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ON PARTITIONS AVOIDING 3-CROSSINGS

MIREILLE BOUSQUET-MÉLOU AND GUOCE XIN

To Xavier Viennot, on the occasion of his 60th birthday

Abstract. A partition on [n] has a crossing if there exists i1 < i2 < j1 < j2
such that i1 and j1 are in the same block, i2 and j2 are in the same block,
but i1 and i2 are not in the same block. Recently, Chen et al. refined this
classical notion by introducing k-crossings, for any integer k. In this new
terminology, a classical crossing is a 2-crossing. The number of partitions
of [n] avoiding 2-crossings is well-known to be the nth Catalan number
Cn =

(

2n

n

)

/(n + 1). This raises the question of counting k-noncrossing
partitions for k ≥ 3. We prove that the sequence counting 3-noncrossing
partitions is P-recursive, that is, satisfies a linear recurrence relation with
polynomial coefficients. We give explicitly such a recursion. However, we
conjecture that k-noncrossing partitions are not P-recursive, for k ≥ 4.

We obtain similar results for partitions avoiding enhanced 3-crossings.

1. Introduction

A partition of [n] := {1, 2, . . . , n} is a collection of nonempty and mutually
disjoint subsets of [n], called blocks, whose union is [n]. The number of par-
titions of [n] is the Bell number Bn. A well-known refinement of Bn is given
by the Stirling number (of the second kind) S(n, k). It counts partitions of [n]
having exactly k blocks.

Recently another refinement of the Bell numbers by crossings and nestings
has attracted some interest [8, 15, 13]. This refinement is based on the stan-
dard representation of a partition P of [n] by a graph, whose vertex set [n] is
identified with the points i ≡ (i, 0) on the plane, for 1 ≤ i ≤ n, and whose
edge set consists of arcs connecting the elements that occur consecutively in the
same block (when each block is totally ordered). For example, the standard
representation of 1478 − 236 − 5 is given by the following graph.

1 2 3 4 5 6 7 8

Then crossings and nestings have a natural definition. A k-crossing of P is
a collection of k edges (i1, j1), (i2, j2), . . . , (ik, jk) such that i1 < i2 < · · · <
ik < j1 < j2 < · · · < jk. This means a subgraph of P as drawn as follows.

Key words and phrases. Partitions, Crossings, D-finite series.
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i2i1 ik j1 j2 jk

A different notion of k-crossing is obtained by representing each block by a
complete graph [14, p. 85]. A k-nesting of P is a collection of k edges (i1, j1),
(i2, j2), . . . , (ik, jk) such that i1 < i2 < · · · < ik < jk < jk−1 < · · · < j1, as
represented below.

i2i1 ik jk j2 j1

A partition is k-noncrossing if it has no k-crossings, and k-nonnesting if it has
no k-nestings.

A variation of k-crossings (nestings), called enhanced k-crossings (nestings),
was also studied in [8]. One first adds a loop to every isolated point in the
standard representation of partitions. Then by allowing ik = j1 in a k-crossing,
we get an enhanced k-crossing; in particular, a partition avoiding enhanced 2-
crossings has parts of size 1 and 2 only. Similarly, by allowing ik = jk in the
definition of a k-nesting, we get an enhanced k-nesting.

Chen et al. gave in [8] a bijection between partitions of [n] and certain
“vacillating” tableaux of length 2n. Through this bijection, a partition is k-
noncrossing if and only if the corresponding tableau has height less than k,
and k-nonnesting if the tableau has width less than k. A simple symmetry
on tableaux then entails that k-noncrossing partitions of [n] are equinumerous
with k-nonnesting partitions of [n], for all values of k and n. A second bijec-
tion relates partitions to certain “hesitating” tableaux, in such a way the size
of the largest enhanced crossing (nesting) becomes the height (width) of the
tableau. This implies that partitions of [n] avoiding enhanced k-crossings are
equinumerous with partitions of [n] avoiding enhanced k-nestings.

The number C2(n) of 2-noncrossing partitions of [n] (usually called noncross-
ing partitions [16, 22]) is well-known to be the Catalan number Cn = 1

n+1

(

2n
n

)

.
For k > 2, the number of k-noncrossing partitions of [n] is not known, to the
extent of our knowledge. However, for any k, the number of k-noncrossing
matchings of [n] (that is, partitions in which all blocks have size 2) is known
to form a P-recursive sequence, that is, to satisfy a linear recurrence relation
with polynomial coefficients [11, 8]. In this paper, we enumerate 3-noncrossing
partitions of [n] (equivalently, 3-nonnesting partitions of [n]). We obtain for
C3(n) a (not so simple) closed form expression (Proposition 7) and a linear
recurrence relation with polynomial coefficients.
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Proposition 1. The number C3(n) of 3-noncrossing partitions is given by
C3 (0) = C3 (1) = 1, and for n ≥ 0,

9n (n + 3)C3 (n) − 2
(

5n2 + 32n + 42
)

C3 (n + 1)

+ (n + 7) (n + 6)C3 (n + 2) = 0. (1)

Equivalently, the associated generating function C(t) =
∑

n≥0 C3(n)tn satisfies

t2(1−9t)(1−t)
d2

dt2
C(t)+2t

(

5 − 27t + 18t2
) d

dt
C(t)+10 (2 − 3t) C(t) = 20. (2)

Finally, as n tends to infinity,

C3(n) ∼ 39 · 5
25

√
3

π

9n

n7
.

The first few values of the sequence C3(n), for n ≥ 0, are

1, 1, 2, 5, 15, 52, 202, 859, 3930, 19095, 97566, . . . .

A standard study [12, 24] of the above differential equation, which can
be done automatically using the Maple package DEtools, suggests that
C3(n) ∼ κ 9n/n7 for some positive constant κ. However, one needs the explicit
expression of C3(n) given in Section 2.5 to prove this statement and find the
value of κ. The above asymptotic behaviour is confirmed experimentally by
the computation of the first values of C3(n) (a few thousand values can be com-
puted rapidly using the package Gfun of Maple [21]). For instance, when
n = 50000, then n7C3(n)/9n ≃ 1694.9, while κ ≃ 1695.6.

