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SYMBOLIC SUMMATION ASSISTS COMBINATORICS

CARSTEN SCHNEIDER

Abstract. We present symbolic summation tools in the context of difference fields that
help scientists in practical problem solving. Throughout this article we present multi-sum
examples which are related to combinatorial problems.

1. Introduction

At the 56th Séminaire Lotharingien de Combinatoire I presented in a series of talks the
summation package Sigma [Sch04b]. Starting with Karr’s summation algorithm [Kar81,
Kar85, Sch00], the discrete analogue of Risch’s integration algorithm [Ris69, Ris70], I
developed various extensions and generalizations to tackle non-trivial multi-sum problems.
In this survey article, which is based on this presentation, I illustrate all these new features.
The article consists of three parts. Each of them can be considered independently.

In the first part we introduce the summation principles of Sigma: “telescoping”, “creative
telescoping” [Zei91], and “solving recurrences”. Multi-sum examples from [AU85, GKP94,
Zha99, FK00, DPSW06a, DPSW06b, PS07] illustrate all these techniques.

In the second part we explain how the summation principles are formulated in difference
fields and we demonstrate how the underlying algorithms work. We present our algorithmic
extensions [Sch01, Sch04c, Sch04a, Sch05e, Sch05a, Sch05d, Sch05b, KS06b, KS06a, Sch07].

In the third part we show how Sigma can be applied for even a wider class of multi-sums
which covers big parts of ∂-finite and holonomic sequences [Zei90, CS98, Chy00]. Examples
from [AS65, PWZ96, APS05] illustrate how our methods [Sch05c] find recurrences for such
sums. We demonstrate that one can derive also differential equations with these techniques.

I am very grateful to Volker Strehl and Christian Krattenthaler who gave me the oppor-
tunity to present my work at the Séminaire Lotharingien de Combinatoire. I would like to
thank the referee for his very careful reading and his valuable comments and suggestions.

Part 1. Symbolic summation methods and applications

Inspired by [PWZ96] the summation package Sigma is based on the paradigms of tele-
scoping, creative telescoping, and solving recurrences. We show in the frame of Sigma how
one can apply these summation principles to attack multi-sum problems.

2. The summation principles

Given an indefinite sum S(n) =

n
∑

k=0

f(k) we are interested in solving the following problem.

Telescoping

Given f(k); find g(k) such that

g(k + 1)− g(k) = f(k). (1.1)

Then summing (1.1) over k (under the assumption that (1.1) holds for all 0 ≤ k ≤ n) gives

g(n + 1)− g(0) =
n
∑

k=0

f(k).
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There are various algorithms on the market for such input sequences f(k), like Gosper’s
algorithm [Gos78] for hypergeometric terms1; for theoretical insight see [Pau95] and for
implementations see [PS95a, Koe95, ACGL04]. Similarly, there are variations for q-hy-
pergeometric terms [Koo93, PR97, BK99], or generalizations for the mixed case [BP99].

More generally, the summation package Sigma can deal with rational expressions in terms
of indefinite nested sums and products. The underlying telescoping algorithms [Sch04c,
Sch05b, Sch07] extend Karr’s summation algorithm [Kar81].

Sigma session. Consider the indefinite sum S(n) =
∑n

k=m f(k) with the summand

f(k) =
[

k
m

]

q
qk
∑k

i=1
qi

1−qi ;
[

k
m

]

q
denotes the q-binomial. Then we can simplify S(n) as

follows. After loading Sigma into the computer algebra system Mathematica

In[1]:= << Sigma.m
Sigma - A summation package by Carsten Schneider c© RISC-Linz

we insert S(n)(=mySum):

In[2]:= mySum = SigmaSum[SigmaqBinomial[q,k, m]SigmaPower[q, k]

SigmaSum[SigmaPower[q, i]/(1 − SigmaPower[q, i]), {i, 1, k}], {k, m, n}]

Out[2]=

n
∑

k=m

[

k

m

]

q

qk
k
∑

i=1

qi

1− qi

Sigma manual. The basic functions SigmaSum and SigmaProduct are used to describe
all indefinite nested sums and products that can be expressed in our setting. Additional
functions, like SigmaPower, SigmaBinomial, or SigmaqBinomial are just shortcuts. E.g.,

our q-binomial can be described by
[

k
m

]

q
=
∏k

i=m+1

1−
Qi

j=1 q

1−
Qi

j=1 qi/qm
for k ≥ m.

Then we find the following closed form by the function call

In[3]:= SigmaReduce[mySum]

Out[3]=
qm

(qqm − 1)2

(

q(qn − qm) + (qqm − 1)(qqn − 1)

n
∑

i=1

qi

1− qi

)

[

n

m

]

q

Internally, Sigma computes

g(k) =
qm − qk

(qqm − 1)2

(

− qqm + (1− qqm)
k
∑

i=1

qi

1− qi

)

[

k

m

]

q

which satisfies (1.1) for all m ≤ k ≤ n. Note that the correctness can be verified

independently of the computation steps. Namely, by using the relations
∑k+1

i=1
qi

1−qi =
∑k

i=1
qi

1−qi + qqk

1−qqk and
[

k+1
m

]

q
= 1−qqk

1−qqk/qm

[

k
m

]

q
we can verify with simple polynomial arith-

metic that (1.1) holds for all 0 ≤ m ≤ k ≤ n. Hence summing (1.1) over k produces

n
∑

k=m

[

k

m

]

q

qk
k
∑

i=1

qi

1− qi
= qm

[

n + 1

m + 1

]

q

(

n+1
∑

i=1

qi

1− qi
− qm+1

1− qm+1

)

which is equivalent to Out[3]; compare identity [AU85, (2.5)]. Multiplying by 1− q and
sending q to 1 yields the identity [GKP94, (6.70)]

n
∑

k=m

(

k
m

)

Hk =

(

n + 1

m + 1

)

(

Hn+1 −
1

m + 1

)

where Hk =
∑k

i=1
1
i

denotes the harmonic numbers.

1f(k) is hypergeometric (resp. q-hypergeometric), if f(k+1)
f(k) is a rational function in k (resp. in qk).
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In most cases one fails to find such a g(k). If f(k) depends on an additional parameter
n, we can apply a more flexible paradigm.

Zeilberger’s creative telescoping

Given f(n, k) and δ ∈ N; find c0(n), . . . , cδ(n), free of k, and g(n, k) such that

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ cδ(n)f(n + δ, k). (1.2)

With creative telescoping we can attack definite sums as follows: Given a sum S(n) =
∑m

k=0 f(n, k) where m might depend linearly on n, find a solution c0(n), . . . , cδ(n) and
g(n, k) of (1.2); here one usually starts with δ = 0 (which is nothing else than telescoping),
and increases δ step by step. If one finds such a solution for (1.2) which holds for all
0 ≤ k ≤ n, then summing (1.2) over k gives a recurrence relation of the form

q(n) = c0(n)S(n) + · · ·+ cδ(n)S(n + δ).

As it turns out, all the telescoping algorithms mentioned above can be extended to
creative telescoping. This was observed the first time by Zeilberger [Zei91] for Gosper’s
algorithm; for theoretical insight see [PS95b] and for implementations and additional details
see [PS95a, ACGL04, Ger04]. For the q-hypergeometric, the mixed and the holonomic case
see [Koo93, PR97, BK99, BP99, Chy00]; different generalizations can be found in [M06].

Moreover, as recognized in [Sch00], Karr’s algorithm and all our extensions can be used
for creative telescoping; see Sections 6.2 and 7.1.3.

Sigma session. Consider the definite sum S(n) given by

In[4]:= hSum =

n
∑

k=0

(

n

k

)

Hk;

where the binomial
(

n
k

)

is interpreted as
∏k

i=1
n+1−i

i
. By typing in

In[5]:= hRec = GenerateRecurrence[hSum]

Out[5]= {4(1 + n)SUM[n]− 2(3 + 2n)SUM[n+ 1] + (2 + n)SUM[n+ 2] == 1}

we compute the recurrence hRec for S(n) =SUM[n]. Note that by the proof certificate

In[6]:= CreativeTelescoping[hSum][[2]]

Out[6]= {4 (1+ n),−2 (3+ 2 n), 2 + n,
(1+n) (−2+k−n+(2 k−2 k

2+k n)Hk) (nk))
(1−k+n) (2−k+n) }

we can conclude that the recurrence is correct: Given f(n, k) :=
(

n
k

)

Hk and

c0(n) := 4 (1 + n), c1(n) := −2 (3 + 2 n), c2(n) := 2 + n,

g(n, k) :=
(1+n) (−2+k−n+(2 k−2k2+k n)Hk) (n

k))

(1−k+n) (2−k+n)
,

(1.3)

we show that (1.2) with δ = 2 holds for all 0 ≤ k ≤ n as follows. Represent in (1.2)
the expressions g(n, k + 1) and f(n + i, k) for i = 1, 2 in terms of Hk and

(

n
k

)

. This is

possible by Hk+1 = Hk + 1/(k + 1) and the fact that
(

n
k

)

is hypergeometric in n and k.

E.g., we can write g(n, k +1) = (n+1)(nHk−2kHk−1)
n−k+1

. Given this representation, verify (1.2)
by polynomial arithmetic. Summing (1.2) over k gives Out[5].

Similarly, we can compute for the following q-version of S(n) a recurrence:

In[7]:= qhSum =

n
∑

k=0

qk(k−1)/2

[

n

k

]

q

k
∑

i=1

qi

1 − qi
;

In[8]:= qhRec = GenerateRecurrence[qhSum]

Out[8]= {
(

qn+1 + q
) (

qn+1 − 1
) (

qn+1 + 1
)

SUM[n]−
(

qn+1 + 1
) (

2qn+2 − q− 1
)

SUM[n+ 1] +
(

qn+2 − 1
)

SUM[n+ 2] == −q2n+3}
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Remark. For the general input class of Sigma no criteria are known which guarantee the
existence of a creative telescoping solution (1.2) for sufficiently large δ. So far there is only
one way: try it out. For (q-)hypergeometric terms necessary and sufficient conditions are
available; see [Abr03, AL05, CHM05]. Restricting to proper hypergeometric terms upper
bounds for δ are known which guarantee solutions; see [PWZ96, Thm. 4.4.1] and [MZ05].

In many applications a recurrence is just the desired result, see e.g. Out[13]. If one is
interested in a more explicit representation, the following attempt might help.

Solving recurrences

Given a recurrence
a0(n)S(n) + · · ·+ ar(n)S(n + r) = f(n); (1.4)

find a particular solution p(n) and solutions of the homogeneous version, say h1(n), . . . , hd(n).

If we compute sufficiently2 many solutions, we can find constants k0, . . . , kd such that
S(i) = k0h0(i) + · · ·+ kdhd(i) + p(i) holds for i ∈ {0, . . . , d− 1}. This implies that

S(n) = k0h0(n) + · · ·+ kdhd(n) + p(n), n ≥ 0. (1.5)

Sigma session. We solve the recurrence hRec from Out[5] by typing in

In[9]:= recSol = SolveRecurrence[hRec[[1]],SUM[n]]

Out[9]= {{0,
n
∏

i=1

2}, {0,
(

n
∏

i=1

2

)

n
∑

i=1

1

i
}, {1,−

(

n
∏

i=1

2

)

n
∑

i=1

1

i
∏i

j=1
2
}}

Sigma manual. The 0s in the first two entries tell us that h0(n) = 2n and h1(n) =
2n
∑n

i=1 Hn are solutions of the homogeneous version of hRec, and the 1 in the third
entry indicates that p(n) = −2n

∑n
i=1

1
2ii

is a particular solution of hRec itself.

Finally, using the first two initial values we combine the solutions in the form (1.5):

In[10]:= FindLinearCombination[recSol,hSum, 2]

Out[10]=

(

n
∏

i=1

2

)

n
∑

i=1

1

i
−
(

n
∏

i=1

2

)

n
∑

i=1

1

i
∏i

j=1
2

This leads to [PS03, Equ. (39)]
n
∑

k=0

(

n

k

)

Hk = 2nHn − 2n
n
∑

i=1

1

2ii
. (1.6)

Completely analogously we solve the recurrence qhRec from Out[8] by the function call

In[11]:= recSol = SolveRecurrence[qhRec[[1]],SUM[n]]

Out[11]= {{0,
n
∏

i=1

q + qi

q
}, {0,

(

n
∏

i=1

q + qi

q

)

n
∑

i=1

qi

1− qi
}, {1,−

(

n
∏

i=1

q + qi

q

)

n
∑

i=1

qi

(1− qi)
∏i

j=1

q+qj

q

}}

and find the following combination for our sum In[7]:

In[12]:= FindLinearCombination[recSol,qhSum, 2]

Out[12]=

(

n
∏

i=1

q + qi

q

)

n
∑

i=1

qi

1− qi
−
(

n
∏

i=1

q + qi

q

)

n
∑

i=1

qi

(1− qi)
∏i

j=1

q+qj

q

With the q-shifted factorial (−1, q)n =
∏n

i=1
q+qi

q
we arrive at the identity

n
∑

k=0

q

(

k
2

)

[

n

k

]

q

k
∑

i=1

qi

1− qi
= (−1, q)n

(

n
∑

i=1

qi

1− qi
−

n
∑

i=1

qi

(−1, q)i(1− qi)

)

; (1.7)

note that we rediscover identity (1.6) by multiplying it with 1− q and sending q to 1.

2If a0(n), ar(n) have only finitely many zeros, there are exactly r linearly independent solutions of (1.4)
with f(n) = 0, see [PWZ96, Thm. 8.2.1]; here we identify sequences, if they agree from some point on.
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In Sigma the coefficients ai(n) and the inhomogeneous part f(n) of the recurrence (1.4)
can be rational expressions in terms of nested sums and products. Given such a recur-
rence, we can find the class of d’Alembertian solutions [AP94], a subclass of Liouvillian
solutions [HS99]; typical examples are given in Out[9] and Out[11]. Here the crucial point
is that those solutions are indefinite nested sums and products which fit in the input class
of our telescoping algorithms. Hence, given such a representation (1.5), Sigma can help to
simplify its right-hand side. If we are lucky, we can end up with a “closed form” for S(n).

