laws →+ and ↗↘ can be defined over Ssg;
for G1 ∈ (Sn)sg and G2 ∈ (Sm)sg, set

G1 →+ G2 := (G1 ×G2, {0, . . . , n+m− 1}), (17)

where G1 acts on {0, . . . , n− 1} and G2 acts on {n, . . . , n+m− 1}, and

G1 ↗↘ G2 := (G1 ×G2, {0, . . . , nm− 1}), (18)

where the action on {0, . . . , nm − 1} is given by (σ1, σ2)k = ψ−1((σ1, σ2)ψ(k)), the map
ψ being the bijection ψ : {0, . . . , nm − 1} → {0, . . . , n − 1} × {0, . . . ,m − 1} defined by
ψ(i+ nj) = (i, j) if 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1 and (σ1, σ2)(i, j) = (σ1i, σ2j). Note
that both →+ and ↗↘ are associative but ↗↘ is not distributive over →+ .

Let Z : Ssg → Sym be defined by

Z(G) = Z

(
1

|G|
∑
σ∈G

σ

)
, (19)

where the map Z is defined by Equation 13 above.
Z(G) is called Pólya’s cycle index (or Pólya’s cycle indicator polynomial) of G [14].

Example 3.3. (1) The cycle index of the symmetric group Sn is Z(Sn) = hn.
(2) The cycle index of the alternating group An is Z(An) = hn + en.

Here hn (respectively en) denotes the nth complete (respectively the nth elementary)
symmetric function. These examples appear as exercises in [12, p. 29, Ex. 9].

Since Z is a homomorphism of 2-associative algebras, one recovers the classical relations
(see [4])

Z(G1 →+ G2) = Z(G1)Z(G2) (20)

Z(G1 ↗↘ G2) = Z(G1) ? Z(G2) (21)

Example 3.4. (1) The cycle index of the intransitive product of two symmetric
groups Sn and Sm is

Z(Sn →+ Sm) = hnhm.

(2) The cycle index of the Cartesian product of two symmetric groups Sn and Sm is

Z(Sn ↗↘ Sm) = hn ? hm =
∑
|λ|=n

|ρ|=m

mλ ? mρ =
∑
|λ|=n

|ρ|=m

1

zλzρ

∏
i,j

p
gcd(λi,ρj)

lcm(λi,ρj)
,

where the sum runs over all (integer) partitions λ = λ1 ≥ λ2 ≥ · · · of n and all
(integer) partitions ρ = ρ1 ≥ ρ2 ≥ · · · of m; mλ denotes the monomial symmetric
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function indexed by λ and zλ =
∏
inini!, where ni is the number of parts of λ

equal to i.

3.3. Enumeration of a type of Feynman diagrams related to the Quantum Field
Theory of partitions. The cycle indexes are classical tools used in combination with
Pólya’s theorem, for the enumeration of unlabelled objects [10, 14]. Let us review Pólya’s
general method.

Consider a permutation group G acting on a finite set X = {x1, · · · , xn}. Let L =
{l0, . . . , lp, . . . } be another (possibly infinite) set, and f : X → L. The type t(f) of f is
the vector (i0, . . . , ip, . . . ), where ik is the number of elements of X whose image by f
is lk. The shape s(f) of f is the integer partition obtained by sorting in the decreasing
order t(f) and erasing the zeroes. For example, a function f having the type t(f) =
(0, 1, 0, 9, 1, 2, 0, . . . , 0, . . . ) has the shape s(f) = (9, 2, 1, 1). The group G naturally acts
on LX by (σ ◦N f) (x) = f(σ◦x), where ◦ denotes the action of G on X, and ◦N preserves
the shape. Besides, Pólya’s cycle index of G, Z(G), is a symmetric polynomial and can
expanded in the basis {mλ}λ`n of monomial symmetric polynomials. Pólya’s cycle index
theorem asserts that the coefficient of mλ in this expansion is the number ds

λ(G,L) of
G-classes on LX with given shape λ:

Z(G) =
∑

λ

ds
λ(G,L)mλ. (22)

Now, let us apply this method to enumerate the Feynman diagrams arising in the expan-
sion of formula (1). These diagrams are unlabelled 2-coloured multigraphs (or 2-coloured
graphs with edges weighted by positive integers) with no isolated vertex. By a 2-coloured
multigraph, we mean an undirected multigraph whose vertex set is partitioned into a set
of white vertices and a set of black vertices, such that every undirected multiedge joins a
white vertex with a black vertex.