As discussed in the last section of the paper, the above result might remain
isolated, as there is no (numerical) evidence that the generating function of
4-noncrossing partitions should be P-recursive.

We obtain a similar result for partitions avoiding enhanced 3-crossings (or
enhanced 3-nestings). The number of partitions of [n] avoiding enhanced 2-
crossings is easily seen to be the nth Motzkin number [23, Exercise 6.38].

Proposition 2. The number E3(n) of partitions of [n] having no enhanced
3-noncrossing is given by E3 (0) = E3 (1) = 1, and for n ≥ 0,

8 (n + 3) (n + 1) E3 (n) +
(

7n2 + 53n + 88
)

E3 (n + 1)

− (n + 8) (n + 7)E3 (n + 2) = 0.

Equivalently, the associated generating function E(t) =
∑

n≥0 E3(n)tn satisfies

t2 (1 + t) (1 − 8t)
d2

dt2
E(t) + 2t

(

6 − 23t − 20t2
) d

dt
E(t)

+ 6
(

5 − 7t − 4t2
)

E(t) = 30.

Finally, as n tends to infinity,

E3(n) ∼ 216 · 5
33

√
3

π

8n

n7
.



4 MIREILLE BOUSQUET-MÉLOU AND GUOCE XIN

The first few values of the sequence E3(n), for n ≥ 0, are

1, 1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, . . . .

Observe that C3(5) and E3(5) differ by 1: this difference comes from the parti-
tion 135−24 which has an enhanced 3-crossing but no 3-crossing (equivalently,
from the partition 15−24−3 which has an enhanced 3-nesting but no 3-nesting).
Again, the study of the differential equation suggests that E3(n) ∼ κ8n

n7 , for
some positive constant κ, but we need the explicit expression (33) of E3(n) to
prove this statement and find the value of κ. Numerically, we have found that
for n = 50000, n7E3(n)/8n ≃ 6687.3, while κ ≃ 6691.1.

The starting point of our proof of Proposition 1 is the above mentioned
bijection between partitions avoiding k + 1-crossings and vacillating tableaux
of height at most k. As described in [8], these tableaux can be easily encoded by
certain k-dimensional lattice walks. Let D be a subset of Zk. A D-vacillating
lattice walk of length n is a sequence of lattice points p0, p1, . . . , pn in D such
that for all i,

(i) p2i+1 = p2i or p2i+1 = p2i − ej for some coordinate vector ej =
(0, . . . , 0, 1, 0, . . . , 0),

(ii) p2i = p2i−1 or p2i = p2i−1 + ej for some ej.

We will be interested in two different domains D of Zk: the domain Qk = Nk

of points with non-negative integer coordinates and the Weyl chamber of type
Ck (with a slight change of coordinates) Wk = { (a1, a2, . . . , ak) ∈ Zk : a1 >
a2 > · · · > ak ≥ 0 }. Vacillating walks in Wk are related to k + 1-noncrossing
partitions as follows.

Theorem 3 (Chen et al. [8]). Let Ck(n) denote the number of k-noncrossing
partitions of [n]. Then Ck+1(n) equals the number of Wk-vacillating lattice
walks of length 2n starting and ending at (k − 1, k − 2, . . . , 0).

The proof of Proposition 1 goes as follows: using the reflection principle,
we first reduce the enumeration of vacillating walks in the Weyl chamber Wk

to that of vacillating walks in the non-negative domain Qk. This reduction
is valid for any k. We then focus on the case k = 2. We write a functional
equation satisfied by a 3-variable series that counts vacillating walks in Q2.
This equation is based on a simple recursive construction of the walks. It
is solved using a 2-dimensional version of the so-called kernel method. This
gives the generating function C(t) =

∑

C3(n)tn as the constant term in a
certain algebraic series. We then use the Lagrange inversion formula to find
an explicit expression of C3(n), and apply the creative telescoping of [20] to
obtain the recurrence relation. We finally derive from the expression of C3(n)
the asymptotic behaviour of these numbers. The proof of Proposition 2, given
in Section 3, is similar.
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2. Partitions with no 3-crossing

2.1. The reflection principle

Let δ = (k − 1, k − 2, . . . , 0) and let λ and µ be two lattice points in Wk.
Denote by wk(λ, µ, n) (respectively qk(λ, µ, n)) the number of Wk-vacillating
(respectively Qk-vacillating) lattice walks of length n starting at λ and ending
at µ. Thus Theorem 3 states that Ck+1(n) equals wk(δ, δ, 2n). The reflection
principle, in the vein of [10, 25], gives the following:

Proposition 4. For any starting and ending points λ and µ in Wk, the number
of Wk-vacillating walks going from λ to µ can be expressed in terms of the
number of Qk-vacillating walks as follows:

wk(λ, µ, n) =
∑

π∈Sk

(−1)πqk(λ, π(µ), n), (3)

where (−1)π is the sign of π and π(µ1, µ2, . . . , µk) = (µπ(1), µπ(2), . . . , µπ(k)).

Proof. Consider the set of hyperplanes H = { xi = xj : 1 ≤ i < j ≤ k }. The
reflection of the point (a1, . . . , ak) with respect to the hyperplane xi = xj is
simply obtained by exchanging the coordinates ai and aj . In particular, the set
of (positive) steps taken by vacillating walks, being {e1, . . . , ek}, is invariant
under such reflections. The same holds for the negative steps, and of course
for the “stay” step, 0. This implies that reflecting a Qk-vacillating walk with
respect to xi = xj gives another Qk-vacillating walk. Note that this is not true
when reflecting with respect to xi = 0 (since ei is transformed into −ei).

Define a total ordering on H. Take a Qk-vacillating walk w of length n going
from λ to π(µ), and assume it touches at least one hyperplane in H. Let m be
the first time it touches a hyperplane. Let xi = xj be the smallest hyperplane
it touches at time m. Reflect all steps of w after time m across xi = xj ; the
resulting walk w′ is a Qk-vacillating walk going from λ to (i, j)(π(µ)), where
(i, j) denotes the transposition that exchanges i and j. Moreover, w′ also (first)
touches H at time m, and the smallest hyperplane it touches at this time is
xi = xj .