The interaction of the different summation principles for a definite sum can be summa-
rized by the Sigma-summation spiral [Sch04b]:

definite sum

creative telescoping

��
simplified solutions

combination of solutions

22

recurrence

solving

uu
d’Alembertian solutions

telescoping

ZZ

3. Applications of the Sigma-summation spiral

Subsequently, we will illustrate all the aspects from Section 2 by concrete examples.

3.1. Quadratic Padé approximation. In [Wei05] A. Weideman looks for polynomials
rn(x), sn(x) and tn(x) with degree at most n such that

rn(x) (log x)2 + sn(x) log(x) + tn(x) = O((x− 1)3n+2). (1.8)

He discovers that those polynomials can be written as a linear combination of the polyno-
mials

An(x) =
n
∑

k=0

(

n

k

)3

(−x)k, Bn(x) =
n
∑

k=0

[ d

dk

(

n

k

)3
]

(−x)k, Cn(x) =
n
∑

k=0

[ d2

dk2

(

n

k

)3
]

(−x)k.

Evaluations at x = 1 and n = 0, 1, ... show empirically how the polynomials An(x), Bn(x)
and Cn(x) must be combined to get rn(x), sn(x) and tn(x). To obtain a rigorous proof for
the guessed representation, it turns out that one has to show the key identity

n
∑

k=0

(−1)k

(

n

k

)3
(

3(Hn−k −Hk)
2 + H

(2)
n−k + H

(2)
k

)

= 0; (1.9)

H
(2)
k =

∑k
i=1

1
i2

are the harmonic numbers of second order. In [DPSW06a] Sigma played
the main role in proving this identity: Namely, we can compute the following recurrence

In[13]:= GenerateRecurrence[

n
∑

k=0

(−1)k
(

n

k

)3
(

3(Hn−k − Hk)
2 + H

(2)
n−k + H

(2)
k

)

]

Out[13]= {(n + 2)2SUM[n + 2] + 3(3n + 2)(3n+ 4)SUM[n] == 0}

for the left-hand side of (1.9). Since this sum is zero for n = 0, 1, it must evaluate to
zero for all n ≥ 0. We remark that together with the creative telescoping solution given
in [DPSW06a] the correctness of the recurrence can be checked as for (1.3).
Later C. Krattenthaler [Kra03] derived a non-algorithmic proof based on differentiation
and hypergeometric transformations. W. Chu [Chu05] presents different techniques to
show (1.9).
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As illustrated in [DPSW06b] we cannot only prove identity (1.9), but we can discover
it. To be more precise, we find with our machinery the identities

2n
∑

k=0

(−1)k

(

2n

k

)3

HkH2n−k = (3n)!(−1)n

n!n!n!

1

12

(

3H2
n − 6HnH3n + 3H2

3n + H(2)
n

+ 12H2n(H2n + Hn −H3n) + 4H
(2)
2n − 3H

(2)
3n

)

, (1.10)
2n
∑

k=0

(−1)k

(

2n

k

)3

H2
k = (3n)!(−1)n

n!n!n!

1

12

(

3H2
n − 6HnH3n + 3H2

3n −H(2)
n

+ 12H2n(H2n + Hn −H3n) + 2H
(2)
2n − 3H

(2)
3n

)

, (1.11)
2n
∑

k=0

(−1)k

(

2n

k

)3

H
(2)
k =

1

2
(3n)!(−1)n

n!n!n!
(H(2)

n + H
(2)
2n ). (1.12)

Then it is easy to see that the right combination of these sums, see (1.9), evaluates to zero.
E.g., we discover identity (1.10) as follows. Given the sum

In[14]:= mySum =

2n
∑

k=0

(−1)k
(

2n

k

)3

HkH2n−k;

we compute the recurrence relation

In[15]:= rec = GenerateRecurrence[mySum, SimplifyByExt → DepthNumber][[1]]

Out[15]= −18(n+ 1)2(n + 2)(2n + 1)2(2n + 3)(3n + 1)2(3n + 2)2(108n3 + 495n2 + 752n+ 378)SUM[n] +

6(n+ 1)3(n+ 2)(2n+ 1)(2n+ 3)(3888n7 + 29484n6 + 92250n5 + 153369n4 + 145192n3 + 77561n2 +

21420n+ 2316)SUM[n+ 1] + 2(n+ 1)3(n+ 2)4(2n+ 1)(2n+ 3)2(108n3 + 171n2 + 86n+ 13)SUM[n+ 2]

==
(

2519424n11 + 26873856n10 + 126618552n9 + 347114322n8 + 613953513n7 + 734258088n6 +

604816090n5+342574260n4+130558875n3+31842320n2+4469856n+273984

)

2n
∑

k=0

(−1)k
(

2n

k

)3

Sigma manual. With the option SimplifyByExt→DepthNumber we search for a re-
currence with sum extensions which have less objects in the summand than the input
summand. In our case we find a recurrence of order two by using the sum e(n) =
∑2n

k=0(−1)k
(

2n
k

)3
. Without this option, i.e., without using e(n), we compute a rather big

recurrence relation of order 3.

Since the automatically found sum e(n) is definite, it does not fit into the input class of
recurrences that Sigma can handle. But with our machinery, as described above, we find

e(n) = (−1)n(3n)!

n!3
which is a particular instance of Dixon’s identity [Dix03]; see also [PWZ96,

Example 6.4.4]. Hence, we can simplify the recurrence by replacing e(n) with (−1)n(3n)!

n!3
:

In[16]:= rec = rec/.
∑2n

k=0(−1)k
(2n

k

)3 → (−1)n(3n)!
n!3

;

This recurrence can be handled with Sigma. Namely, we compute the solutions

In[17]:= recSol = SolveRecurrence[rec, SUM[n]]

Out[17]= {{0, (−1)n(3n)!
n!3

}, {0, (−1)n(3n)!
n!3

n
∑

k=1

108k3 − 153k2 + 68k− 10

k(2k− 1)(3k− 2)(3k− 1)
}, {1, 1

18

(−1)n(3n)!
n!3

n
X

k=1

−4860k
6+13770k

5
−15849k

4+9504k
3
−3148k

2+550k−40+(k(2k−1)(3k−2)(3k−1)(108k3−153k
2+68k−10))

k
X

i=1

108i
3
−153i

2+68i−10
i(2i−1)(3i−2)(3i−1)

k2(2k−1)2(3k−2)2(3k−1)2 }}

Here it is important to mention that this type of solutions (d’Alembertian solutions) are
just in the input class of Sigma’s telescoping algorithms; we get the following simplification:

In[18]:= recSol = SigmaReduce[recSol,n, SimplifyByExt → Depth]

Out[18]= {{0, (−1)n(3n)!
n!3

}, {0, (−1)n(3n)!
n!3

n
∑

k=1

108k3 − 153k2 + 68k− 10

k(2k− 1)(3k− 2)(3k− 1)
},

{1, 1

36

(−1)n(3n)!
n!3

((

n
∑

i=1

108i
3
−153i

2+68i−10
i(2i−1)(3i−2)(3i−1)

)2

+

n
∑

k=1

1944k
6
−5508k

5+6399k
4
−3960k

3+1388k
2
−260k+20

k2(2k−1)2(3k−2)2(3k−1)2

)

}}
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Sigma manual. With the option SimplifyByExt→Depth we look for appropriate sum
extensions in order to reduce the nested depth; see Section 7.1. E.g., the second sum
in Out[18] has been computed in order to represent the expression in Out[17] by single
nested sums.

Using the first two initial values we combine the solutions to represent In[14] as follows.

In[19]:= closedForm = FindLinearCombination[recSol,mySum, 2]

Out[19]=
1

36

(−1)n(3n)!
n!3

((

n
∑

i=1

108i
3
−153i

2+68i−10
i(2i−1)(3i−2)(3i−1)

)2

+
n
∑

k=1

1944k
6
−5508k

5+6399k
4
−3960k

3+1388k
2
−260k+20

k2(2k−1)2(3k−2)2(3k−1)2

)

Next, we split our sums so that their denominators consist of irreducible polynomials:

In[20]:= closedForm = SigmaReduce[closedForm,n, SimpleSumRepresentation → True]

Out[20]=
(−1)n(3n)!

n!3

(

− 1

4

n
∑

k=1

1

(3k− 1)2
− 1

4

n
∑

k=1

1

(3k− 2)2
+

1

3

n
∑

k=1

1

(2k− 1)2
+

5

36

n
∑

k=1

1

k2
+

(

5

6

n
∑

k=1

1

k
+

n
∑

k=1

1

2k− 1
− 1

2

n
∑

k=1

1

2k− 2
− 1

12

n
∑

k=1

1

2k− 3

)2)

By some cosmetic rewriting we end up with the right-hand side of (1.10):

In[21]:= closedForm = SigmaReduce[closedForm,n, Tower → {Hn, H2n, H(2)
n , H

(2)
2n , H3n, H

(2)
3n }]

Out[21]=
(−1)n(3n)!

n!3
1

12

(

3H2n + 12H2nHn + 12H22n + 3H23n + (−6Hn − 12H2n) H3n + H(2)
n + 4H

(2)
2n − 3H

(2)
3n

)

3.2. A variation of Calkin’s sum. Alternating versions of Calkin’s identity [Cal94]
n
∑

k=0

( k
∑

j=0

(

n

j

))3

=
n

2
8n + 8n − 3 n

4
2n

(

2 n

n

)

(1.13)

have been considered in [Zha99]. We supplement this collection with the following sum.

In[22]:= mySum =

2n
∑

k=0

(−1)k
(

k
∑

j=0

(

2n

j

)

)3

;

Following our Sigma-spiral we compute a recurrence

In[23]:= rec = GenerateRecurrence[mySum][[1]]

Out[23]= = (2n + 3)(11n+ 3)(n + 1)2SUM[n+ 2] +
(

946n4 + 2799n3 + 2907n2 + 1252n+ 180
)

SUM[n+ 1] +

96n(3n+1)(3n+2)(11n+14)SUM[n] == 16
(

5005n4 + 16897n3 + 20210n2 + 9884n+ 1512
)

(

2n
∑

k=0

(

2n

k

)

)3

In[24]:= rec = rec/.
(

∑2n
k=0

(2n
k

)

)3

→ 64n;

solve the recurrence in terms of d’Alembertian solutions

In[25]:= recSol = SolveRecurrence[rec, SUM[n]]

Out[25]= {{0,
n
∏

i=2

−32(i− 1)

2i− 1
}, {0,

(

n
∏

i=2

−32(i− 1)

2i− 1

)

n
∑

i=1

i3(11i− 8)
∏i

j=1

3(2j−1)(3j−2)(3j−1)
32j3

(2i− 1)(3i− 2)(3i− 1)
}, {1, 64

n

2
}}

and combine the solutions

In[26]:= FindLinearCombination[recSol,mySum, n, 2, MinInitialValue → 1]

Out[26]=
64n

2
+

64

3

(

n
∏

i=2

−32(i− 1)

2i− 1

)

n
∑

i=1

i3(11i− 8)
∏i

j=1

3(2j−1)(3j−2)(3j−1)
32j3

(2i− 1)(3i− 2)(3i− 1)

Finally, after some rewriting we arrive, for n ≥ 1, at the identity

2 n
∑

k=0

(−1)k

( k
∑

j=0

(

2 n

j

))3

=
64n

2
− (−1)n

16 n

64n

(

2 n
n

)

n−1
∑

i=0

(3 + 11 i)

(

2 i

i

)2(
3 i

i

)

64−i. (1.14)
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3.3. A problem from the SLC’06. At the SLC’06 Wenchang Chu showed in his talk
various harmonic number identities of the type (1.10), (1.11), (1.12) which he produced
by differentiating the Dougall-Dixon formula. Since he could not find an evaluation of the

sum S(n) :=
∑2n+1

k=0 (−1)k
(

2n+1
k

)3
H

(2)
k in terms of harmonic numbers, he posed this problem

to Sigma. After some seconds of computations Sigma could give the following answer:

S(n) =
(−1)n(6n + 1)(n!)3(6n)!

2(2n + 1)2((2n)!)3(3n)!

(

− 2 +
n
∑

i=1

(72i2 + 36i + 5)((2i)!)3((3i)!)2

2i(2i + 1)(6i + 1)(i!)6(6i)!

)

; (1.15)

observe that the sum on the right-hand side cannot be expressed by harmonic numbers.
The derivation of the identity is based on the Sigma-spiral: First we compute a recurrence

− 12(2n + 3)(6n + 5)(6n + 7)(n + 1)3S(n)− 4(2n + 3)3(n + 1)3S(n + 1)

= 3(3n + 1)(3n + 2)
(

72n2 + 180n + 113
) (−1)n(3n)!

(n!)3
,

then we solve this recurrence and find its right-hand side.

3.4. A problem from rhombus tilings. Define

Sn :=

n−1
∑

k=0

(−1)n+k(n + k + 4)!Hk+1

(k + 2)!(k + 3)!(n− k − 1)!
and Tn :=

n−1
∑

k=0

(−1)k(n + k + 4)!

(k + 1)(k + 2)!2(n− k − 1)!
.

Then in about four pages of highly non-trivial transformations the following evaluation has
been found in [FK00, Lemma 26]:

Sn =
−5− 3n

(1 + n)(2 + n)
− 2Hn + (−1)n

(5 + 2n− 2n2 − n3

(1 + n)(2 + n)
+ 2(2 + n)Hn

)

,

Tn = 1− 9n− 9n2 − 2n3 + 2(1 + n)(2 + n)(3 + n)Hn − (−1)n.

This finally shows that Sn + (1−(−1)n(n+2))n!
(n+3)!

Tn = (−1)n(n + 2)− 2.

As illustrated in [Sch04b] Sigma finds these results in a straightforward manner by fol-
lowing the Sigma-spiral. Here it is worthwhile to mention that (−1)n pops up with the
algebraic relation ((−1)n)2 = 1; for more details see Sections 5.2 and 7.3.