First, we enumerate all unlabelled 2-coloured multigraphs. Such a computation can be
found in [10], so we will only sketch the general case1. Henceforth, and until the end of
the present section, 2-coloured multigraphs will be simply referred to as ‘multigraphs’.
Let n and m be the numbers of white vertices and the number of black vertices of the
multigraph, respectively. We represent the multiedge set of the multigraph as a function
e from {0, . . . , n−1}×{0, . . . ,m−1} to N. The type (respectively the shape) of a such a
multigraph is the type (respectively the shape) of its multiedge set, i.e., t(e) (respectively
s(e)). The ith component of the type vector gives the number of (multi)edges with weight
i.

As we consider unlabelled multigraphs, we identify multigraphs that can be obtained
from one another by independently permuting the white vertices and the blacks vertices,
i.e by a Cartesian action of an ordered pair (σ1, σ2) ∈ Sn ×Sm. Therefore, the number
dI(n,m) of multigraphs with type I is equal to the number of orbits with type I, for the
action of Sn ↗↘ Sm on N{0,...,n−1}×{0,...,m−1}. Hence, the generating function of the shape
is given by

g(n,m) :=
∑

λ

ds
λ(n,m)mλ = Z(Sn) ? Z(Sm). (23)

Specializing the symmetric function appearing in 23 to the alphabet {y0, . . . , yk, . . . , },
the coefficient dt

I(n,m) of
∏
yik

k in the expansion of g(n,m) is equal to the number of
multigraphs with type I = (i0, . . . , ik, . . . ),

g(n,m) =
∑

I=(i0,...,ip,... )

dt
I(n,m)

∞∏
k=0

yik
k . (24)

1Of course, the following computations (and more general ones) could be carried out within the frame-
work of the theory of species [3].
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Note that one can enumerate multigraphs having (multi)edges with weights less than or
equal to p by specializing to the finite alphabet {y0, . . . , yp}.

Let us define the generating functions of the type of our Feynman diagrams

F (n,m) :=
∑

I=(i0,...,ip,... )

f t
I(n,m)

∞∏
k=0

yik
k , (25)

where f t
I(n,m) denotes the number of Feynman diagrams of type I. Observe that F (n,m)

is a symmetric function over the alphabet {y1, . . . , yp, . . . } but not over {y0, . . . , yp, . . . }.

Example 3.5. Let us give the first examples of generating functions, for weights in
{0, 1, 2}.

(1) F (1, 1) = y1 + y2,
(2) F (2, 1) = F (1, 2) = y2

1 + y1y2 + y2
2,

(3) F (2, 2) = y2
0y

2
1 + y2

0y
2
2 + y2

0y1y2 + y0y
3
1 + 3y0y

2
1y2 + 3y0y1y

2
2 + y0y

3
2 + y4

1 + y3
1y2 +

3y2
1y

2
2 + y1y

3
2 + y4

2.

One can remark that under this specialization,

F (2, 2) + F (2, 1)y2
0 + F (1, 2)y2

0 + F (1, 1)y3
0 + y4

0 = 3m22 +m4 + 3m211 +m31 = g(2, 2).

The latter equality can be formulated in a more general setting.

Theorem 3.6. One has the following decomposition of the cycle index:

Z(Sn ↗↘ Sm) = ynm
0 +

∑
(1,1)≤lex(k,p)≤lex(n,m)

F (k, p)ynm−kp
0 . (26)

Proof. It suffices to notice that a 2-coloured multigraph is either a 2-coloured multigraph
with no isolated vertex (i.e., a Feynman diagram) or the union of some isolated vertex
and a smaller 2-coloured multigraph. �

This yields a nice induction formula for the F (n,m)’s.