The above transformation is a sign-reversing involution on the set of Qk-
vacillating paths that go from λ to π(µ), for some permutation π, and hit
one of the hyperplanes of H. In the right-hand side of (3), the contributions
of these walks cancel out. One is left with the walks that stay within the
Weyl chamber, and this happens only when π is the identity. The proposition
follows.

This proposition, combined with Theorem 3, gives the number of (k +
1)-noncrossing partitions of n as a linear combination of the numbers
qk(δ, π(δ), 2n). Hence, in order to count (k + 1)-noncrossing partitions, it suf-
fices to find a formula for qk(δ, µ, 2n), for certain ending points µ. This is what
we do below for k = 2.
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2.2. A functional equation

Let us specialize Theorem 3 and Proposition 4 to k = 2. This gives

C3(n) = w2((1, 0), (1, 0), 2n)

= q2((1, 0), (1, 0), 2n)− q2((1, 0), (0, 1), 2n). (4)

From now on, a lattice walk always means a Q2-vacillating lattice walk starting
at (1, 0), unless specified otherwise.

Let ai,j(n) := q2((1, 0), (i, j), n) be the number of lattice walks of length n
ending at (i, j). Let

Fe(x, y; t) =
∑

i,j,n≥0

ai,j(2n)xiyjt2n

and
Fo(x, y; t) =

∑

i,j,n≥0

ai,j(2n + 1)xiyjt2n+1

be respectively the generating functions of lattice walks of even and odd length.
These series are power series in t with coefficients in Q[x, y]. We will often work
in a slightly larger ring, namely the ring Q[x, 1/x, y, 1/y][[t]] of power series in
t whose coefficients are Laurent polynomials in x and y.

Now we find functional equations for Fe(x, y; t) and Fo(x, y; t). By appending
to an even length walk a west step (−1, 0), or a south step (0,−1), or a stay
step (0, 0), we obtain either an odd length walk (in Q2), or an even length walk
ending on the x-axis followed by a south step, or an even length walk ending
on the y-axis followed by a west step. This correspondence is easily seen to be
a bijection, and gives the following functional equation:

Fe(x, y; t)(1 + x̄ + ȳ)t = Fo(x, y; t) + ȳtHe(x; t) + x̄tVe(y; t), (5)

where x̄ = 1/x, ȳ = 1/y, and He(x; t) (respectively Ve(y; t)) is the generating
function of even lattice walks ending on the x-axis (respectively on the y-axis).

Similarly, by adding to an odd length walk an east step (1, 0), or a north
step (0, 1), or a stay step, we obtain an even length walk of positive length.
The above correspondence is a bijection and gives another functional equation:

Fo(x, y; t)(1 + x + y)t = Fe(x, y; t) − x. (6)

Solving equations (5) and (6) for Fe(x, y; t) and Fo(x, y; t) gives

Fe(x, y; t) =
x − t2ȳ(1 + x + y)He(x; t) − t2x̄(1 + x + y)Ve(y; t)

1 − t2(1 + x + y)(1 + x̄ + ȳ)
,

Fo(x, y; t) = t
x(1 + x̄ + ȳ) − x̄Ve(y; t) − ȳHe(x; t)

1 − t2(1 + x + y)(1 + x̄ + ȳ)
.

Since we are mostly interested in even length walks ending at (1, 0) and at (0, 1),
it suffices to determine the series He(x; t) and Ve(y; t), and hence to solve one
of the above two functional equations. We choose the one for Fo(x, y; t), which
is simpler.
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Proposition 5. The generating function Fo(x, y; t) of Q2-vacillating lattice
walks of odd length starting from (1, 0) is related to the generating functions of
even lattice walks of the same type ending on the x- or y-axis by

K(x, y; t)F (x, y; t) = xy + x2y + x2 − xH(x; t) − yV (y; t), (7)

where Fo(x, y; t) = tF (x, y; t2), V (y; t) = Ve(y; t2), H(x; t) = He(x; t2), and
K(x, y; t) is the kernel of the equation:

K(x, y; t) = xy − t(1 + x + y)(x + y + xy). (8)

From now on, we will very often omit the variable t in our notation. For
instance, we will write H(x) instead of H(x; t). Observe that (7) defines F (x, y)
uniquely as a series in t with coefficients in Q[x, y]. Indeed, setting y = 0 shows
that H(x) = x+t(1+x)F (x, 0) while setting x = 0 gives V (y) = t(1+y)F (0, y).

2.3. The kernel method

We are going to apply to (7) the obstinate kernel method that has already
been used in [4, 5] to solve similar equations. The classical kernel method
consists in coupling the variables x and y so as to cancel the kernel K(x, y).
This gives some “missing” information about the series V (y) and H(x) (see for
instance [6, 1]). In its obstinate version, the kernel method is combined with a
procedure that constructs and exploits several (related) couplings (x, y). This
procedure is essentially borrowed from [9], where similar functional equations
occur in a probabilistic context.

Let us start with the standard kernel method. First fix x, and consider the
kernel (8) as a quadratic polynomial in y. Only one of its roots, denoted Y0

below, is a power series in t:

Y0 =
1 − (x̄ + 3 + x)t −

√

(1 − (1 + x + x̄)t)2 − 4t

2 (1 + x̄) t

= (1 + x)t +
(1 + x)(1 + 3x + x2)

x
t2 + · · ·

The coefficients of this series are Laurent polynomials in x, as is easily seen
from the equation

Y0 = t(1 + x + Y0) (1 + (1 + x̄)Y0) . (9)

Setting y = Y0 in (7) gives a valid identity between series of Q[x, x̄][[t]], namely

xH(x) + Y0V (Y0) = xY0 + x2Y0 + x2.

The second root of the kernel is Y1 = x/Y0 = O(t−1), so that the expression
F (x, Y1) is not well-defined.