3.5. Evaluation of a quadruple sum. In 2004 Doron Zeilberger sent an email to Robin
Pemantle and Herbert Wilf with Cc to me:

Robin and Herb,
I am willing to bet that Carsten Schneider’s SIGMA package for handling sums with harmonic
numbers (among others) can do it in a jiffy. I am Cc-ing this to Carsten.
Carsten: please do it, and Cc- the answer to me. -Doron

Of course, I and Sigma were eager to win the bet for Doron. So, “we” looked at Robin’s
problem attached in this email which reads as follows:

I have a sum that, when I evaluate numerically, looks suspiciously like it comes out to exactly 1.
Is there a way I can automatically decide this? The sum may be written in many ways, but one is:

S :=
∞
∑

j,k=1

Hj(Hk+1 − 1)

jk(k + 1)(j + k)
.

One week later I could reply [Sch06]: the sum is not exactly 1, but

S = −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5) = 0.999222... (1.16)

Whereas the full details are given in [PS07] we present here only the Sigma-part. Take the
truncated version

S(a, b) =
b
∑

k=1

Hk+1 − 1

k(k + 1)

a
∑

j=1

Hj

j(j + k)
,
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i.e., S = lima,b→∞ S(a, b). Then Sigma can find a more appropriate sum representation of
the inner sum following the Sigma-spiral. Namely, we compute a recurrence

In[27]:= rec = GenerateRecurrence[

a
∑

j=1

Hj

j(j + k)
, k][[1]]

Out[27]= (k + 1)(a + k + 1)(a + k + 2)k2SUM[k]− (k + 1)2(a + k + 1)(a + k + 2)(2k+ 1)SUM[k+ 1] +

(k + 1)2(k + 2)(a + k + 1)(a + k + 2)SUM[k+ 2] == a(a + k + 2) + (−a− 1)(k + 1)Ha

solve the recurrence

In[28]:= recSol = SolveRecurrence[rec, SUM[k]]

Out[28]= {{0, 1
k
}, {0,

∑k

i=2
1

i−1

k
}, {1, 1

k

k
∑

j=2

∑j

i=2

−(a+1)Ha(i−1)+a(a+i)
(−1+i)(−1+a+i)(a+i)

j− 1
}

simplify the solutions

In[29]:= SigmaReduce[recSol,k, SimpleSumRepresentation → True, SimplifyByExt → Depth]

Out[29]= {{0, 1
k
}, {0,

∑k

i=2
1

i−1

k
}, {1, Ha

(a + 1)k
− (kHa − 1)

k2

k
∑

i=1

1

a + i
− 1

k

k
∑

i=1

1

i

i
∑

j=1

1

a + j
+

∑k

i=2
1

(i−1)2 +
(
∑k

i=2
1

i−1

)2

2k
}

and combine the solutions to get the identity
a
∑

j=1

Hj

j(j + k)
=

kH2
k − 2Hk + kH

(2)
k + 2kH

(2)
a

2k2
− (kHa − 1)

k2

k
∑

i=1

1

a + i
− 1

k

k
∑

i=1

1

i

i
∑

j=1

1

a + j
.

By simple limit considerations it follows lima,b→∞ S ′(a, b) = S for

S ′(a, b) :=

b
∑

k=1

Hk+1 − 1

k(k + 1)

kH2
k − 2Hk + kH

(2)
k + 2kH

(2)
a

2k2
.

Sigma can simplify S ′(a, b) further to S ′(a, b) = A(a, b) + B(a, b) + C(a, b) where

A(a, b) :=
1

2(b + 1)2

(

6Hb + 4bHb + 4H2
b + 3bH2

b + H3
b + bH3

b − 6bH (2)
a

+ 2HbH
(2)
a + 2bHbH

(2)
a − 2H

(2)
b − 7bH

(2)
b + HbH

(2)
b + bHbH

(2)
b

)

,

B(a, b) :=− 2b2

(b + 1)2

(

H(2)
a + H

(2)
b

)

,

C(a, b) :=(H(2)
a − 1)

b
∑

i=1

Hi

i2
−

b
∑

i=1

H2
i

i3
+

1

2

b
∑

i=1

H3
i

i2
+

1

2

b
∑

i=1

HiH
(2)
i

i2
.

Since lima,b→∞ A(a, b) = 0 and lima,b→∞ B(a, b) = −4ζ(2), we get

S = lim
a,b→∞

S ′(a, b) = −4ζ(2) + lim
a,b→∞

C(a, b).

Now we can use, e.g. [BG96, FS98], and find
∑∞

i=1
Hi

i2
= 2ζ(3),

∑∞
i=1

H2
i

i3
= −ζ(2)ζ(3) +

7
2
ζ(5),

∑∞
i=1

H3
i

i2
= ζ(2)ζ(3)+10ζ(5), and

∑∞
i=1

HiH
(2)
i

i2
= ζ(2)ζ(3)+ζ(5). This proves (1.16).

In [PP05] a computer-free proof is given. Conversely, in [PS07] we show that the evalu-
ation of such sums can be handled by a more systematic approach to computer-proofs.
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Part 2. Summation in difference fields

This part is directed to readers, who are curious how Sigma works. In Sections 4–6 we
describe our (creative) telescoping method, which is the basis of all our extensions and
variations. By concrete examples we focus on two main aspects: First, we explain how
nested multi-sums can be formulated in the so-called ΠΣ∗-fields. Given these notions we
can specify precisely, what type of nested multi-sums Sigma can handle and where Sigma
might run into problems. Second, we demonstrate how the telescoping algorithm works.

Finally, in Section 7 we give an overview of all summation problems that Sigma can
handle.

4. Concrete examples for telescoping and creative telescoping

We illustrate the basic strategy of our (creative) telescoping method: (1) Rephrase the
problem in terms of difference fields, (2) apply the corresponding algorithm in the given
difference field, and (3) interpret this result to get a solution for the original problem. All
other algorithms, see Section 7, follow the same strategy.

4.1. A telescoping example. Given f(k) = Hk, find a solution for (1.1). In order to
accomplish this task, Sigma constructs a difference field in which the summation objects
and the action of the shift operator S w.r.t. k can be described properly. In our case, take
the rational function field F := Q(k)(h) over the rational numbers Q where h represents
Hk. Moreover, take the automorphism σ : F→ F defined by σ(c) = c for all c ∈ Q and

σ(k) = k + 1 ←→ S k = k + 1,

σ(h) = h +
1

k + 1
←→ S Hk = Hk +

1

k + 1
.

(2.1)

By construction σ reflects the action of the shift operator on k and Hk in the field F. In a
nutshell, our summation objects are represented in difference fields.

Definition. A difference field (F, σ) is a field F plus a field automorphism σ : F→ F; in
this article we restrict to fields of characteristic zero.

Next, we solve (1.1) in our difference field (F, σ), i.e., we look for a g ∈ F such that

σ(g)− g = h. (2.2)

In Section 6.1 we show how Sigma computes the solution

g = (h− 1)k ∈ F. (2.3)

Rephrasing the result in terms of our summation objects, we obtain the solution g(k) =
(Hk − 1)k for (1.1). By telescoping we get

∑n
k=1 Hk = (Hn+1 − 1)(n + 1).

Summarizing, telescoping (1.1) can be formulated in a difference field (F, σ) as follows:

Telescoping in difference fields

Given f ∈ F where f represents f(k); find g ∈ F with

σ(g)− g = f. (2.4)

4.2. A creative telescoping example. In order to get the solution (1.3), we proceed
as follows. First, we construct a difference field (F, σ) in which we can describe f(n, k) =
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(

n
k

)

Hk with the shift S in k. Namely, take the rational function field F := Q(n)(k)(h)(b)
with the automorphism σ : F→ F given by σ(c) = c for all c ∈ Q(n) and

σ(k) = k + 1 ←→ S k = k + 1,

σ(h) = h +
1

k + 1
←→ S Hk = Hk +

1

k + 1
,

σ(b) =
n− k

k + 1
b ←→ S

(

n

k

)

=
n− k

k + 1

(

n

k

)

.

(2.5)

Now observe that one can also represent f(n + i, k) for i ≥ 0 in F, e.g.,

f(n, k) = Hk

(

n

k

)

←→ h b =: f0

f(n + 1, k) =
(n + 1) Hk

(

n
k

)

n + 1− k
←→ (n + 1) h b

n + 1− k
=: f1

f(n + 2, k) =
(n + 1) (n + 2) Hk

(

n
k

)

(n + 1− k) (n + 2− k)
←→ (n + 1) (n + 2) h b

(n + 1− k) (n + 2− k)
=: f2.

(2.6)

Then the creative telescoping problem (1.2) with δ = 2 can be formulated in (F, σ) as
follows:
FIND c0, c1, c2 ∈ Q(n) and g ∈ F such that

σ(g)− g = c0f0 + c1f1 + c2f2. (2.7)

Sigma computes the solution

c0 := 4 (1 + n), c1 := −2 (3 + 2 n), c2 := 2 + n, g := (1+n) (−2+k−n+(2 k−2k2+k n)h) b)
(1−k+n) (2−k+n)

;

representing this result in terms of
(

n
k

)

and Hk gives (1.3).

Observe that the shift operator S and automorphism σ keep n fixed, i.e., n is a constant.
More generally, let (F, σ) be a difference field. Then the set of constants is defined by

constσF := {c ∈ F|σ(c) = c}.

Since constσF is a sub-field of F, we call constσF also the constant field of (F, σ); it is easy
to see that the rational numbers Q must be contained in constσF.
E.g., for the difference field (Q(k)(h), σ) the constant field is Q and for (Q(n)(k)(h), σ) the
constant field is Q(n); see Section 5.

For a given difference field (F, σ) with constant field K creative telescoping reads as
follows:

Creative telescoping in difference fields

Given f0, . . . , fδ ∈ F where fi corresponds to f(n + i, k); find ci ∈ K, not all zero, and g ∈ F

with
σ(g)− g = c0 f0 + · · ·+ cδ fδ. (2.8)

Subsequently we explain in details how the ideas from above can be handled by the
computer: we show how one can represent f(k) (resp. f(n + i, k) for i = 0 . . . δ) in a
difference field and we present an algorithm for (creative) telescoping. As it turns out, the
construction of an appropriate difference field and telescoping are closely related.
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5. A constructive theory of ΠΣ∗-extensions

In Sigma the automatic construction of difference fields relies on the fact that indefinite
nested sums and products can be adjoined step by step in form of difference field extensions.

Definition. Let (E, σ) and (F, σ′) be difference fields. We call (E, σ) a difference field
extension of (F, σ′) if E is a field extension of F and σ′(g) = σ(g) for all g ∈ F. Since σ′ and
σ agree on F, we do not distinguish between the two automorphisms σ and σ′ anymore.

We can construct a difference field for f(k) (resp. for f(n, k)) where we follow the rule
that inner objects of a sum or product come first. E.g., for f(n, k) = Hk

(

n
k

)

we start with

(Q(n), σ) where constσQ(n) = Q(n) and we adjoin the objects in the order
(1)→ k

(2)→ Hk
(3)→

(

n
k

)

as follows.

(1) k with Sk = k + 1: Take the rational function field Q(n)(k) and extend σ to the
automorphism σ : Q(n)(k)→ Q(n)(k) with σ(k) = k + 1. We obtain the difference field
(Q(n)(k), σ).

(2) Hk with SHk = Hk + 1
k+1

: Take the rational function field Q(n)(k)(h) and extend the
automorphism from σ : Q(n)(k)→ Q(n)(k) to σ : Q(n)(k)(h)→ Q(n)(k)(h) with σ(h) =
h + 1

k+1
. We get the difference field (Q(n)(k)(h), σ).

(3)
(

n
k

)

with S
(

n
k

)

= n−k
k+1

(

n
k

)

: Take the rational function field Q(n)(k)(h)(b) and construct

the difference field extension (Q(n)(k)(h)(b), σ) of (Q(n)(k)(h), σ) with σ(b) = n−k
k+1

b. We

arrive at the difference field (Q(n)(k)(h)(b), σ) with (2.5) and represent f(n, k) with h b.

Following this construction, one obtains difference fields in which one can formulate
rational expressions in terms of nested sums and products. There is only one drawback:

Life gets difficult when one wishes to tackle telescoping and creative telescoping;

see Technical remark 2. Thus, we refine our construction with Karr’s ΠΣ∗-theory [Kar81,
Kar85]: during the construction one is not allowed to extend the constant field.

Definition. A difference field extension (F(t), σ) of (F, σ) is called a Σ ∗-extension (resp. a
Π-extension) if t is transcendental over F, σ(t) = t + a (resp. σ(t) = a t) for some a ∈ F∗,
and constσF(t) = constσF. A ΠΣ∗-extension is a Π- or a Σ∗-extension. A ΠΣ∗-field
(K(t1) . . . (te), σ) over K is a tower of ΠΣ∗-extensions starting with the constant field K.

As it turns out, the extensions in (Q(n)(k)(h)(b), σ) are all ΠΣ∗-extensions (see below).
This means that constσQ(n)(k)(h)(b) = Q(n). In particular, (Q(n)(k)(h)(b), σ) is a ΠΣ∗-
field over Q(n). Similarly, (Q(k)(h)(b), σ) with (2.5) is a ΠΣ∗-field over Q. Moreover, all
the examples in Part 1, except in Sections 3.2 and 3.4, can be formalized in ΠΣ∗-fields.

Technical remark 1. Karr defines Σ-extensions [Kar81, Kar85] which are of the form
σ(t) = α t + β and which must satisfy rather technical side conditions. Restricting to the
sum case (α = 1), we obtain exactly the class of Σ∗-extensions. �

Subsequently, we present methods that construct a ΠΣ∗-field for a given expression in
terms of nested sums and products.

5.1. Σ∗-extensions. The following beautiful result is a direct consequence of Karr’s the-
ory [Kar81]. For an explicit proof see [Sch01, Cor. 2.2.4].

Σ-Theorem. Let (F(t), σ) be a difference field extension of (F, σ) with σ(t) = t + f for
some f ∈ F; note that t might be algebraic or transcendental over F. Then this extension
is a Σ∗-extension if and only if there is no g ∈ F with σ(g) = g + f .

