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KRONECKER PRODUCT IDENTITIES FROM D-FINITE
SYMMETRIC FUNCTIONS

MARNI MISHNA
DEPT. MATHEMATICS, SIMON FRASER UNIVERSITY

Abstract. Using an algorithm for computing the symmetric function Kro-
necker product of D-finite symmetric functions we find some new Kronecker
product identities. The identities give closed form formulas for trace-like
values of the Kronecker product.

Introduction

In the process of showing how the scalar product of symmetric functions can
be used for enumeration purposes, Gessel [3], proved that this product, and
the Kronecker product, preserve D-finiteness. Roughly, this means that if F
and G are symmetric functions which both satisfy a particular kind of system
of linear differential equations, then so will the scalar and Kronecker products
of these functions. In an earlier work [2], we give algorithms to calculate both
of these systems of differential equations.

In this short note we use this algorithm in a symbolic way to find explicit
expressions for Kronecker products of pairs of several common series of sym-
metric functions, such as complete (H =

∑
n hn), elementary (E =

∑
n en) and

Schur (S =
∑

n

∑
λ`n sλ). Proposition 12 of [2], is the following identity,(∑

λ

sλ

)
∗

(∑
λ

sλ

)
= exp

(∑
n≥1

p2n−1

(2n− 1)(1− p2n−1)

)(∏
n≥1

(
1− p2

n

))−1/2

.

This is the generating series of
∑

n

(∑
λ`n,µ`n,λ<µ sλ ∗ sµ

)
. Here, we apply

the same technique to give a table of new identities of the same flavour.

1. Symmetric functions

We use notation as in Macdonald [7] for our symmetric functions. A partition
of a positive integer n is a decreasing sequence of integers λ = (λ1, λ2, . . . , λk)
whose sum is n. This is denoted λ ` n. A partition is written in either vector
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or power notation, for example (7, 7, 4, 4, 1) = [1 42 72] are both partitions of
23. A symmetric function is a sum of monomials in some variable set, that
is invariant under any permutation of that variable set. We can write any
symmetric function as a sum of monomial symmetric functions, defined for
the variable set {x1, x2, . . .} with respect to some partition λ as

mλ :=
∑

σ∈SN\{0}

(r1! r2! · · · )−1 xλ1

σ(1) · · ·x
λk

σ(k).

For example, m(3,2,2) = x3
1x

2
2x

2
3 + x3

3x
2
2x

2
1 + x3

4x
2
1x

2
3 + . . .. We also have the

elementary symmetric functions, en = m〈1n〉, and eλ = eλ1 · · · eλk
; the complete

symmetric functions hn =
∑

λ`nmλ, and hλ = hλ1 · · ·hλk
; and power sum

symmetric functions pn = m(n) = xn
1 + xn

2 + . . ., pλ = pλ1 · · · pλk
. We postpone

the definition of the Schur symmetric functions to the next section, where we
shall be better equipped. Any of the hλ, pλ, eλ, or sλ can form a Q-basis
of the vector space Λ of symmetric functions. We can also view Λ as the
ring Q[p1, p2 . . .] and, finally, we also work in the ring Λ̂ = Q[[p1, p2, . . .]].

1.1. The scalar product of symmetric functions. The ring of symmetric
series is endowed with a scalar product defined as a symmetric bilinear form
such that the bases (hλ) and (mλ) are dual to each other:

(1) 〈mλ, hµ〉 = δλµ.

It turns out that

〈pλ, pµ〉 = zλδλ,µ,

with zλ = (1r1r1!)(2
r2r2!) · · · when λ = [1r12r2 · · · ].

The Schur basis is an orthonormal symmetric function basis under this scalar
product. In fact, Schur functions can be defined as the result of applying the
Gram–Schmidt process for orthogonalizing a basis, applied to the monomial
basis with the partitions ordered lexicographically1.

1.2. Plethysm of symmetric functions. To conclude this brief recollection
of symmetric functions, we describe one type of composition that turns out
to be quite useful here: plethysm, written f [g]. We can most easily define it
using the power sum symmetric functions. It is defined by pn[ψ(p1, p2, . . . )] =
ψ(pn, p2n, . . . ), along with (φ1 + cφ2)[ψ] = φ1[ψ] + cφ2[ψ] and (φ1 · φ2)[ψ] =
φ1[ψ] · φ2[ψ].