Now let (X, Y ) 6= (0, 0) be a pair of Laurent series in t with coefficients
in a field K such that K(X, Y ) = 0. Recall that K is quadratic in x and y.
In particular, the equation K(x, Y ) = 0 admits a second solution X ′. Define
Φ(X, Y ) = (X ′, Y ). Similarly, define Ψ(X, Y ) = (X, Y ′), where Y ′ is the
second solution of K(X, y) = 0. Note that Φ and Ψ are involutions. Moreover,



8 MIREILLE BOUSQUET-MÉLOU AND GUOCE XIN

with the kernel given by (8), one has Y ′ = X/Y and X ′ = Y/X. Let us
examine the action of Φ and Ψ on the pair (x, Y0): we obtain an orbit of
cardinality 6 (Figure 1).

(x, Y0)

Φ

ΦΨ

Ψ

Φ Ψ

(x̄Y0, Y0)

(x̄Y0, x̄)

(x, Y1)

(x̄Y1, Y1)

(x̄Y1, x̄)

Figure 1. The orbit of (x, Y0) under the action of Φ and Ψ.

The 6 pairs of power series given in Figure 1 cancel the kernel, and we have
framed the ones that can be legally substituted for (x, y) in the main functional
equation (7). Denoting Y ≡ Y0, we thus obtain three equations relating the
unknown series H(x) and V (y):

xH(x) + Y V (Y ) = xY + x2Y + x2, (10)

x̄Y H(x̄Y ) + Y V (Y ) = x̄Y 2 + x̄2Y 3 + x̄2Y 2, (11)

x̄Y H(x̄Y ) + x̄V (x̄) = x̄2Y + x̄3Y 2 + x̄2Y 2. (12)

2.4. Positive and negative parts of power series

A simple linear combination of the above three equations (namely,
(10)−(11)+(12)) allows us to eliminate the terms V (Y ) and H(x̄Y ). We are
left with:

xH(x) + x̄V (x̄) = x2 + (x̄2 + x + x2)Y + (x̄3 − x̄)Y 2 − x̄2Y 3.

Since xH(x) contains only positive powers of x and x̄V (x̄) contains only neg-
ative powers of x, we have characterized the series H(x) and V (y).

Proposition 6. The series H(x) and V (y) counting Q2-vacillating walks of
even length starting at (1, 0) and ending on the x-axis and on the y-axis satisfy

xH(x) = PT
x

(

x2 + (x̄2 + x + x2)Y + (x̄3 − x̄)Y 2 − x̄2Y 3
)

,

x̄V (x̄) = NT
x

(

x2 + (x̄2 + x + x2)Y + (x̄3 − x̄)Y 2 − x̄2Y 3
)

,

where the operator PTx (respectively NTx) extracts positive (respectively nega-
tive) powers of x in series of Q[x, x̄][[t]].

One may then go back to (5–6) to obtain expressions of the series Fe(x, y; t)
and Fo(x, y; t). However, our main concern in this note is the number C3(n)
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of 3-noncrossing partitions of [n]. Going back to (4), we find that C3(n) is
determined by the following three equations:

C3(n) = q2((1, 0), (1, 0), 2n)− q2((1, 0), (0, 1), 2n),

q2((1, 0), (1, 0), 2n) = [xtn] H(x) = [x2tn] xH(x),

q2((1, 0), (0, 1), 2n) = [ytn] V (y) = [x̄2tn] x̄V (x̄).

Using Proposition 6, we obtain the generating function C(t) of 3-noncrossing
partitions:

C(t) = CT
x

(x̄2 − x2)
(

x2 + (x̄2 + x + x2)Y + (x̄3 − x̄)Y 2 − x̄2Y 3
)

, (13)

where the operator CTx extracts the constant term in x of series in Q[x, x̄][[t]].
Observe that Y (x) = xY (x̄). This implies that for all k ∈ N and ℓ ∈ Z,

[xℓ]Y (x)k = [xℓ−k]Y (x̄)k = [xk−ℓ]Y (x)k, that is, CT
x

(x−ℓY k) = CT
x

(xℓ−kY k).

This allows us to rewrite (13) using “only” six terms:

C(t) = 1 + CT
x

(

(x̄1 − x4)Y + (x̄5 − x̄)Y 2 − (x̄4 − x0)Y 3
)

.

The above equation says that C(t) is the constant term of an algebraic function.
By a very general theory [17], C(t) is D-finite. That is, it satisfies a linear
differential equation with polynomial coefficients. In the next section, we show
that C(t) satisfies the equation (2) (or, equivalently, the P-recurrence (1)). Note
that this recurrence can be easily guessed using the Maple package Gfun:
indeed, the first 15 values of C3(n) already yield the correct recursion.

2.5. The Lagrange inversion formula and creative telescoping

From now on, several routes lead to the recurrence relation of Proposition 1,
depending on how much software one is willing to use. We present here the one
that we believe to be the shortest. Starting from (9), the Lagrange inversion
formula gives [23, Thm. 5.4.2]:

[tn] CT
x

(xℓY k) =
∑

j∈Z

an(ℓ, k, j) with an(ℓ, k, j) =
k

n

(

n

j

)(

n

j + k

)(

2j + k

j − ℓ

)

.

(14)
By convention, the binomial coefficient

(

a
b

)

is zero unless 0 ≤ b ≤ a. Hence for
n ≥ 1,

C3(n) =
∑

j∈Z

(an(−1, 1, j) − an(4, 1, j) + an(−5, 2, j − 1) − an(−1, 2, j − 1)

−an(−4, 3, j − 1) + an(0, 3, j − 1)) . (15)

Of course, we could replace all occurrences of j−1 by j in the above expression,
but this results in a bigger final formula.
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Proposition 7. For n ≥ 1, the number of 3-noncrossing partitions of [n] is

C3(n) =
n
∑

j=1

4(n − 1)! n! (2j)!

(j − 1)! j! (j + 1)! (j + 4)! (n − j)! (n − j + 2)!
P (j, n)

with

P (j, n) = 24 + 18 n + (5 − 13 n) j + (11 n + 20) j2

+ (10 n − 2) j3 + (4 n − 11) j4 − 6 j5.