With this result we can easily show that the constructed difference field (Q(k)(h), σ)
with (2.1) is a ΠΣ∗-field. Consider the difference field extension (Q(k), σ) of (Q, σ). Since
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Q is the constant field, there is no g ∈ Q with σ(g) = g + 1. Thus, (Q(k), σ) is a Σ∗-
extension of (Q, σ). Similarly, by using e.g. Gosper’s algorithm or the Sigma-package, one
can check that there is no g ∈ Q(k) with σ(g) = g + 1

k+1
. Hence, (Q(k)(h), σ) is a Σ∗-

extension of (Q(k)(h), σ). Analogously, one can check that (Q(n)(k)(h), σ) with (2.1) is a
tower of Σ∗-extensions.

Here is an example where the construction from above fails: We cannot construct a Σ∗-
extension (Q(k)(h)(t), σ) of (Q(k)(h), σ) with the shift-behavior σ(t) = t +h. This follows
by the Σ-Theorem and the fact that there is the solution (2.3) for σ(g)− g = h. Luckily,
there is no need to adjoin a new variable t: if we need t with σ(t) = t+h, then take t := g.

In general, suppose we are given a sum T (k) =
∑k

i=0 F (i) and a difference field (F, σ) in
which we can represent F (k) with f ∈ F. Due to the telescoping algorithm for ΠΣ∗-fields
(see Section 6), only the following two situations can occur during the construction of a
ΠΣ∗-field in which one can represent the sum T (k) with

T (k + 1) = T (k) + F (k + 1) :

(1) We find a t ∈ F with

σ(t) = t + σ(f). (2.9)

Then we can represent T (k) by t in F with the desired shift-behavior (2.9).
(2) We show that there is no t ∈ F with (2.9). Then by the Σ-Theorem we can adjoin the

sum T (k) in form of the Σ∗-extension (F(t), σ) of (F, σ) with (2.9).

SUMMARY: We can always represent a rational expression of indefinite nested sums in
form of a tower of Σ∗-extensions. Together with the telescoping algorithm for ΠΣ∗-fields,
see Section 6, the whole construction mechanism turns out to be algorithmic.

5.2. Π-extensions. For Π-extensions Karr provides the following result [Kar81, Thm. 2].

Π-Theorem. Let (F(t), σ) be a difference field extension of (F, σ) with t /∈ F and σ(t) = a t
for some a ∈ F∗; note that t might be algebraic or transcendental over F. Then this
extension is a Π-extension if and only if there are no r > 0 and g ∈ F∗ with

σ(g) = arg. (2.10)

Motivated by this result, Karr developed an algorithm [Kar81] which solves the following
problem: Given a ΠΣ∗-field (F, σ), decide if there are r > 0 and g ∈ F∗ with (2.10).
Summarizing, one can check algorithmically if an extension over a given ΠΣ∗-field is a
Π-extension.

E.g., consider the difference field (Q(n)(k)(h)(b), σ) from the beginning of Section 5.
Since (Q(n)(k)(h), σ) is a ΠΣ∗-field, we can apply Karr’s algorithm and show that there is
no g ∈ Q(n)(k)(h) and r > 0 with

σ(g) =

(

n− k

k + 1

)r

g.

Thus, by the Π-Theorem it follows that the difference field extension (Q(n)(k)(h)(b), σ) of
(Q(n)(k)(h), σ) is a Π-extension. Summarizing, we can represent our summand f(n, k) =
(

n
k

)

Hk by b h in the ΠΣ∗-field (Q(n)(k)(h)(b), σ) in a completely automatic fashion.
Finally, we compute the shift relations in (2.6) as follows. From (2.5) we get

S

(

n + 1

k

)

=
n + 1− k

k + 1

(

n + 1

k

)

.

With the algorithm from Section 6 we compute for

σ(g) =
n + 1− k

k + 1
g. (2.11)
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the general solution g = c (n+1)
n+1−k

b with c ∈ Q(n). Hence, we get
(

n+1
k

)

= c (n+1)
n+1−k

(

n
k

)

;

checking the initial value k = 0, shows that c = 1. Therefore we can represent
(

n+1
k

)

by

g, and we find (n+1)
n+1−k

(

n
k

)

Hk for f(n + 1, k). Similarly, we can proceed with f(n + 2, k).

Summarizing, we derive the ΠΣ∗-field (Q(n)(k)(h)(b), σ) with the representations (2.6)
completely algorithmically.

SUMMARY: Express a product in a given ΠΣ∗-field, or, if this is not possible, try to adjoin
it in the form of a Π-extension. But, be careful: This construction might fail!

E.g. we cannot express (−1)k with a Π-extension: for g = 1 and r = 2 we have
σ(g) = (−1)rg. Hence, by the Π-Theorem there is no Π-extension (Q(P ), σ) of (Q, σ)
with σ(P ) = −P. Note that such elements can be only expressed in rings, since we have
zero-divisors, like

(1− (−1)k)(1 + (−1)k) = (1− (−1)2k) = 0.

Luckily, a big class of products can be expressed by Π-extensions. E.g., in [Sch05d] we show
that any hypergeometric term can be represented by a Π-extension over the constant field;
there is only one exceptional case: a hypergeometric term which can be written in the form
r(n)αn where r(n) is a rational function and α is a root of unity; see, e.g., identity (2.22).

6. The basic algorithm

We present a simplified version [Sch05e] of Karr’s algorithm [Kar81].

6.1. Telescoping. Our algorithm finds the solution (2.3) for (2.2) in three reduction steps.

1. Denominator bounding: COMPUTE a polynomial d ∈ Q(k)[h]∗ such that

∀g ∈ Q(k)(h) : σ(g)− g = h ⇒ g d ∈ Q(k)[h].

Given such a denominator bound d ∈ Q(k)[h]∗, one only has to find the “numerator”, i.e.,

to find g′ ∈ Q(k)[h] with σ(g′

d
) − g′

d
= h. Observe that this is equivalent to finding all

solutions g′ of the first order linear difference equation

a1σ(g′) + a0g
′ = h (2.12)

for the given a1 = 1
σ(d)

and a0 = −1
d
. In our concrete case we compute the denomi-

nator bound d = 1; see [Bro00, Sch04a]. Thus (2.12) is nothing else than our original
problem (2.2) with g replaced by g′. We proceed with the second step.

2. Degree bounding: COMPUTE b ≥ 0 with the following property:

∀g ∈ Q(k)[h] : σ(g)− g = h ⇒ deg(g) ≤ b.

In our particular case we compute the degree bound b = 2; for more details see [Sch05a].

Technical remark 2. At this point we heavily depend on the fact that (Q(k)(h), σ) is a
Σ∗-extension of (Q(k), σ). We motivate this fact by the following considerations.
Suppose we are given a difference field extension (F(t), σ) of (F, σ) where t is transcendental
over F and σ(t) = α t + β for some α ∈ F∗ and β ∈ F; let f ∈ F(t). Then the following
holds:
If our extension is not a ΠΣ∗-extension and if there is a solution g0 ∈ F(t) for (2.4), then
there is no denominator bound and degree bound for (2.4).
This can be seen as follows. Since our extension is not a ΠΣ∗-extension, we can take a
v ∈ constσF(t) \ constσF, i.e., v ∈ F(t) \ F with σ(v) = v; observe that σ(vr) = σ(v)r = vr

for any r ≥ 0. Hence,

σ(g0 + vr)− (g0 + vr) = σ(g0)− g0 = f.
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Therefore we can increase in g0 +vr either the degree of the numerator or the degree of the
denominator (or both) by increasing r. Thus, either the denominator bound or the degree
bound cannot exist. Similarly, by taking 1/v we can guarantee that neither bound exists.
Conversely, if (F(t), σ) is a ΠΣ∗-extension of (F, σ), such bounds exist. Furthermore, they
can be computed, if (F, σ) is a ΠΣ∗-field; see [Kar81, Bro00, Sch04a, Sch05a]. �

3. Polynomial solutions: FIND all the coefficients in

g = g2 h2 + g1 h + g0 ∈ Q(k)[h] (2.13)

such that (2.2) holds. Graphically the computations can be illustrated as follows:
[

σ(g2)
(

h + 1
k+1

)2
+ σ(g1h + g0)

]

−
[

g2 h2 + g1h + g0

]

= h coeff. comp.

''OOOOOOOO

σ(g2)− g2 = 0
g2 = c ∈ Q

wwoooooooo

σ(g1 h + g0)− (g1 h + g0) = h− c
[2h(k+1)+1

(k+1)2

]

coeff. comp.
''OOOOOOOO

σ(g1)− g1 = 1− c 2
k+1

c = 0,
g1 = k + d

d ∈ Q
wwoooooooo

d = 0,
g0 = −k + e

e ∈ Q
← σ(g0)− g0 = −1− d 1

k+1

First, we plug the possible solution (2.13) into (2.2) and obtain the equation

[

σ(g2)
(

h +
1

k + 1

)2
+ σ(g1h + g0)

]

−
[

g2 h2 + g1h + g0

]

= h. (2.14)

By coefficient comparison of the leading terms we get the condition

σ(g2)− g2 = 0 (2.15)

for g2. This means that g2 = c ∈ Q where the constant c is not determined yet. We
substitute this partial result into (2.14) and get

σ(g1 h + g0)− (g1 h + g0) = h− c
[2h(k + 1) + 1

(k + 1)2

]

. (2.16)

Thus we have to find g0, g1 ∈ Q(k) and c ∈ Q with (2.16). We repeat this strategy: By
coefficient comparison of the leading terms in (2.16) we get the constraint

σ(g1)− g1 = 1− c 2
k+1

(2.17)

for g1 ∈ Q(k). Solving this problem we find the generic solution c = 0 and g1 = k + d for
some constant d ∈ Q. If we repeat these ideas, see the diagram, we obtain the constraint

σ(g0)− g0 = −1− d
1

k + 1
(2.18)

for g0 ∈ Q(k). This gives d = 0 and g0 = −k + e for some constant e ∈ Q. Hence, we
obtain the general solution g = kh− k + e with e ∈ Q; by setting e = 0, we arrive at (2.3).

Since we want to turn this reduction strategy into an algorithm, we need algorithms for
the “coefficient problems” (2.15),(2.17), and (2.18) in the difference field (Q(k), σ).

More generally, suppose we are given a ΠΣ∗-extension (F(t), σ) of (F, σ). Then solving
the telescoping problem (2.4) with our three reduction steps leads to coefficient problems
of the following form.

Given f1, . . . , fδ ∈ F, a0, a1 ∈ F; find all (c1, . . . , cδ) ∈ Kδ and h ∈ F with

a1 σ(h) − a0 h = c1 f1 + · · ·+ cδ fδ. (2.19)
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Technical remark 3. (1) Since V := {(c1, . . . , cδ, g) ∈ Kδ × F|(2.19) holds} is a vector
space over K with dimension ≤ δ +1, problem (2.19) can be solved by finding a basis of V.
(2) Let (F, σ) be itself a ΠΣ∗-field over K, i.e., F = K(t1) . . . (te) is a tower of ΠΣ∗-
extensions. Then in [Sch05e] we work out that problem (2.19) can be solved as above:
Compute a denominator bound d ∈ K(t1) . . . (te−1)[te], see [Bro00, Sch04a], then bound
the degree of the possible numerators, see [Sch05a], and afterwards extract the coefficients
of the numerator by solving problems of the type (2.19) in K(t1) . . . (te−1). Hence we can
reduce problem (2.19) in K(t1) . . . (te) to several problems of (2.19) in the smaller field
K(t1) . . . (te−1). By recursion, we end up at the base case (2.19) with F = K which can be
solved with linear algebra. �

SUMMARY: There is an algorithm that solves problem (2.19) for a given ΠΣ∗-field (F, σ).

6.2. Creative telescoping. The key observation is that problem (2.19) covers creative
telescoping (2.8). Hence, applying our algorithm from Section 6.1 we get a creative tele-
scoping algorithm for ΠΣ∗-fields.

6.3. Solving first order linear difference equations. Solving first order linear differ-
ence equations is contained in problem (2.19). E.g., we can compute with our algorithm the

solution g = (n+1)
n+1−k

b for the homogeneous equation (2.11). More generally, our algorithm
can solve recurrences of the form (1.4) with order r = 1 where a0(n), a1(n) and f(n) can
be indefinite nested sum-product expressions.

7. Generalizations

By variations and generalizations of our telescoping algorithm we can solve the following
summation problems in Sigma.

7.1. Refined (creative) telescoping.

Refined Telescoping

Given f(k); find g(k) and f ′(k) such that

f(k) = g(k + 1)− g(k) + f ′(k) (2.20)

where f ′(k) is simpler than f(k).

Given such a solution, one finds (under the assumption that (2.20) holds for all 0 ≤ k ≤ n)
the identity

n
∑

k=0

f(k) = g(n + 1)− g(0) +

n
∑

k=0

f ′(k).

Subsequently, we suppose that we are given a ΠΣ∗-field (F(t), σ) where we can represent
f(k) by f ∈ F(t); see Section 5. Then we can handle the following variations of “simpler”.

7.1.1. Degree optimal w.r.t the top extension.

Given f ∈ F(t); find (f ′, g) ∈ F(t)2 such that

σ(g)− g + f ′ = f (2.21)

where in f ′ the degrees of the numerator and denominator polynomials are minimal.

Reinterpreting f ′ and g as sequences f ′(k) and g(k) solves (2.20) where the sum or product
t occurs with optimal degree in the numerator and denominator of f ′(k).