Example 3.7. From Theorem 3.6, one has

F (3, 2) = Z(S3 ↗↘ S2)− F (3, 1)y3
0 − F (2, 2)y2

0 − F (2, 1)y4
0 − F (1, 2)y4

0 − F (1, 1)y5
0 − y6

0.

From Example 3.5, it suffices to compute F (3, 1) = y3
1 + y3

2 to enumerate Feynman
diagrams whose edges are weighted by 0, 1 or 2. After simplification, one obtains

F (3, 2) = y6
2 + y5

2y1 + 3y4
2y1 + 3y4

2y1y0 + 2y4
2y

2
0 + 3y3

2y
3
1 + 6y3

2y
2
1y0 + 5y3

2y1y
2
0

+ y3
2y

3
0 + 3y2

2y
4
1 + 3y2

2y
3
1y0 + 8y2

2y
2
1y

2
0 + 3y2

2y1y
3
0 + y2y

5
1 + 3y2y

4
1y0 + 5y2y

3
1y

2
0

+ 3y2y
2
1y

3
0 + y6

1 + y5
1y0 + y3

1y
3
0 + 2y2

1y
4
0.

For example, there are eight (2, 2, 2)-Feynman diagrams:

vvff
fXXXXXX���
���

����
�

� vvff
fXXXXXXXXXXXX����

�
� vvff

fXXXXXX���
���

�
�

�XXX vvff
fXXXXXXXXXXXX�

�
�

Z
Z

Z vvff
f
�

�
�

�
�

�
���
���

XXX
��� vvff

f
�

�
�

�
�

�
���
���

XXX
XXX vvff

f
�

�
�

�
�

�XXXXXX

XXX
��� vvff

fXXXXXX���
���XXX
���

4. Noncommutative realizations

4.1. Free quasi-symmetric cycle index algebra. Let (A,<) be an ordered alphabet
and w ∈ A∗ a word of length n. One denotes by Std(w) the standardization of w, i.e.,
the permutation σ ∈ Sn defined by

σ(i) = (Number of letters = w[i] in w[1..i] + number of letters < w[i] in w). (27)
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Recall that the algebra FQSym of free quasi-symmetric functions is defined by one of its
bases, indexed by S and defined as follows:

Fσ =
∑

Std(w)=σ−1

w ∈ Z〈〈A〉〉. (28)

In [6], it is shown that FQSym is freely generated by the Fσ’s, where σ runs over the
connected permutations (see [5]) (i.e., permutations such that σ([1, k]) 6= [1, k] for each k).
The algebra FQSym is spanned by a linear basis, {Fσ}σ∈S, whose product implements
the intransitive action →+ :

Fσ = Fσ1 · · ·Fσn , (29)

where σ = σ1 →+ · · · →+ σn is the maximal factorisation of σ as a product of connected
permutations. As a consequence of this definition, one has

FσFτ = Fσ→+ τ . (30)

This naturally induces an isomorphism of algebras

Z :

(⊕
n≥0

Q[Sn],→+ ,+

)
→ (FQSym, ·,+)

σ 7→ Fσ. (31)

One defines the product ? on FQSym by Fσ ? Fτ := Fσ↗↘τ , so Z becomes a morphism
of 2-associative algebras. Furthermore, ? is associative, distributive over the sum and
semi-distributive over the shifted concatenation.

4.2. Free quasi-symmetric analogue of Pólya’s cycle index. Recall that Ssg de-
notes the set of all permutation groups. Following the same pattern as in the commutative
setting (see Sections 3.1 and 3.2 above), one defines a map Z : Ssg → FQSym by

Z(G) := Z

(
1

|G|
∑
σ∈G

σ

)
=

1

|G|
∑
σ∈G

Fσ. (32)

Z(G) will be called Pólya’s free quasi symmetric cycle index of G.