Proof of the recurrence relation of Proposition 1. We finally ap-
ply to the above expression Zeilberger’s algorithm for creative telescop-
ing [20, Ch. 6] (we used the Maple package Ekhad, available from
http://www.math.rutgers.edu/∼zeilberg/programsAB.html). This gives a re-
currence relation for the sequence C3(n): for n ≥ 2,

9n(n − 2)(n − 3)
(

4n2 + 15n + 17
)

C3(n − 3)

− (n − 2)
(

76n4 + 373n3 + 572n2 + 203n − 144
)

C3(n − 2)

+ (n + 3)
(

44n4 + 189n3 + 227n2 + 30n − 160
)

C3(n − 1)

− (n + 5)(n + 4)(n + 3)
(

4n2 + 7n + 6
)

C3(n) = 0.

The initial conditions are C3(0) = C3(1) = 1. (There is no need to define
C3(−1), because of the factor (n−2) in the coefficient of C3(n−3).) It is then
very simple to check that the sequence defined by these two initial conditions
and the three term recursion of Proposition 1 satisfies also the above four term
recursion. This can be rephrased by saying that (1) is a right factor of the
four term recursion obtained via creative telescoping. More precisely, applying
to (1) the operator

(n + 1)
(

4 n2 + 39 n + 98
)

− (n + 6)
(

4 n2 + 31 n + 63
)

N,

where N is the shift operator replacing n by n+1, gives the four term recursion
(with n replaced by n + 3).

It is worth noting that though the sequence {C3(n) : n ∈ N} =
{w2((1, 0), (1, 0), 2n) : n ∈ N} satisfies a simple recurrence of order 2 (given
by (1)), experimenting with the package Gfun suggests that the sequences
{q2((1, 0), (1, 0), 2n) : n ∈ N} and {q2((1, 0), (0, 1), 2n) : n ∈ N} satisfy more
complicated recurrences of order 3.

2.6. Asymptotics

Finally, we will derive from the expression (15) of C3(n) the asymptotic
behaviour of this sequence, as stated in Proposition 1. For any fixed values of
k and ℓ, with k ≥ 1, we consider the numbers an(ℓ, k, j) defined by (14). For
the sake of simplicity, we denote them by an(j), and introduce the numbers

bn(j) =

(

n

j

)(

n

j + k

)(

2j + k

j − ℓ

)

,
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so that an(j) = k bn(j)/n. Let Bn =
∑

j bn(j). The sum runs over j ∈
[ℓ+, n− k], where ℓ+ = max(ℓ, 0). Below, we often consider j as a real variable
running in that interval. The number bn(j) is then defined in terms of the
Gamma function rather than in terms of factorials. We will show that Bn

admits, for any N , an expansion of the form

Bn = 9n

(

N
∑

i=1

ci

ni
+ O(n−N−1)

)

, (16)

where the coefficients ci depend on k and ℓ, and explain how to obtain these
coefficients. We follow the standards steps for estimating sums of positive terms
that are described, for instance, in [2, Section 3]. We begin with a unimodality
property of the numbers bn(j).

Lemma 8 (Unimodality). For n large enough, the sequence bn(j), for j ∈
[ℓ+, n − k], is unimodal, and its maximum is reached in the interval [2n/3 −
k/2 − 1/2, 2n/3 − k/2 − 1/3].

Proof. One has

qn(j) :=
bn(j)

bn(j + 1)

=
1

(n − j)(n − j − k)

(j + 1)(j + k + 1)

2j + k + 1

(j − ℓ + 1)(j + k + ℓ + 1)

2j + k + 2
.

Each of these three factors is easily seen to be an increasing function of j on the
relevant interval. Moreover, for n large enough, qn(ℓ+) < 1 while qn(n−k−1) >
1. Let j0 be the smallest value of j such that qn(j) ≥ 1. Then bn(j) < bn(j +1)
for j < j0 and bn(j) ≥ bn(j + 1) for j ≥ j0. We have thus proved unimodality.
Solving qn(x) = 1 for x helps to locate the mode:

x =
2n

3
− 5 + 6k

12
+ O(1/n).

It is then easy to check that qn(2n/3−k/2−1/2) < 1 and qn(2n/3−k/2−1/3) >
1 for n large enough.

The second step of the proof reduces the range of summation.

Lemma 9 (A smaller range). Let ǫ ∈ (0, 1/6). Then for all m,

Bn =
∑

|j−2n/3|≤n1/2+ǫ

bn(j) + o(9nn−m).

Proof. Let j = 2n/3 ± n1/2+ǫ. The Stirling formula gives

bn(j) =

(

3

2

)5/2
9n

(πn)3/2
e−9n2ǫ/2(1 + o(1)) = o(9nn−m) (17)
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for all m (the details of the calculation are given in greater detail below, in the
proof of Lemma 10). Thus by Lemma 8,

∑

|j−2n/3|>n1/2+ǫ

bn(j) ≤ n
(

bn(2n/3 − n1/2+ǫ) + bn(2n/3 + n1/2+ǫ)
)

= o(9nn−m).

The result follows.

A first order estimate of bn(j), generalizing (17), suffices to obtain, upon
summing over j, an estimate of Bn of the form (16) with N = 1. However,
numerous cancellations occur when summing the 6 terms an(ℓ, k, j) in the
expression (15) of C3(n). This explains why we have to work out a longer
expansion of the numbers bj(n) and Bn.

Lemma 10 (Expansion of bj(n)). Let ǫ ∈ (0, 1/6). Write j = 2n/3 + r with
r = s

√
n and |s| ≤ nǫ. Then for all N ≥ 1,

bn(j) =

(

n

j

)(

n

j + k

)(

2j + k

j − ℓ

)

=

(

3

2

)5/2
9n

(πn)3/2
e−9r2/(2n)

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(3ǫ−1/2))

)

where ci(s) is a polynomial in k, ℓ and s, of degree 3i in s. Moreover, ci is
an even [odd] function of s if i is even [odd]. In particular, c0(s) = 1. This
expansion is uniform in s.

Proof. Note that we simply want to prove the existence of an expansion of
the above form. The coefficients can be obtained routinely using (preferably)
a computer algebra system. In what follows, (ci)i≥0 stands for a sequence of
real numbers such that c0 = 1. The actual value of ci may change from one
formula to another. Similarly, (ci(s))i≥0 denotes a sequence of polynomials in
s such that c0(s) = 1, having the parity property stated in the lemma.