The rational case (F(t) = K(t) with σ(t) = t + 1) has been considered in [Abr75, Pau95,
PS95c]. In Sigma the general case of ΠΣ∗-fields can be handled; see [Sch07]. E.g., with the
option SimplifyByExt→DepthNumberDegree our solver finds the following simplifications:
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In[30]:= SigmaReduce[

n
∑

k=2

2 − kHk + H4
k − kH5

k

Hk − kH2
k

, SimplifyByExt → DepthNumberDegree]

Out[30]=

n
∑

k=2

k2 + 2Hk

k2Hk
+ (n + 1)H3n − (2n + 1)

(

3
2
H2n − 3Hn

)

− 3

2
(4n + 1) + 1

Hn

In[31]:= SigmaReduce[

n
∑

k=1

H4
k, SimplifyByExt → DepthNumberDegree]

Out[31]=

n
∑

k=1

2Hkk− 2k− 1

k3
+ (n + 1)H4n − 2(2n + 1)H3n + 6(2n+ 1)H2n − 12(2n+ 1)Hn + 24n

Note that the found sums can be simplified further to
n
∑

k=2

k2 + 2Hk

k2Hk
=

n
∑

k=1

1

Hk
+ 2H(2)

n − 3,

n
∑

k=1

2Hkk − 2k − 1

k3
= −H(3)

n − 2H(2)
n + 2

n
∑

k=1

Hk

k2
.

Remark: The analogous problem for Π-extensions has been considered in [Sch05d] which
generalizes hypergeometric results from [AP02, ALP03]:

Given f ∈ F(t); find (f ′, g) ∈ F(t)2 with f = σ(g)
g f ′ where in f ′ the degrees of the numerator

and denominator polynomials are minimal.

Reinterpreting f ′ and g as sequences f ′(k) and g(k), we get, with some mild extra condi-

tions, the product representation
∏n

k=1 f(k) = g(n+1)
g(1)

∏n
k=1 f ′(k). Examples are

n
∏

k=1

(−k−1)(k+7)
(k+4)2

= 4
35

(n+5)(n+6)(n+7)
(n+2)(n+3)(n+4)

(−1)n, (2.22)

n
∏

k=1

(k+3)(Hk(k+1)+1)2(Hk(k+2)(k+1)+2k+3)
(k+1)2Hk(Hk(k+3)(k+2)(k+1)+3(k+4)k+11)

= 11
6

(n+3)(n+2)(Hn(n+1)+1)2

(n+1)(Hn(n+3)(n+2)(n+1)+3(n+4)n+11)

n
∏

k=1

Hk.

7.1.2. Simpler w.r.t. the depth.

Given f ∈ F; find (f ′, g) ∈ F2 with (2.21) where the nested depth of the sums and products
in f ′ is minimal.

Reinterpreting f ′ and g as sequences f ′(k) and g(k) solves (2.20) where only those sums
and products of f(k) occur in f ′(k) which make the depth of f ′(k) optimal.

This mechanism [Sch04c] is activated by setting the option SimplifyByExt→Depth:

In[32]:= SigmaReduce[
n
∑

k=1

H2
kH

(2)
k , SimplifyByExt → Depth]

Out[32]=
1

3

n
∑

i=1

1

i3
− 1

3
H3n +

(

(n + 1)H(2)
n + 1

)

H2n + (2n + 1) (1− Hn) H
(2)
n − 2Hn

Note that in Out[32] we find the sum extension H
(3)
n =

∑n
i=1

1
i3

in order to represent
∑n

k=1 H2
kH

(2)
k in terms of sums with depth 1. For further examples see In[18], In[29], or

n
∑

k=1

H3
k = (n + 1)H3

n −
3

2
(2n + 1)H2

n + 3(2n + 1)Hn − 6n +
1

2
H(2)

n ,

n
∑

k=0

(

k
∑

i=0

(

m

i

)

)2

= (m− n)

(

m

n

) n
∑

i=0

(

m

i

)

− m− 2n− 2

2

(

n
∑

i=0

(

m

i

)

)2

− m

2

n
∑

i=0

(

m

i

)2

.

Note that the last expression can be simplified further to n4n

2
+ 4n − n

2

(

2n
n

)

if m = n;
see [Hir96, AP99].
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More generally, in [Sch05b] we solve the following problem:

Given f ∈ F; find a tower of ΠΣ∗-extensionsa (F(t1) . . . (te), σ) over (F, σ) and (f ′, g) ∈
F(t1) . . . (te)

2 with (2.21) where f ′ has minimal depth.

aThe nested depths of the extensions ti are smaller than the depth of any element in f .

Reinterpreting f ′ and g as sequences f ′(k) and g(k) solves (2.20) where the nested depth
of the sums and products occurring in f ′(k) are optimal. With Sigma we find

n
∑

k=1

(

k
∑

j=1

H
(2)
j

j3

)2
= −(H(2)

n
2
+ H(4)

n )

n
∑

j=1

H
(2)
j

j3 + (n + 1)
(

n
∑

j=1

H
(2)
j

j3

)2
+

n
∑

j=1

H
(2)
j

(

(jH
(2)
j )2−H

(2)
j +j2H

(4)
j

)

j5 ,

n
∑

k=1

1

k3

k
∑

j=1

Hj

j2
= H(3)

n

n
∑

j=1

Hj

j2
−

n
∑

j=1

Hj(j
3H

(3)
j − 1)

j5
. (2.23)

E.g., for (2.23) we compute the extensions H
(3)
n and

∑n
j=1 Hj(j

3H
(3)
j − 1)/j5 in order to

reduce the 3-nested sum on the left-hand side to an expression with at most 2-nested sums.

7.1.3. Creative telescoping. The refined telescoping algorithms from [Sch04c, Sch05b] can
be carried over to creative telescoping:

Given δ ≥ 0 and fi ∈ F; find (f ′, g) ∈ F2 and ci ∈ constσF such that

σ(g) − g + f ′ = c0f0 + · · · + cδfδ

where f ′ is nicer than the fi.

E.g., by using the option SimplifyByExt->DepthNumber in GenerateRecurrence one
looks for an f ′ where the number of used objects are smaller than the objects occurring in
the fi. Typical examples can be found in In[15] or in [Sch02, PS03, DPSW06b].

7.2. Solving linear difference equations of higher order. The recurrence solver in
Sigma works as follows. Given a recurrence (1.4), Sigma represents the coefficients ai(n)
and the inhomogeneous part f(n) in a ΠΣ∗-field (F, σ) with ai, f ∈ F; see Section 5. We
call (F, σ) also the coefficient field of the given recurrence. Then there are various options
how to continue.

7.2.1. Solutions in the coefficient field.

Given f, a0, . . . , ar ∈ F; find all g ∈ F with

ar σr(g) + · · ·+ a0 g = f. (2.24)

Then rephrasing the elements g ∈ F to sequences g(k) produces solutions for the recur-
rence (1.4).

There are such solvers for the rational case and the q-rational case, see [Abr89a, Abr89b,
Pet92, ABP95, Abr95, PWZ96, Hoe98, APP98]. Also in Sigma such an efficient solver is
available: a typical example is the first homogeneous solution in the result Out[28].

More generally, Sigma contains methods for ΠΣ∗-fields [Sch05a]. With our solver we
compute, e.g., the particular solution in the result Out[25]. Similarly, given

In[33]:= rec = −n(n + 1)Hn((n + 1)Hn + 1)F[n] + n(n + 1)(2Hn + 1)(n + 1)Hn + 1)F[n + 1] −
n(n + 1)Hn (n + (n + 1)Hn + 2)F[n + 2] == Hn((n + 1)Hn + 1);

we can compute a particular solution:

In[34]:= SolveRecurrence[rec, F[n], Extension → None]

Out[34]= {{1, nHn − 1

n
}}

Technical remark 4. In [Sch05a] we generalize the telescoping algorithm from Section 6
to solve problem (2.24) for a ΠΣ∗-field (F(t), σ). Here the following remarks are in place:
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Reduction 1: Denominator bounds can be computed for Σ∗-extensions. For Π-extensions
it can be determined up to a factor of the form tl with l ∈ N0; see [Bro00, Sch04a].

Reduction 2: Degree bounds can be computed for several special cases [Sch05a]. In [Sch01]
a method has been developed that can compute degree bounds for Σ∗-extensions. So far,
I did not find a proof for termination.

Reduction 3: The coefficient problems are of the following type.

Given a0, . . . , ar ∈ F and f1, . . . , fδ ∈ F; find all g ∈ F and (c1, . . . , cδ) ∈ Kδ such that

ar σr(g) + · · · + a0 g = c1 f1 + · · ·+ cδ fδ. (2.25)

Note that V := {(c1, . . . , cδ, g) ∈ Kδ × F|(2.25) holds} is a vector space over K with
dimension ≤ δ + r. Notice that problem (2.19) is a special case of (2.25) with r = 1. E.g.,
in Out[9],Out[11],Out[17], Out[28] we output bases of such vector spaces with δ = 1, r = 2.

In order to solve problem (2.25), we apply the three reduction steps recursively as in
the telescoping algorithm. Here we emphasize the following result: Although there are
open subproblems in the reduction steps 1 and 2, it has been shown in [Sch05e] that
there is a recursive enumeration procedure that eventually outputs all solutions for a given
equation (2.25). Further investigations are going on [Bro05, AP06] to overcome these open
problems. �

SUMMARY: The methods for the “master problem” (2.25) are the algorithmic heart of
Sigma. All the other problems treated here, such as (creative) telescoping and solving
recurrences, can be reduced to it.

As one can see in Out[34], we missed the homogeneous solutions of the recurrence. The
problem is that we searched for solutions only in the coefficient field “Q(n, Hn)” given
by In[33]. In order to extend the search space, the following possibilities are available.

7.2.2. Manual extensions. The coefficient field can be extended manually by using the
option Tower → {ext1, . . . , exte}. This feature might be useful, if one has additional
insight, i.e., one expects that certain sums or products should occur in the solution.

7.2.3. Automatic extensions. Sigma finds certain type of solutions for (1.4), or it outputs
that solutions of such type do not exist. We focus on the following problem.

Find solutions by extensions

Given (1.4); find all solutions of the form

h(n)

n
∑

k1=0

b1(k1)

k2
∑

k2=0

b2(k2) · · ·
ks−1
∑

ks=0

bs(ks). (2.26)

• Sum solutions. Sum solutions are of the form (2.26) where the bi(ki) and h(n) can
be represented in the given coefficient field (F, σ). In other words, the bi(ki) and h(n)
are expressions in terms of the objects given in ai(n) and f(n); for examples see Out[17]
and Out[28].

Technical remark 5. (1) Any solution, that can be represented in a tower of Σ∗-
extensions, can be represented by a sum solution of the form (2.26); see [Sch01, Thm. 4.5.4].
(2) If there exists a sum solution (2.26), then the expression h(n) must be a solution of
the homogeneous version of (1.4); see [Sch01, Thm. 4.5.1].
(3) Sum-solutions are obtained by factorizing the linear difference equation as much as
possible into first order linear right factors over the given difference field/ring. Then each
factor corresponds basically to one indefinite summation quantifier; see [AP94, Sch01]. If
one fails to split off such a first order factor, there is still hope to continue. Namely, if one
finds a product solution of the remaining difference equation, then this corresponds exactly
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to one additional factor. Hence, product extensions can lead to a refined factorization, and
therefore can produce additional solutions of a given linear difference equation. �

SUMMARY: We find all solutions in terms of indefinite sum expressions by looking for
all sum solutions. If there is no homogeneous solution in the coefficient field (F, σ), like
in Out[34], there is no sum solution at all. Luckily, product extensions can contribute to
finding additional sum solutions, see Out[9], Out[11], or Out[25].

• Product solutions. Given a recurrence with rational coefficients in K(n), there are algo-
rithms, like [Pet92] or [Hoe99], that can compute the so-called hypergeometric solutions;
for q-hypergeometric solutions see [APP98]. Typical examples are the first entry in Out[9]
for the hypergeometric case and in Out[11] for the q-hypergeometric case.

A generalized version of the algorithms [Pet92, APP98] is implemented in Sigma for
ΠΣ∗-fields. E.g. for our recurrence from In[33] we compute the following product solution:

In[35]:= SolveRecurrence[rec, F[n], Extension → PRODS]

Out[35]= {{1, nHn − 1

n
}, {0,

n
∏

i=2

−1+ iHi

−1 + i + iHi
}}

Using this product extension we can completely solve the recurrence with sum solutions:

In[36]:= recSol = SolveRecurrence[rec, F[n], Tower → {
n
∏

i=2

−1+iHi

−1+i+iHi

}, Extension → SUMS]

Out[36]= {{1, nHn − 1

n
}, {0,

n
∏

i=2

−1+ iHi

−1 + i + iHi
}, {0,

n
∏

i=2

−1 + iHi

−1+ i + iHi

n
∑

i=1

−1+ Hii

−1 + i + Hii

i
∏

j=2

−1 + j + jHj

−1 + jHj
}}

• d’Alembertian solutions. In Out[36] we have computed solutions of the type (2.26) where
the bi(ki) and h(n) can be either elements from the coefficient field, or products over such
elements from F. Such type of solutions are also called d’Alembertian solutions [AP94], a
subclass of Liouvillian solutions [HS99].

With the option Extension→dAlembert we can compute all such solutions in one stroke.
E.g., we solve our recurrence In[33] at once with

In[37]:= SolveRecurrence[rec, F[n], Extension → dAlembert]

Out[37]= {{1, nHn − 1

n
}, {0,

n
∏

i=2

−1+ iHi

−1 + i + iHi
}, {0,

n
∏

i=2

−1 + iHi

−1+ i + iHi

n
∑

i=1

−1+ Hii

−1 + i + Hii

i
∏

j=2

−1 + j + jHj

−1 + jHj
}}

Note that Extension→dAlembert is the default option in SolveRecurrence, i.e., in the
computation steps In[9], In[11],In[17],In[25],In[28] the d’Alembertian-machinery was acti-
vated.

Technical remark 6. Since problem (2.25) occurs as a subproblem in the algorithms for
sum-solutions and product-solutions, the open problems listed in Technical remark 4 are
relevant here; further investigations are going on [Bro05, AP06]. Note that we can find all
such solutions by recursive enumeration. �

SUMMARY: Sigma can find all d’Alembertian solutions. If Sigma fails to find any product
solution (including solutions in the coefficient field F) for a given recurrence, then there
does not exist a d’Alembertian solution at all. In this case Sigma’s weapons are exhausted.