Note 4.1. There is another basis of FQSym indexed by permutations, namely {Gσ}σ∈S.
It is obtained by setting Gσ = Fσ−1, and applying the same construction as above to get
a linear basis multiplicative with respect to →+ (see Equation (30)), yields

Gσ = Gσ1 · · ·Gσn , (33)

where σ = σ1 →+ · · · →+ σn is the maximal factorisation of σ as a product of connected
permutations. In this case, σ−1 splits maximally into σ−1

1 →+ · · · →+ σ−1
n , so one also has

Gσ = Fσ−1
and formula (32) can be rewritten

Z(G) =
1

|G|
∑
σ∈G

Gσ. (34)

The polynomial Z(G) has properties similar to that of Z(G), in particular with respect
to the laws →+ and ↗↘.

Proposition 4.2. Let G1, G2 ∈ Ssg be two permutation groups, one has

(1) Z(G1 →+ G2) = Z(G1)Z(G2).
(2) Z(G1 ↗↘ G2) = Z(G1) ? Z(G2).

Consider the homomorphism z : FQSym→ Sym defined by z(Fσ) = Z(σ). Note that
it is not a Hopf homomorphism because z(F231) = p3.
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The following diagram is commutative:

Ssg
Z−→ FQSym

Z ↓ z ↙ ↑ Z (35)

Sym ←−
Z

⊕
n≥0

Q[Sn]

Example 4.3. (1) The free quasi-symmetric cycle index of Sn is

Hn := Z(Sn) =
1

n!

∑
σ∈Sn

Fσ.

One can regard Hn as a free quasi-symmetric analogue of the complete symmetric
function hn: indeed z(Hn) = Z(Sn) = hn.

(2) One can define free quasi-symmetric analogues of elementary symmetric functions,
by considering the free quasi-symmetric cycle index of the alternative groups:

En := Z(An)− Z(Sn).

We get z(En) = Z(An)− Z(Sn) = en.
(3) The knowledge of analogues of other symmetric functions should be useful to un-

derstand the combinatorics of the free quasi-symmetric cycle indexes. In particu-
lar, it should be interesting to find free quasi-symmetric functions whose images
by z are the monomial symmetric functions.

4.3. Realizations in MQSym. We will call labelled diagrams the Feynman diagrams as
defined in Section 3.3, but with p white (respectively q black) vertices labelled bijectively
by integers in [1..p] (respectively in [1..q]). When one draws such a diagram, one implicitly
assumes that the labelling goes from top to bottom:

f
f

v
v
v(((((

(((((

�����

�����
l

l
l

ll
hhhh

Labelled diagram of the matrix ( 2 0 1
0 2 1 )

Now, to such a p × q labelled diagram, we can associate a matrix in Np×q and this
correspondence is one-to-one. The condition that no vertex be isolated is equivalent to
the condition that there be no complete line or column of zeroes, i.e., the representative
matrix is packed [6]. In the same way, the diagrams are in one-to-one correspondence
with the classes of packed matrices under the permutations of lines and columns as shown
below (the vertical arrows are then one-to-one):

Packed matrices
Class−−−→ Classes of packed matricesy y

Labelled diagrams −−−→ Diagrams

(36)

There is an interesting structure of Hopf algebra (in fact an enveloping algebra) over
the diagrams [7] which can be pulled back in a natural way to labelled diagrams.

The correspondence described above allows to construct a new Hopf algebra structure
on MQSym and a Hopf algebra structure on the space spanned by the classes.
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5. Conclusion

Other realizations in Hopf algebras seem feasible. For example, let us consider the Hopf
algebras of graphsGQSym110 andGTSym110 defined in [13]. An interesting mapping from⊕

n≥0 Q[SN ] to GQSym110 or GTSym110 can be constructed, sending each cycle to an
equivalent loop.

More precisely, J.-Y. Thibon (personal communication) showed to us how to con-
struct a non-commutative Hopf algebra which is the dual of a quotient of a subalgebra
of GTSym110. This algebra is Hopf homomorphic to Sym and has two bases indexed
by permutations, whose commutative images are proportional to power sums and mono-
mial symmetric functions, respectively. This construction gives natural noncommutative
analogues of Pólya’s cycle index.

Acknowledgements We are grateful to J.-Y. Thibon for fruitful comments.
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