We start from the Stirling expansion of the Gamma function: for all N ≥ 1,

Γ(n + 1) = nn
√

2πn e−n

(

N−1
∑

i=0

ci

ni
+ O(n−N)

)

. (18)

This gives, for j = 2n/3 + r, with r = s
√

n, and for any N ,

Γ(j + 1) = 2jj

√

πn

3
e−j

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(ǫ−1/2))

)

(19)

for some polynomials ci(s) of degree i in s. This estimate is uniform in s.
Similarly,

Γ(n − j + 1) = (n − j)n−j

√

2πn

3
ej−n

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(ǫ−1/2))

)

, (20)
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for some polynomials ci(s) of degree i in s. Now

log
nn

jj(n − j)n−j
= log

3n

2j
− 9r2

4n
−
∑

i≥2

3i ri+1

i(i + 1)ni

(

1 − (−1/2)i
)

= log
3n

2j
− 9r2

4n
−

N−1
∑

i=1

ci(s)

ni/2
+ O(n2ǫ+N(ǫ−1/2)),

for some polynomials ci(s) of degree i + 2 in s. Observe that (i + 2)/(i/2) ≤ 6
for i ≥ 1. Hence

nn

jj(n − j)n−j
=

3n

2j
e−9r2/(4n) exp

(

−
N−1
∑

i=1

ci(s)

ni/2
+ O(n2ǫ+N(ǫ−1/2))

)

=
3n

2j
e−9r2/(4n)

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(3ǫ−1/2))

)

, (21)

for polynomials ci(s) of degree 3i in s. Putting together (18–21), one obtains,
uniformly in s:

(

n

j

)

=
3

2
√

πn

3n

2j
e−9r2/(4n)

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(3ǫ−1/2))

)

, (22)

for polynomials ci(s) of degree 3i in s.
Similarly,

(

n

j + k

)

=
3

2
√

πn

3n

2j+k
e−9r2/(4n)

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(3ǫ−1/2))

)

, (23)

with the same degree condition on the polynomials ci(s). Finally,

(

2j + k

j − l

)

=

√

3

2πn
22j+k

(

N−1
∑

i=0

ci(s)

ni/2
+ O(nN(ǫ−1/2))

)

(24)

for polynomials ci(s) of degree i in s. Putting together (22–24), we obtain the
estimate of bn(j) given in the lemma.

It remains to sum our estimates of bn(j) for values of j such that |j−2n/3| ≤
n1/2+ǫ.

Proposition 11 (Expansion of Bn). For all N ≥ 1,

Bn =
∑

j

(

n

j

)(

n

j + k

)(

2j + k

j − ℓ

)

=

(

3

2

)5/2
9n

π3/2n

(

N−1
∑

i=0

1

ni

∫

R
c2i(s)e

−9s2/2ds + O(n−N)

)
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where the polynomials ci(s), depending on k and ℓ, are those of Lemma 10. In
particular, as c0(s) = 1,

Bn(j) =
33/2

4π

9n

n
(1 + O(1/n)) .

Proof. We start from Lemma 9, and combine it with the uniform expansion
of Lemma 10. We need to estimate sums of the following type, for i ∈ N:

∑

|j−2n/3|≤n1/2+ǫ

(

j − 2n/3√
n

)i

e−9(j−2n/3)2/(2n).

Using the Euler-MacLaurin summation formula [19, Eq. (5.62)], one obtains,
for all m ≥ 1,

1√
n

∑

|j−2n/3|≤n1/2+ǫ

(

j − 2n/3√
n

)i

e−9(j−2n/3)2/(2n) =

∫

R
sie−9s2/2ds + o(n−m).

The above integral vanishes if i is odd, and can be expressed in terms of the
Gamma function otherwise. This gives the estimate of Proposition 11, but
with a rest of order nN(6ǫ−1). However, this expansion is valid for all N , and
for all ǫ > 0. From this, the rest can be seen to be of order n−N .

With the strategy described above (and Maple...), we have obtained the
expansion of Bn to the order n−6. Given that an(j) ≡ an(ℓ, k, j) = k bn(j)/n,
this gives the expansion of

∑

j an(ℓ, k, j) to the order n−7:

∑

j

an(ℓ, k, j) =
33/2

4π

9n

n2

(

5
∑

i=0

ci

(4n)i
+ O(1/n6)

)

.

The coefficients of this expansion are too big to be reported here for generic
values of k and ℓ (apart from c0 = k). We simply give the values of ci for the
6 pairs (ℓ, k) that are involved in the expression (15) of C3(n):

(ℓ, k) c0 c1 c2 c3 c4 c5

(−1, 1) 1 −7 37 −184 871 −4087 +
(4, 1) 1 −127 8317 −381904 14034391 −444126847 −

(−5, 2) 2 −230 13682 −573416 19338062 −564941270 +
(−1, 2) 2 −38 434 −4136 36302 −305558 −
(−4, 3) 3 −237 9831 −293664 7227813 −157405197 −
(0, 3) 3 −165 4863 −106104 1959573 −32693205 +

Each pair (ℓ, k) contributes in the expression of C3(n) with a weight ±1, de-
pending on the sign indicated on the corresponding line of the above table.
One observes that the first 5 terms cancel, which leaves

C3(n) =
33/2

4π

9n

n2

(

4199040

(4n)5
+ O(1/n6)

)

.

This completes the proof of Proposition 1.
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2.7. Other starting points

So far, we have focused on the enumeration of Q2-vacillating walks starting
at (1, 0). However, our approach works just as well for other starting points, or
for combinations of starting points. Let A(x, y) be the generating function of
starting points. For instance, A(x, y) = xiyj corresponds to starting at (i, j),
while A(x, y) = 1/(1 − x) corresponds to starting anywhere on the x-axis.

Then a calculation similar to that of Section 2.2 gives the following functional
equation

K(x, y; t)F A(x, y; t) = (x + y + xy)A(x, y) − xHA(x; t) − yV A(y; t),

where F A, HA, and V A are the analogues of F , H and V . Specializing A(x, y)
to x gives back (7). The kernel method of Section 2.3 now gives

xHA(x) + x̄V A(x̄) = (x + Y + xY )A (x, Y ) −
(

x̄Y + Y + x̄Y 2
)

A (x̄Y, Y )

+
(

x̄Y + x̄ + x̄2Y
)

A (x̄Y, x̄) .