7.3. Algebraic extensions. In various summation problems, like in Sections 3.2 and 3.4,
the algebraic term (−1)n with ((−1)n)2 = 1 pops up. As shown in Section 5.2, such
an object can be formulated only in rings with zero-divisors. In Sigma our methods for
problem (2.25) have been extended for such algebraic extensions; see [Sch01, Section 3.6].
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7.4. Unspecified sequences. In joint work with Manuel Kauers [KS06b, KS06a] Sigma
has been extended as follows. Our summation objects can be represented in a tower of
ΠΣ∗-extensions over a free difference field [Coh65]. More precisely, take the field F :=
K(. . . , x−1, x0, x1, . . . ) with infinitely many variables xi and define the field automorphism
σ : F→ F by σ(c) = c for all c ∈ K and σ(xi) = xi+1 for i ∈ Z. Then given this difference
field (F, σ) we extend it with a tower of ΠΣ∗-extensions, say (F(t1) . . . (te), σ).

For such a difference field we managed to carry over all the summation algorithms
mentioned earlier. In order to apply this machinery, we have to load in

In[38]:= << Free.m
Free.m - Solver for PLDEs over the free difference field by Manuel Kauers c© RISC-Linz

As carried out in detail in [KS06b] we can find the identity [KS06b, Equ. (5)]

n
∑

k=1

k2

k
∑

i=1

Xi = 1
6

(

n(n + 1)(2n + 1)

n
∑

k=1

Xk −
n
∑

k=1

kXk + 3

n
∑

k=1

k2Xk − 2

n
∑

k=1

k3Xk

)

where Xi stand for a generic/unspecified sequence. More precisely, we compute the right-
hand side by simply executing our telescoping-solver:

In[39]:= SigmaReduce[

n
∑

k=1

k2
k
∑

i=1

X[i],SimpleSumRepresentation → True]

Out[39]=
1

6

(

n(n + 1)(2n + 1)

n
∑

k=1

X[k]−
n
∑

k=1

kX[k] + 3

n
∑

k=1

k2X[k]− 2

n
∑

k=1

k3X[k]
)

As observed in [KS06b] we can now specialize this identity and get, for instance with

Xk = 1
n+k

and Hn+k = Hn +
∑k

i=1
1

n+i
the identity [GKP94, Bonus problem 6.69]:

n
∑

k=1

k2Hn+k = 1
3
n(n + 1

2
)(n + 1)(2H2n −Hn)− 1

36
(10n2 + 9n− 1).

Similarly, we find
n
∑

k=1

ak

k
∑

j=1

Xj =
1

a− 1

(

an+1

n
∑

k=1

Xk −
n
∑

k=1

akXk

)

, a 6= 1

which generalizes the identity [KS06b, Equ. (7)]. With Xj := 1
j

we get

n
∑

k=1

akHk =
1

a− 1

[

an+1Hn −
n
∑

k=1

ak

k

]

and with Xj =
(

m
j−1

)

, a = −1, and n := m + 1 we rediscover [Zha99]:

m
∑

k=0

(−1)k+1

k
∑

j=0

(

m
j

)

=
1

2
(−1)m+12m.

Observe that for a = 1 we derive a different version, namely [KS06b, Equ. (5)]:

n
∑

k=1

k
∑

j=1

Xj = (n + 1)
n
∑

k=1

Xk −
n
∑

k=1

kXk.

For Xj := 1
j2 we find

∑n
k=1 H

(2)
k = (n + 1)H

(2)
n −Hk and for Xj =

(

m
j

)

we get

n
∑

k=0

k
∑

j=0

(

m
j

)

= (n + 1)
n
∑

k=0

(

m

k

)

−
n
∑

k=0

k

(

m

k

)

=
1

2
(m− n)

(

m

n

)

+ (2n−m + 2)
n
∑

i=0

(

m

i

)

.

If m = n, we get n+2
2

2n; see [Hir96, AP99]. Further identities are given in [KS06b, KS06a].
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Part 3. Multi-summation and applications

There are various approaches for multi-summation available. As illustrated in the first
two parts, the difference field approach enables one to handle a rather general class of
nested multi-sums. Zeilberger’s holonomic systems approach [Zei90] was an important
breakthrough for another class of multi-sums. This work forms a common framework for
the Sister Celine/WZ-method and the holonomic/∂-finite function approach.

The Sister Celine/WZ-Method: Following Sister Celine Fasenmyer’s PhD–thesis [Fas45]
and D. Zeilberger/H. Wilf [WZ92] one computes suitable recurrences for hypergeomet-
ric summands by setting up a system of linear equations; the summand-recurrence can
then be transformed to a recurrence for the corresponding hypergeometric multi-sum. An
efficient machinery has been developed by Wegschaider [Weg97] where ideas of Sister Ce-
line/Wilf/Zeilberger are combined in a non-trivial manner with results of Verbaeten [Ver74]
and its simplification presented in [Hor92]. For a q-version see [Rie03]. Related approaches
are [CHM06, AZ06].

The holonomic/∂-finite function approach: Pioneering work of the holonomic/∂-finite
approach has been done in [CS98]. In particular, in [Chy00] Zeilberger’s algorithm [Zei91]
has been generalized to general holonomic and ∂-finite functions. This method treats also
multiple sum (and multiple integration) problems.

A new Sigma approach: In [Sch05c] it has been shown that Chyzak’s approach [Chy00]
can be substantially simplified, if one attacks multi-sum problems in a slightly restricted
way. Moreover, it turns out that one can bring Karr’s ΠΣ∗-world and Chyzak’s approach
under one umbrella. This leads to a rather general and surprisingly efficient machinery
which has been implemented in Sigma. Subsequently, we shall illustrate our “Sigma ap-
proach” by various concrete examples. In addition to the results [Sch05c], we show in
Section 9.3 that our method can be also used to compute differential equations for such
general multi-sums.

8. The basic idea for telescoping

We consider the following problem from [BPP+06] which arose in joint cooperation with
the JKU-Finite Element group. Find a closed form for the hypergeometric multi-sum

S(n) =
n
∑

k=1

2k + 1

k + 1

k
∑

j=0

(−k)j(k + 1)j(2)k

j!k!(2)j

(

1− x

2

)j

;

here we use the standard Pochhammer symbol (a)j =
∏j

i=1(a + i − 1). Subsequently,
we denote the inner sum in S(n) with P (k); note that P (k) are the Jacobi-polynomials

P
(α,β)
k (x) for the specific choice (α, β) = (1,−1).
First notice that we cannot apply our (creative) telescoping algorithm presented earlier

to the summand 2k+1
k+1

P (k). To see this, we compute a recurrence for P (k):

In[40]:= recP = GenerateRecurrence[

k
∑

j=0

(−k)j(k + 1)j(2)k

j!k!(2)j

(

1 − x

2

)j

][[1]]/.SUM → P

Out[40]= P[k + 2] ==
(2k + 3)x

k + 2
P[k + 1]− k

k + 1
P[k]

Then we show with Sigma that there are no d’Alembertian solutions, i.e., we cannot repre-
sent P (k) in terms of a ΠΣ∗-field. In particular, we cannot simplify Out[40] to a first order
recurrence. Summarizing, we cannot handle the sum S(n) with the tools presented so far.
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Motivated by such examples, we extended Sigma in order to handle also multi-sums
where the inner sum is described by recurrences of higher order. E.g., using Out[40] we
can simplify

In[41]:= mySum =
n
∑

k=1

2k + 1

k + 1
P[k];

with our generalized telescoping solver as follows.

In[42]:= SigmaReduce[mySum, {recP, P[k]}]

Out[42]=
(3x− 2)P[1]

2(x− 1)
− P[2]

x− 1
− n P[n]

(n + 1)(x− 1)
+

P[n+ 1]

x− 1

With P (1) = x + 1, P (2) = 3
2
x(x + 1) we arrive at the identity [BPP+06, Equ. (16)]

S(n) = −x + 1

x− 1
− nP (n)

(n + 1)(x− 1)
+

P (n + 1)

x− 1
, n ≥ 1. (3.1)

8.1. Verification. The result Out[42] can be produced by summing the telescoping equa-
tion

g(k + 1)− g(k) =
2k + 1

k + 1
P (k) (3.2)

with the computed solution

g(k) =
1 + k − x− 2kx

(x− 1)(k + 1)
P (k) +

1

x− 1
P (k + 1). (3.3)

Note that the correctness of (3.2) can be verified independently of the computational steps:
Represent P (k + 2) in g(k + 1) as a linear combination of P (k) and P (k + 1) by using the
relation Out[40]. Then verify (3.2) by polynomial arithmetic.

8.2. The method. We consider the following telescoping problem:
Given Out[40], find g(k) = g0(k)P (k)+ g1(k)P (k +1) with unknown coefficients g0(k) and
g1(k) such that (3.2) holds. This problem is equivalent to finding g0(k) and g1(k) with
[

g0(k+1)P (k+1)+g1(k+1)P (k+2)
]

−
[

g0(k)P (k)+g1(k)P (k+1)
]

=
2k + 1

k + 1
P (k). (3.4)

Applying the relation Out[40] and collecting terms w.r.t. P (k) and P (k + 1) we get equiv-
alently

P (k)
[

− k

k + 1
g1(k + 1)− g0(k)− 2k + 1

k + 1

]

+ P (k + 1)
[

g0(k + 1) +
(2k + 3)x

k + 2
g1(k + 1)− g1(k)

]

= 0. (3.5)

Hence, if g0(k) and g1(k) satisfy

g0(k) = − k

k + 1
g1(k + 1)− 2k + 1

k + 1
, (3.6)

g0(k + 1) +
(2k + 3)x

k + 2
g1(k + 1)− g1(k) = 0, (3.7)

then (3.4) and (3.5) hold. Note that the other direction might not hold in general, but in
our concrete case it does; see Technical remark 7.1. Finally, by taking the shifted version
of (3.6) we can rewrite (3.7) in the form of the linear difference equation

−k + 1

k + 2
g1(k + 2) +

(2k + 3)x

k + 2
g1(k + 1)− g1(k) =

2k + 3

k + 2
. (3.8)

Summarizing, if g0(k) and g1(k) satisfy (3.6) and (3.8), g(k) = g0(k)P (k)+g1(k)P (k+1) is
a solution of (3.2) and (3.4). Now observe that (3.8) is a linear recurrence in g1(k). Hence
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we can run Sigma’s recurrence solver and compute the solution g1(k) = 1
x−1

. Finally,

g0(k) = 1+k−x−2kx
(x−1)(k+1)

is determined by (3.6). We end up with our solution (3.3).

In general, we obtain a method for the following telescoping problem:

Telescoping with a recurrence

Given f(k) := h0(k)P (k) + · · ·+ hs(k)P (k + s) and

P (k + s + 1) = a0(k)P (k) + · · ·+ as(k)P (k + s); (3.9)

find a solution for (1.1) which is of the form

g(k) = g0(k)P (k) + · · ·+ gs(k)P (k + s). (3.10)

Namely, by inserting (3.10) with the unknown coefficients gr(k) in (1.1) and doing coeffi-
cient comparison we find, as above, the following coupled system; see [Sch05c, Lemma 1]:

g0(k) = a0(k) gs(k + 1)− h0(k), (3.11)

gr(k) = gr−1(k + 1) + ar(k) gs(k + 1)− hr(k), 1 ≤ r ≤ s. (3.12)

This means that any solution g0(k), . . . , gs(k) of this system produces a solution (3.10)
for (1.1). Now the crucial step is that this system can be uncoupled, once and for all, and
we obtain, in addition, the following linear difference equation for gs(k) [Sch05c, Lemma 2]:

s
∑

j=0

as−j(k + j)gs(k + j + 1)− gs(k) =

s
∑

j=0

hs−j(k + j) (3.13)

Summarizing, we arrive at the following method:
1. FIND a solution gs(k) for (3.13); this is a particular instance of problem (2.24).
2. COMPUTE g0(k) by (3.11); then compute the remaining g1(k), . . . , gs−1(k) by (3.12).

Technical remark 7. (1) If g(k) = g0P (k) + · · · + gs(k)P (k + s) is a solution of (1.1),
we cannot guarantee that the gr(k) satisfy the system (3.11), (3.12), (3.13). Hence, our
method might fail, although there exists a solution of the form (3.10). This can be only
guaranteed, if the recurrence order of (3.9) is minimal. E.g., the recurrence Out[40] has
minimal order. This implies that P (k) and P (k + 1) are linearly independent. Thus (3.5)
implies (3.6) and (3.7).
(2) We can apply this method for all input terms hi(k) and ai(k) for which one has solvers
for (3.13) or equivalently for (2.24). In the Sigma-package the hi(k) and ai(k) can be
any expression represented in a ΠΣ∗-field. Furthermore, in [Sch05c] we allow that the
recurrence (3.9) might have an inhomogeneous part. �

9. The basic idea for creative telescoping

In [PWZ96] the following identity pops up:
n
∑

k=0

n
∑

j=0

(−1)n+k+j

(

n

k

)(

n

j

)(

n + k

k

)(

n + j

j

)(

2n− j − k

n

)

=

n
∑

k=0

(

n

k

)4

. (3.14)

As observed in [Sch05c] Sigma can prove this identity by a slight generalization of the
techniques presented in Section 8. First, we compute a recurrence in k for the inner sum
P (n, k):

In[43]:= innerSum =

n
∑

j=0

(−1)n+k+j

(

n

k

)(

n

j

)(

n + k

k

)(

n + j

j

)(

2n − j − k

n

)

;

In[44]:= recK = GenerateRecurrence[innerSum, k][[1]]/.SUM → P

Out[44]= P[k + 2] == (n−k)3(1+k+n)(2+k+n)

(1+k)2(2+k)2(k−3n)
P[k] + (1+k)2(2+k+n)(k+2k

2
−3n−6kn+3n

2)

(1+k)2(2+k)2(k−3n)
P[k + 1]
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Besides this we compute a recurrence with one shift in n and the remaining shifts in k:

In[45]:= recKN = GenerateRecurrence[innerSum, k, OneShiftIn → n][[1]]/.SUM → P

Out[45]= P[n + 1, k] ==
(1 + k)

2
(−1 + k− 3n)(6− 8k + 3k2 + 12n− 8kn+ 6n2)

(1 − k + n)
3
(1 + n)

2
P[k+ 1] +

−(1+k+n)(−5k+12k
2
−10k

3+3k
4+3n−32kn+42k

2
n−16k

3
n+15n

2
−57kn

2+33k
2
n
2+21n

3
−30kn

3+9n
4)

(1−k+n)3(1+n)2
P[k]

Remark. Given the summand f(n, k, j), set up the creative telescoping equation

g(n, k, j + 1)− g(n, k, j)

= c0(n, k)f(n, k, j) + c1(n, k)f(n, k + 1, j) + c2(n, k)f(n + 1, k, j) (3.15)

and solve the underlying problem (2.8) where f0, f1, f2 correspond to f(n, k, j), f(n, k +
1, j), f(n+1, k, j), respectively. Summing the resulting equation (3.15) over k gives Out[45].