Thus if A is a rational function (and in particular if A(x, y) = xiyj), then
HA(x), V A(x), and F A(x, y) are all D-finite.

3. Partitions with no enhanced 3-crossing

Our approach for counting 3-noncrossing partitions can be easily adapted
to the enumeration of partitions avoiding enhanced 3-crossings. As discussed
in [8], partitions of [n] avoiding enhanced k + 1-crossings are in bijection with
hesitating tableaux of height at most k. In turn, these hesitating tableaux
are in one-to-one correspondence with certain Wk-hesitating lattice walks. A
hesitating lattice walk satisfies the following walking rules: when pairing every
two steps from the beginning, each pair of steps has one of the following three
types: i) a stay step followed by an ei step, ii) a −ei step followed by a stay
step, iii) an ei step followed by a −ej step.

Then partitions of [n] avoiding enhanced k+1-crossings are in bijection with
Wk-hesitating walks of length 2n starting and ending at (k− 1, . . . , 2, 1, 0). As
before, Wk denotes the Weyl chamber { (a1, a2, . . . , ak) ∈ Zk : a1 > a2 > · · · >
ak ≥ 0 }.

For convenience, all notations we used for vacillating walks will be recycled
for hesitating walks. Thus δ = (k−1, k−2, . . . , 0), and for two lattice points λ
and µ in Wk, we denote by wk(λ, µ, n) (respectively qk(λ, µ, n)) the number of
Wk-hesitating (respectively Qk-hesitating) lattice walks of length n starting at
λ and ending at µ. A careful investigation shows that the reflection principle
“works” for hesitating lattice walks.

Proposition 12. For any starting and ending points λ and µ in Wk, the
number of Wk-hesitating walks going from λ to µ can be expressed in terms of
the number of Qk-hesitating walks as follows:

wk(λ, µ, n) =
∑

π∈Sk

(−1)πqk(λ, π(µ), n),
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where (−1)π is the sign of π and π(µ1, µ2, . . . , µk) = (µπ(1), µπ(2), . . . , µπ(k)).

Proof. The key property here is that the set of pairs of steps that are allowed
for a hesitating walk is left invariant when reflecting either one, or both steps
with respect to the hyperplane xi = xj . This is clearly seen by abbreviating
the three types of step pairs as (0, +), (−, 0) and (+,−), and recalling that the
above reflection exchanges the ith and jth coordinates (equivalently, the unit
vectors ei and ej). The rest of the argument copies the proof of Proposition 4.

Let us now focus on the case k = 2. The connection between W2-hesitating
walks and partitions avoiding enhanced 3-crossings entails

E3(n) = w2((1, 0), (1, 0), 2n) = q2((1, 0), (1, 0), 2n)− q2((1, 0), (0, 1), 2n). (25)

Let us write a functional equation counting Q2-hesitating walks that start from
(1, 0). Let ai,j(n) := q2((1, 0), (i, j), 2n) be the number of such walks having
length 2n and ending at (i, j). Let

F (x, y; t) =
∑

i,j,n

ai,j(2n)xiyjtn

be the associated generating function. Then by appending to an (even length)
walk an allowed pair of steps, we obtain the following functional equation:

(x + y + x̄ + ȳ + (x + y)(x̄ + ȳ)) tF (x, y; t)

= F (x, y; t) − x + H(x; t)(ȳ + xȳ)t + V (y; t)(x̄ + x̄y)t,

where H(x; t) (respectively V (y; t)) is the generating function of even lattice
walks ending on the x-axis (respectively y-axis). This functional equation can
be rewritten as

K(x, y; t)F (x, y; t) = x2y − x(1 + x)tH(x; t) − y(1 + y)tV (y; t), (26)

where K(x, y; t) is the kernel given by

K(x, y; t) = xy − t(1 + x)(1 + y)(x + y).

From now on, we will very often omit the variable t in our notation.
Let us now solve (26). First fix x, and consider the kernel as a quadratic

polynomial in y. Only one of its roots, denoted Y below, is a formal series in
t:

Y =
1 − tx̄(1 + x)2 −

√

(1 − tx̄(1 + x)2)2 − 4tx̄(1 + x)2

2 (1 + x̄) t
= O(t).

The coefficients of this series are Laurent polynomials in x, as is easily seen
from the equation

Y = t(1 + x̄)(1 + Y )(x + Y ). (27)

The second root of the kernel is Y1 = x/Y = O(t−1), and the expression
F (x, Y1) is not well-defined.
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Observe that the new kernel only differs from (8) by a term txy. Hence, as
in the case of vacillating walks, the product of the roots is x, and the kernel
is symmetric in x and y. This implies that the diagram of the roots, obtained
by taking iteratively conjugates, is still given by Figure 1. Again, the 3 pairs
of power series that are framed can be legally substituted for (x, y) in the
functional equation (26). We thus obtain:

x(1 + x)tH(x) + Y (1 + Y )tV (Y ) = x2Y, (28)

x̄Y (1 + x̄Y )tH(x̄Y ) + Y (1 + Y )tV (Y ) = x̄2Y 3, (29)

x̄Y (1 + x̄Y )tH(x̄Y ) + x̄(1 + x̄)tV (x̄) = x̄3Y 2. (30)

Now (28)−(29)+(30) gives

x(1 + x)tH (x) + x̄(1 + x̄)tV (x̄) = x2Y − x̄2Y 3 + x̄3Y 2.

By (27), the series Y/t/(1+x) is a formal series in t with coefficients in Q[x, x̄].
Thus we can divide the above identity by t(1+x), and then extract the positive
and negative parts.

Proposition 13. The series H(x) and V (y), which count Q2-hesitating walks
of even length ending on the x-axis and on the y-axis, satisfy

xH(x) = PT
x

Y

t(1 + x)
(x2 − x̄2Y 2 + x̄3Y ),

x̄2V (x̄) = NT
x

Y

t(1 + x)
(x2 − x̄2Y 2 + x̄3Y ).

Let us now return to the number E3(n) of partitions of [n] avoiding enhanced
3-crossings, given by (25). The generating function E(t) of these numbers is:

E(t) = CT
x

Y (x̄2 − x3)

t(1 + x)
(x2 − x̄2Y 2 + x̄3Y ). (31)

Observe that, again, Y (x) = xY (x̄). Therefore, for all k ∈ N and ℓ ∈ Z,

CT
x

(

x̄ℓY k

t(1 + x)

)

= CT
x

(

xℓ−k+1Y k

t(1 + x)

)

.

This allows us to rewrite (31) with only non-negative powers of x:

E(t) = CT
x

Y

t(1 + x)

(

1 − x5 − (x2 − x)Y 2 + (x4 − 1)Y
)

. (32)

The above equation shows that E(t) is the constant term of an algebraic func-
tion. It is thus D-finite. Let us now compute a linear differential equation it
satisfies (equivalently, a P-recursion for its coefficients).

Starting from (27), the Lagrange inversion formula gives

[tn] CT
x

xℓY k

t(1 + x)
=
∑

j∈Z

an(ℓ, k, j)
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with

an(ℓ, k, j) =
k

n + 1

(

n + 1

j

)(

n + 1

j + k

)(

n

j − ℓ

)

.

From (32), we obtain

E3(n) =
∑

j∈Z

(an(0, 1, j)− an(5, 1, j) − an(2, 3, j) + an(1, 3, j)

+an(4, 2, j) − an(0, 2, j)) . (33)

This gives an explicit (but not so simple) expression of E3(n), to which we
apply Zeilberger’s algorithm for creative telescoping. This proves that, for
n ≥ 1,

8n (n − 1) (n − 2)E3(n − 3) + 3
(

5n2 + 17n + 8
)

(n − 1)E3(n − 2)

+ 3 (n + 1) (2n + 5) (n + 4) E3(n − 1) − (n + 6) (n + 5) (n + 4) E3(n) = 0,

with initial condition E3(0) = 1. It is then straightforward to check that the
sequence defined in Proposition 2 also satisfies the above P-recursion. More
precisely, applying the operator (n+2)+(n+7)N to the recursion of Proposition
2 gives the above four term recursion.

The study of the aymptotic behaviour of E3(n) parallels what we did for
C3(n). The maximum of an(ℓ, k, j) is now reached for j ∼ n/2 rather than
2n/3. Using the same notations as in Section 2.6, we obtain

Bn(j) ∼ 8n+1

√
3πn

,

but again, numerous cancellations occur when we sum the 6 required estimates,
so as to obtain the estimate of Proposition 2.

4. Final comments

It is natural to ask whether for any k, the sequence Ck(n) that counts k-
noncrossing partitions of [n] is P-recursive. Our opinion is that this is unlikely,
at least for k = 4. This is based on the following observations:

(1) We have written a functional equation for Q3-vacillating walks, with
kernel

K(x, y, z; t) = 1 − t(1 + x + y + z)(1 + x̄ + ȳ + z̄).

Using this equation, we have computed the first 100 numbers in the
sequence C4(n). This is sufficient for the Maple package Gfun to
discover a P-recursion of order 8 with coefficients of degree 8, if it
exists. But no such recursion has been found.

(2) Let us solve the above kernel in z. The two roots Z0 and Z1 are related
by

Z0Z1 =
1 + x + y

1 + x̄ + ȳ
. (34)
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Since the kernel is symmetric in x, y and z, the diagram of the roots,
obtained by taking conjugates, is generated by the transformations Φi

for i = 1, 2, 3, where

Φ3(x, y, z) =

(

x, y, z̄
1 + x + y

1 + x̄ + ȳ

)

and Φ1 and Φ2 are defined similarly. But these transformations now
generate an infinite diagram. There exist in the literature a few signs
indicating that a finite (respectively infinite) diagram is related to a
D-finite (respectively non-D-finite) generating function. First of all,
a number of equations with a finite diagram have been solved, and
shown to have a D-finite solution [3, 4, 5, 18]. Furthermore, the only
problem with an infinite diagram that has been thoroughly studied
has been proved to be non-D-finite [7]. Finally, the conjectural link
between finite diagrams and D-finite series is confirmed by a systematic
numerical study of walks in the quarter plane [18].

The above paragraphs can be copied verbatim for W3-hesitating walks and
partitions avoiding enhanced 4-crossings. The kernel is now

K(x, y, z) = 1 − t(x + y + z + x̄ + ȳ + z̄ + (x + y + z)(x̄ + ȳ + z̄)),

but the roots Z0 and Z1 are still related by (34).

As recalled in the introduction, the sequence Mk(n) that counts k-
noncrossing matchings of [n] (that is, partitions in which all blocks have size
2) is D-finite for all k. More precisely, the associated exponential generating
function,

Mk(t) =
∑

n

Mk(n)
t2n

(2n)!

is given by [11]:

Mk(t) = det (Ii−j(2t) − Ii+j(2t))1≤i,j≤k−1 ,

where

In(2t) =
∑

j≥0

tn+2j

j!(n + j)!

is the hyperbolic Bessel function of the first kind of order n. The existence
of such a closed form implies that Mk(t) is D-finite [17]. The specialization
to matchings of the bijection between partitions and vacillating walks results
in a bijection between k + 1-noncrossing matchings and oscillating tableaux of
height at most k, or, equivalently, Wk-oscillating walks. These walks can take
any (positive or negative) unit step ±ei, without any parity restriction. The
kernel of the equation ruling the enumeration of such walks is simply

K(x1, . . . , xk) = 1 − t(x1 + · · ·+ xk + x̄1 + · · · + x̄k).
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The diagram of the roots, generated by the Φi, for 1 ≤ i ≤ k, where
Φi(x1, . . . , xk) = (x1, . . . , xi−1, x̄i, xi+1, . . . , xk), is now finite (the group of trans-
formations Φi being itself isomorphic to (Z/2Z)k). This, again, confirms the
possible connection between finite diagrams and D-finite series.
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