Finally, we compute a recurrence for the sum on the left-hand side of (3.14) as follows:

In[46]:= GenerateRecurrence[

n
∑

k=0

P[k], n, recK, P[k], recKN]

Out[46]= {−4(1+ n)(3 + 4n)(5+ 4n)SUM[n]− 2(3+ 2n)(7+ 9n+ 3n2)SUM[1 + n] + (2 + n)
3
SUM[2+ n] == 0}

We remark that Chyzak’s general holonomic approach (which takes 2300s) and Weg-
schaider’s implementation (which takes 510s) are much slower on that; we need only 12s
on the same machine.

To this end, we can compute with Sigma the same recurrence for the right-hand side
of (3.14). Since both sides of (3.14) agree at n = 0, 1, equality follows for all n ≥ 0.

9.1. Verification. The correctness of Out[46] follows by

g(n, k + 1)− g(n, k) = c0(n)P (n, k) + c1(n)P (n + 1, k) + c2(n)P (n + 2, k) (3.16)

and the proof certificate

c0(n) = 4(n + 1)3(4n + 3)(4n + 5), c2(n) = −(n + 1)2(n + 2)3,

c1(n) = 2(n + 1)2(2n + 3)
(

3n2 + 9n + 7
)

,
(3.17)

and
g(n, k) = g0(n, k)P (n, k) + g1(n, k)P (n, k + 1) (3.18)

where the rational functions gi(n, k) in n and k are derived in Example 9.4; the explicit
expression can be found in [Sch05c, p. 763]. The correctness of (3.16) can be verified for all
0 ≤ k ≤ n as follows. Rewrite the expression P (n, k + 2) in g(n, k + 1) in terms of P (n, k)
and P (n, k +1) by using the relation Out[44]. Similarly, rewrite the expression P (n+1, k)
in (3.16) in the form of a linear combination of P (n, k) and P (n, k + 1) by using the
relation Out[45]. Moreover, express P (n+ 2, k) in (3.16) by a linear combination in P (n +
1, k) and P (n + 1, k + 1) which itself can be expressed by a linear combination in P (n, k)
and P (n, k + 1) by using the “rewrite rules” Out[44] and Out[45]. Then the correctness
of (3.16) follows by polynomial arithmetic. Summing (3.16) over k produces Out[46].

9.2. A method for recurrences. We present the following strategy from [Sch05c] to
compute a recurrence for a hypergeometric double sum

S(n) =
∑

k

∑

j

h(n, k, j)

where h(n, k, j) is hypergeometric in n, k and j. We start with the inner sum P (n, k) =
∑

j h(n, k, j). If one is lucky, one can compute with Sigma not only a recurrence in k, say

P (n, k + s + 1) = a0(n, k)P (n, k) + · · ·+ as(n, k)P (n, k + s), (3.19)
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but also a recurrence with one shift in n and the remaining shifts in k, like

P (n + 1, k) = b0(n, k)P (n, k) + · · ·+ bs(n, k)P (n, k + s); (3.20)

examples are In[44] and In[45]. In [Pau04] an existence theory is presented which closely re-
lates to the situation of Zeilberger’s algorithm. This question is analysed further in [PS04].

Given such a recurrence system (3.19),(3.20), our creative telescoping problem reads as
follows.

Creative telescoping with a recurrence system

Given δ ∈ N and f(n, k) := h0(n, k)P (n, k) + · · ·+ hs(n, k)P (n, k + s) plus (3.19) and (3.20);
find a solution c0(n), . . . , cδ(n), not all zero, and g(n, k) for (1.2) where g(n, k) is of the form

g(n, k) = g0(n, k)P (n, k) + · · ·+ gs(n, k)P (n, k + s). (3.21)

Summing (3.21) over k gives, with some extra conditions, a recurrence of the form (1.4).

Example 9.1. Take f(n, k) = P (n, k) with (3.19) and (3.20) where the ai(k) and bi(k)
are given by Out[44] and Out[45], respectively. We look for c0(n), c1(n), c2(n) and (3.18)
with (3.16). �

Given the two relations (3.19) and (3.20), the terms P (n + i, k), . . . , P (n + i, k + s) in
f(n + i, k) can be expressed by a linear combination in P (n, k), . . . , P (n, k + s). E.g., if
s = 1 and i = 2,

P (n + 2, k)
(3.20)
= b0(n + 1, k)P (n + 1, k) + b1(n + 1, k)P (n + 1, k + 1)

(3.20)
= b0(n + 1, k)

[

b0(n, k)P (n, k) + b1(n, k)P (n, k + 1)
]

+ b1(n + 1, k)
[

b0(n, k + 1)P (n, k + 1) + b1(n, k + 1)P (n, k + 2)
]

(3.19)
= P (n, k)

[

b0(n + 1, k)b0(n, k) + b1(n + 1, k)b1(n, k + 1)a0(n, k)
]

+ P (n, k + 1)
[

b0(n + 1, k)b1(n, k) + b1(n + 1, k)
(

b0(n, k + 1) + b1(n, k + 1)a1(n, k)
)]

.

(3.22)

Subsequently, denote f(n+ i, k) by fi(k); from now on we suppress the parameter n. Then
by the above considerations the expressions f0(k) := f(n, k), . . . , fδ(k) := f(n + δ, k) can
be set up in the form

f0(k) := h
(0)
0 (k)P (k) + · · ·+ h

(0)
s (k)P (k + s)

...

fδ(k) := h
(δ)
0 (k)P (k) + · · ·+ h

(δ)
s (k)P (k + s).

(3.23)

Example 9.2 (Cont.). Write f0(k) := f(n, k), f1(k) := f(n+1, k) and f2(k) := f(n+2, k)

in the form (3.23), i.e., set h
(0)
0 (k) := 1 and h

(0)
1 (k) := 0, take h

(1)
i (k) := bi(n, k) for i = 0, 1,

and define h
(2)
0 (k) and h

(2)
1 (k) by the coefficients of P (n, k) and P (n, k + 1) in (3.22). �

Consequently, our creative telescoping problem can be stated in the following form.
Given (3.23) and (3.9); find g(k) = g0(k)P (k) + · · ·+ gs(k)P (k + s) and c0, . . . , cδ with

g(k + 1)− g(k) = c0f0(k) + · · ·+ cδfδ(k). (3.24)

Example 9.3 (Cont.). Finding solutions c0, c1, c2 and g(k) = g0(k)P (k) + g1(k)P (k + 1)
for (3.24) is equivalent to looking for solutions c0(n), c1(n), c2(n) and (3.18) for (3.16). �

KEY OBSERVATION: By replacing f(k) with c0f0(k) + · · · + cδf(k) in our telescoping
method from Section 8.2 we get the following method to find a solution for (3.24).
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1. FIND a solution c0, . . . , cδ and gs(k) for

s
∑

j=0

as−j(k + j)gs(k + j + 1)− gs(k) =
δ
∑

i=0

ci

s
∑

j=0

h
(i)
s−j(k + j);

this is a particular instance of problem (2.25).
2. COMPUTE the remaining g0(k), . . . , gs−1(k) by

g0(k) = a0(k)gs(k + 1)−
δ
∑

i=0

cih
(i)
0 (k),

gr(k) = gr−1(k + 1) + ar(k)gs(k + 1)−
δ
∑

i=0

cih
(i)
r (k), 0 < r < s.

Example 9.4 (Cont.). We set up our parameterized linear difference equation

− (k−n+1)3(k+n+2)(k+n+3)
(k+2)2(k+3)2(k−3n+1)

g1(k + 2) +
(k+n+2)(2k2−6nk+k+3n2−3n)

(k+2)2(k−3n)
g1(k + 1)− g1(k)

= c0φ0(k) + c1φ1(k) + c2φ2(k)

where φi(n, k) :=
∑s

j=0 h
(i)
s−j(k + j) are rational functions in n, k. Sigma computes (3.17)

and

g1(k) =
(

k2(k + 1)2(−k + 3n + 1)(17n6 − 121kn5 + 161n5 + 225k2n4 − 944kn4

+ 625n4 − 177k3n3 + 1389k2n3 − 2901kn3 + 1271n3 + 61k4n2 − 808k3n2 + 3174k2n2

− 4386kn2 + 1426n2 − 7k5n + 182k4n− 1220k3n + 3183k2n− 3260kn + 836n − 10k5

+ 136k4 − 610k3 + 1182k2 − 952k + 200)
)/

((−k + n + 1)3(−k + n + 2)3);

we set g0(k) := a0(k)g1(k + 1)−
∑2

i=0 cih
(i)
0 (k) and get the solution (3.18) for (3.16). �

We emphasize that the sketched double-sum approach can be carried over to general multi-
sums; for more details see [Sch05c, Section 4].

9.3. A method for differential equations. By a slight variation of our method [Sch05c],
see Section 9.2, one can compute linear differential equations for a sum

S(z) =
∑

k

∑

j

h(z, k, j) (3.25)

where h(z, k, j) is hypergeometric in k and j and d
dz

h(z, k, j)/h(z, k, j) is a rational function
in z, k, j. E.g., consider the following identities which will pop up in Section 10.2:

∞
∑

k=0

(4k + 1)
(2k)!

k!222k
P (z, k) = 1,

∞
∑

k=0

−(4k + 1)k
(2k + 1)!

k!222k−1
P (z, k) = −z2,

∞
∑

k=0

(4k + 1)k(2k − 1)
(2k + 2)!

k!222k+1
P (z, k) =

1

4
z4 + z2

(3.26)

where

P (z, k) =
∞
∑

i=0

√
π

2

(−z2/4)i(z/2)2k

i!(2k + i + 1/2)!
. (3.27)

Note that P (z, k) is equal to j2k(z) where jk(z) are the Spherical Bessel functions of the
first kind; see [AS65]. In order to prove these identities, we compute differential equations
for the left-hand sides of (3.26) as follows. First, we derive a recurrence of the form

P (z, k + s + 1) = a0(z, k)P (z, k) + · · ·+ as(z, k)P (z, k + s). (3.28)
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With Sigma we get for our sum P (z, k)

In[47]:= sumP =

∞
∑

i=0

√
π

2

(−z2/4)i(z/2)2k

i!(2k + i + 1/2)!
;

the recurrence relation

In[48]:= recP = GenerateRecurrence[sumP, k][[1]]/.SUM → P

Out[48]= P[k + 2] == −4k+ 7

4k+ 3
P[k] +

(4k + 5)(16k2 + 40k− 2z2 + 21)

(4k + 3)z2
P[k + 1]

Next, we look for a difference-differential equation of the form

d

dz
P (z, k) = b0(z, k)P (z, k) + · · ·+ bs(z, k)P (z, k + s). (3.29)

This can be accomplished by the function call.

In[49]:= recOneDiff = GenerateRecurrence[sumP, k, OneDiffIn → z][[1]]/.SUM → P

Out[49]= P(0,1)[z, k] ==
8k2 + 6k− z2

(4k + 3)z
P[k]− z

4k+ 3
P[k+ 1]

Remark. Given the summand f(z, k, j), set up the creative telescoping equation

g(z, k, i+1)−g(z, k, i) = c0(z, k)f(z, k, i)+c1(z, k)f(z, k+1, i)+c2(z, k)
d

dz
f(z, k, i) (3.30)

and solve the underlying problem (2.8) where f0, f1, and f2 correspond to f(z, k, i), f(z, k+
1, i), and d

dz
f(z, k, i), respectively. Summing the result (3.30) over k gives Out[49].

Using Out[48] we can compute a differential equation for the left-hand side of (3.26):

In[50]:= GenerateDE[

∞
∑

k=0

−(4k + 1)k
(2k + 1)!

k!222k−1
P[k], z, {recP, P[k]}, recOneDiff]

Out[50]= {2SUM[z]− zSUM′[z] == 0}

Internally, Sigma solves the problem as follows: Given Out[48] and Out[49], we look for
a solution g(z, k) = g0(z, k)P (z, k) + g1(z, k)P (z, k + 1) with

g(z, k + 1)− g(z, k) =c0(z)P (z, k) + c1(z)
d

dz
P (z, k)

Out[49]
= c0(z)P (z, k) + c1(z)

[8k2 + 6k − z2

(4k + 3)z
P (z, k)− z

4k + 3
P (z, k + 1)

]

.

Together with Out[48] this is nothing else than a certain instance of problem (3.24). There-
fore we continue as in Section 9.2 and can compute the solution c0 = 2, c1 = −z and

g(z, k) =
(2k)!

k!222k

2(k − 1)k(2k + 1)

4k + 3

[

(z2 − 16k2 − 16k − 3)P (z, k) + z2P (z, k + 1)
]

.

The correctness can be checked along the lines of Section 9.1. Hence, summing this equation
over k gives Out[50].

Completely analogously we find differential equations for the remaining two sums in (3.26):

In[51]:= GenerateDE[

∞
∑

k=0

(4k + 1)
(2k)!

k!222k
P[k], z, {recP, P[k]}, recOneDiff]

Out[51]= {SUM′[z] == 0}

In[52]:= GenerateDE[

∞
∑

k=0

(4k + 1)k(2k − 1)
(2k + 2)!

k!222k+1
P[k], z, {recP, P[k]}, recOneDiff]

Out[52]= {−4(z2 + 2)SUM[z] + z(z2 + 4)SUM′[z] == 0}

By looking at the solutions of these differential equations, the identities in (3.26) follow.
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Summarizing, we propose the following strategy to find a differential equation for (3.25).
First, try to compute a difference-differential system (3.28), (3.29) for the inner sum
P (z, k) =

∑

j h(z, k, j) of (3.25). Then we have methods in hand for the following problem.

Creative telescoping with a difference-differential system

Given δ ∈ N and f(z, k) := h0(z, k)P (z, k) + · · ·+ hs(z, k)P (z, k + s) plus (3.19) and (3.29);
find a solution c0(z), . . . , cδ(z), not all zero, and g(z, k) for

g(z, k + 1)− g(z, k) = c0(z)f(z, k) + c1(z)
d

dz
f(z, k) + · · ·+ cδ(z)

dδ

dzδ
f(z, k) (3.31)

where g(z, k) is of the form g(z, k) = g0(z, k)P (z, k) + · · · + gs(z, k)P (z, k + s).

More precisely, with (3.19) and (3.29) we can rewrite

f0(k) := f(z, k), . . . , fδ(k) :=
dδ

dzδ
f(z, k)

in the form (3.23), respectively. Summarizing, we can reduce problem (3.31) to prob-
lem (3.24). A solution of (3.24) by our method from Section 9.2 will provide us with a
solution for problem (3.31). Then summing such a solution (3.31) over k gives (under the
assumption that (3.31) holds for all 0 ≤ k ≤ n) a differential equation of the form

q(z) = c0(z)S(z) + c1(z)S ′(z) + · · ·+ cδ(z)S(δ)(z)

for some function q(z). We emphasize that the sketched double-sum approach for dif-
ferential equations can be carried over to general multi-sums along the lines of [Sch05c,
Section 4].

10. Applications

10.1. Stembridge’s TSPP Theorem. In [APS05] we derived a computer-assisted proof
of Stembridge’s Totally Symmetric Plane Partition (TSPP) Theorem [Ste95]. Consider a
plane partition with largest part ≤ n, i.e., a matrix

n ≥ a11 ≥ a12 ≥ a13 ≥ . . . a1r

∨| ∨| ∨|
a21 ≥ a22 . . . a2r

∨| ∨|
...

...
∨| ∨|
as1 ≥ as2 ≥ as3 ≥ · · · ≥ as,r ≥ 0

where in each row and column the positive integers are weakly decreasing. Typically, one
can represent a plane partition in 3-d as follows:

3 2 1
2 1 0
1 0 0

←→

Then a TSPP is such a 3-d cube which can be rotated and reflected without changing
the graphical picture. In the beginning of the eighties G.E. Andrews, I.G. Macdonald
and R.P. Stanley conjectured that for the number Tn of TSPPs with largest part ≤ n the
following identity holds:

Tn =
∏

1≤i≤j≤k≤n

i + j + k − 1

i + j + k − 2
, n ≥ 1; (3.32)
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cf. [Sta86, case 4] and [Ste95]. Moreover, in [Oka89] a matrix M(n) =
(

µ(i, j)
)

0≤i,j≤n−1

with explicit expressions µ(i, j) was given such that

T 2
n = det

(

M
)

.

Since the expressions µ(i, j) are rather complicated, there was no chance to simplify the
determinant evaluation in order to show (3.32). Finally, in the beginning of the nineties

G. Andrews could guess a highly non-trivial matrix W =

0

B

B

@

∗ . . . ∗

. . .
...

0 ∗

1

C

C

A

with det(W ) = 1

and

MW =







∗ 0
...

. . .
∗ . . . ∗






=: U. (3.33)

Since det(M) = det(M) det(W ) = det(M W ) = det(U), one only has to take the product
of the diagonal elements of U , which leads exactly to (3.32).
The only remaining task is to show (3.33). Unfortunately, the expressions in W (triple sums
are involved) look even more complicated than the expressions in M (only double sums are
involved). Hence verifying (3.33) leads to identities with quadruple sums! Summarizing,
at that time a proof of (3.33) was out of scope – even by using the computer. Finally,
J. Stembridge found an elegant proof [Ste95] which combines the combinatorics of Pfaffians
and reduction of such to known determinant representations.

Luckily, G. Andrews did not forget his fascinating attempt and sent his problem (3.33)
to RISC in 2003. After several weeks of hard work, Peter Paule and I won the battle.
In a first step P. Paule managed to simplify in a non-trivial way the underlying identities
involving quadruple sums to identities with triple sums. E.g., define

A0(i, m) :=
2m
∑

k=0

(

i + k − 3

i− 2

)

h(k, m) and A2(i, m) :=
2m
∑

k=i

(−1)kh(k, m) where

h(k, m) :=

⌊ 2m−k
2

⌋−1
∑

s=0

k

m− s

(

m− s

2m− 2s− k

)

(−1)s+k

2m 4s

s
∑

r=0

(m− r)(m)r(−3m− 1)r

r!(1
2
− 2m)r

.

Then one among the many identities looks like follows: for all m ≥ 1 and all 3 ≤ i ≤ 2m+1,

2h(i − 2, m) − 5h(i − 1, m) − A0(i, m) + 6(−1)iA2(i, m) − 3(−1)i
2m−1
∏

s=1

2(m+s−1)
2m+s−2

= 0.

(3.34)
Here Sigma enters the game: we compute for each of the ingredients recurrences in i. E.g.,
for A0(i, m) we get a recurrence as follows:

In[53]:= hSum =

⌊ 2m−k

2
⌋−1

∑

s=0

k

m − s

(

m − s

2m − 2s − k

)

(−1)s+k

2m4s

s
∑

r=0

(m − r)(m)r(−3m − 1)r

r!(1
2

− 2m)r
;

In[54]:= rec = GenerateRecurrence[hSum, k, FiniteSupport → True][[1]]/.SUM → h

Out[54]= −(k− 2m + 2)(k + 2m + 3)h(k + 3)(k + 1)2 + 2(k + 2)2(k− 2m)(k + 2m + 1)h[k] +

(−5k4 − 29k3 + 12m2k2 + 6mk2 − 58k2 + 40m2k + 20mk− 46k+ 24m2 + 12m− 12)h[k+ 1] +

(4k4 + 26k3 − 12m2k2 − 6mk2 + 59k2 − 28m2k− 14mk+ 55k− 12m2 − 6m+ 18)h[k + 2] == 0

In[55]:= recA0 = GenerateRecurrence[

2m
∑

k=0

(

i + k − 3

i − 2

)

h[k], i, {rec, h[k]},FiniteSupport → True]

Out[55]= (i2 + i + 2)(i + 2m− 1)(i− 2(m + 1))SUM[i]− (i + 3)(i3 − i2 + 2i+ 4m2 + 2m− 2)SUM[i+ 1]−
(i−3)(i3+i2+2i−4m2−2m+2)SUM[i+2]+ (i2−i+2)(i−2m+1)(i+2m+2)SUM[i+3] == 0
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Given all the recurrences, see [APS05], we combine them to one recurrence by using the
Mathematica package GeneratingFunctions [Mal96], which is based on the ideas of [SZ94].
By checking initial values we show that all the sums combined in (3.34) evaluate to zero.
We conclude our result with Zeilberger’s Opinion 65 [Zei05]:

Seeing all the details, (that nowadays can (and should!) be easily relegated to the computer),
even if they are extremely hairy, is a hang-up that traditional mathematicians should learn to
wean themselves from. A case in point is the excellent but unnecessarily long-winded recent
article [APS05]. It is a new, computer-assisted proof, of John Stembridge’s celebrated TSPP
theorem. It is so long because they insisted on showing explicitly all the hairy details, and easily-
reproducible-by-the-reader ”proof certificates”. It would have been much better if they would
have first applied their method to a much simpler case, that the reader can easily follow, that
would take one page, and then state that the same method was applied to the complicated case of
Stembridge’s theorem and the result was TRUE. For those poor people who are unable or unwilling
to run the program themselves, they could have posted the computer output on their websites,
but please, have mercy on the rain forest! You don’t need 30 pages, and frankly all this EXPLICIT
LANGUAGE of hairy computer output is almost pornographic.

Here I would like to mention that our TSPP-proof is indeed hairy and highly non-trivial.
The challenge was to illustrate that such non-trivial problems can be proven completely
rigorously with the computer. As a consequence, we derived proof certificates that do not
fill 30 pages, as Doron mentioned, but 80 pages :-) Interestingly enough, there was quite
some human interaction necessary, e.g., to avoid summation over poles. Exactly this kind
of problems have been checked carefully in the extended version [APS04].

10.2. Lost proofs of the Handbook of Mathematical Functions. In spring 2005
Frank Olver asked Peter Paule if the algorithms of the RISC combinatorics group can pro-
vide proofs of about twelve identities in the Handbook of Mathematical Functions [AS65].
The real challenge was that the original proofs have been lost and no alternative proofs
were known. After a long weekend the Comb-group could find computer proofs for each of
the identities [GKO+06]. One of the identities is [AS65, Equ. (10.1.48)]

J0(z sin θ) =

∞
∑

k=0

(4k + 1)
(2k)!

22kk!2
j2k(z)P2k(cos θ) (3.35)

where Pk(z) are the Legendre polynomials, Jk(z) are the Bessel functions of the first kind,
and jk(z) are Spherical Bessel functions of the first kind.

When I have seen this identity for the first time, I wondered myself, what Sigma could
have in common with all these functions. After having a closer look, it was clear: The
problem can be transformed exactly to the input class of Sigma. First we apply the
substitution t := cos θ. Hence with sin(θ) =

√
1− t2 our identity reads as

J0(z
√

1− t2) =
∞
∑

k=0

(4k + 1)
(2k)!

22kk!2
j2k(z)P2k(t).

Moreover, by hypergeometric series representations from [AS65] we get

J0(z
√

1− t2) =

∞
∑

n=0

(−1
2
z2)n

n!2

(

1− t2

2

)n

, P2k(t) =

∞
∑

i=0

(−2k)i(2k + 1)i

i!2

(

1− t

2

)i

,

and P (k) := P (z, k) = j2k(z) from (3.27). Summarizing, we have to show

∞
∑

n=0

an

(

1− t2

2

)n

=
∞
∑

n=0

bn

(

1− t

2

)n

(3.36)
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where

an =
(−1

2
z2)n

n!2
, and bn =

∞
∑

k=0

(4k + 1)
(2k)!

22kk!

(−2k)n(2k + 1)n

n!2
P (k).

Given this representation, our RISC-packages can finish the job. First we derive recurrences
for ak and bk; the recurrence z2an + 2(n + 1)3an+1 = 0 is immediate. We get a recurrence
for bk by the following function call; here we use the recurrence Out[48] for P (k).

In[56]:= recB = GenerateRecurrence[
∞
∑

k=0

(4k + 1)
(2k)!

22kk!

(−2k)n(2k + 1)n

n!2
P[k], n, {recP, P[k]}][[1]]/.SUM → b

Out[56]= 4(n+3)z2b[n]−2(2n+5)z2b[n+1]− (n+2)(n2+5n+6−z2)b[n+2]+ (n+2)(n+3)2b[n+3] == 0

Next, we use closure properties of holonomic functions [SZ94] in order to compute differen-
tial equations for both sides of (3.36). The package [Mal96] (which is inspired by [SZ94])
helps here.

In[57]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger c© RISC-Linz

Namely, given the recurrence for bk, we get a differential equation for
∑∞

k=0 bkt
k by the

function call

In[58]:= deB = RE2DE[recB, b[k], B[t]]

Out[58]= 12z2B[t]+10(2tz2−z2)B′[t]+ (4t2z2−4tz2+z2−6)B′′[t]−3(2t−1)B(3)[t]−t(t−1)B(4)[t] == 0

Then by the substitution t→ (1− t)/2 we compute

In[59]:= deB = ACompose[deB,B[t] == (1 − t)/2, B[t]]

Out[59]= −3z2B[t]− 5tz2B′[t]− (t2z2 − 6)B′′(t) + 6tB(3)[t] + (t + 1)(t − 1)B(4)[t] == 0

for B(t) =
∑∞

k=0 bk

(

1−t
2

)k
. Similarly, we obtain

In[60]:= deA = −t3z2A[t] + (t2 + 1)A′[t] + t(t + 1)(t − 1)A′′[t] == 0;

for A(t) =
∑∞

k=0 ak

(

1−t2

2

)k

. With

In[61]:= DEPlus[(deA/.A → C), (deB/.B → C), C[t]]

Out[61]= −3z2C[t]− 5tz2C′[t]− (t2z2 − 6)C′′(t) + 6tC(3)[t] + (t + 1)(t − 1)C(4)[t] == 0

we find a differential equation for C(t) := A(t) − B(t). By inspection we get the initial
conditions b0 = a0, b1 = 2a1, and b2 = −2a1 + 4a2. Notice that these are the already
proven identities (3.26). This completes the proof of (3.36) and therefore of (3.35).

11. Conclusion

I illustrated how Sigma can handle non-trivial summation problems, most of them related
to combinatorial questions. As a conclusion I want to emphasize that the title can be
reversed: “Combinatorics assists symbolic summation”. Namely, most of the examples in
this survey article were important case studies to improve the summation package Sigma.
Even more, challenging problems, like the TSPP-problem, were the source to extend Sigma.

I am looking forward to see how symbolic summation and combinatorics will inspire each
other in the future.

The first public release of Sigma is planned for summer 2007.
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bolic Comput., 20:617–635, 1995.

[PS03] P. Paule and C. Schneider. Computer proofs of a new family of harmonic number identities.
Adv. in Appl. Math., 31(2):359–378, 2003.

[PS04] P. Paule and C. Schneider. Creative telescoping for hypergeometric double sums. Preprint,
2004.

[PS07] R. Pemantle and C. Schneider. When is 0.999... equal to 1? To appear in Amer. Math.
Monthly, April 2007.
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