1In such an ordering, 1n < 1n−12 < · · · < n.
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1.3. The Kronecker product of symmetric functions. In the ring of sym-
metric functions the usual polynomial multiplication serves as a product, but
there is also a second product which arises from the connection between sym-
metric function and the characters of the symmetric group. This product has
several names, including the Kronecker product , the tensor product and the
internal product. Although we mostly follow the notation of Macdonald [7] for
most matters relating to symmetric functions, we shall refer to it here as the
Kronecker product, and denote it by ∗. It was first described by Redfield as
the cap product of symmetric functions and was rediscovered by Littlewood [6].
This product can be defined in representation theory as the pointwise product
of characters, which corresponds to tensor products of representations, how-
ever here we use the following relation to the power sum symmetric functions,
and extend linearly:

(2) pλ ∗ pµ = δλµzλpλ.

Calculating the connection coefficients γ
(ρ)
λ,µ for the Kronecker product in the

Schur basis

sλ ∗ sµ =
∑

ρ

γ
(ρ)
λ,µsρ

is also challenging, and quite interesting. There are some combinatorial inter-

pretations of γ
(ρ)
λ,µ which have obtained results when λ, ρ and µ are of a partic-

ular form, such as work of Goupil and Schaeffer [5], Rosas [8], or Chauve and
Goupil [4]. The interest originates from the correspondence with irreducible
representations,

χ(Vλ ⊗ Vµ) =
∑

ρ

γ
(ρ)
λ,µ χ(Vρ).

When λ, µ and ρ are all partitions of n, γ
(ρ)
λ,µ is the multiplicity of a character

in the representation. For more details, the reader is pointed towards the text
of Sagan [9].

To compute γ
(ρ)
λ,µ using computer algebra systems, one typically expands

the symmetric function into the power sum basis and then applies (2) to a
pairwise comparison of terms. (For example, in the SF package of Stembridge.)
As we mentioned in the introduction, we introduced a generating function
approach [2]. The algorithm in [2] that we use is called itensor de, and a
Maple implementation on the author’s web page is available.

A second approach, summarized in [11], uses a reduced notation that allows
calculations with series of the form

∑
n s(n,λ2,...,λk)z

n, for fixed λ2, . . . , λk. These
computations are quite efficient; far more so than expanding the power-sum
basis.
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2. Applications of D-finite symmetric series

The algorithms we use do not compute the products directly, rather they de-
termine differential equations satisfied by the resulting function. The existence
of such differential equations is a consequence of the D-finite closure properties
of the scalar product. A function φ is said to be D-finite in K[[x1, . . . , xr]] if
and only if the partial derivatives ∂α1

1 · · · ∂αr
r φ generate a finite dimensional

vector space over K(x1, . . . , xr). In this case, φ is determined by a system of
linear differential equations.

In order to treat symmetric functions, however, we must consider functions
with an infinite number of variables. The function φ(x1, x2, . . .) is D-finite in
K[[x1, x2, . . .]] if for all r, φ(x1, . . . , xr, 0, · · · ) is D-finite in K[[x1, x2, . . . , xr]].
This case does not enjoy all of the closure properties of the previous, nonethe-
less we have closure under +, ×, ∂i, extension of coefficients, rational substi-
tution, and exponentials of polynomials. We say that a symmetric function
φ ∈ Λ̂ is D-finite if it is D-finite in Q[[p1, p2, . . . ]]. For example, under this
definition the two following famous symmetric function sums H and E which
we introduced earlier satisfy the following relations,

H = exp

(∑
n

pn

n

)
and E = exp

(∑
n

(−1)npn

n

)
,

and thus are both D-finite.
It was Gessel [3] who first showed that the scalar product and the Kro-

necker product both preserve D-finiteness. The work [2] makes this effective
by transforming the system of differential equations satisfied by F and G in
to one satisfied by F ∗G, or 〈F,G〉.

2.1. Kronecker product calculations. Many interesting problems which
use the Kronecker product involve symmetric functions, which once they are
expressed in the power sum basis, require an infinite number of pn. Thus, at
first glance they are seemingly unsuitable for direct application of our algo-
rithms which, after all, require finite input! One approach is to apply these
algorithms for several truncations of the symmetric functions and generate in-
formation upon which reasonable conjectures can be formulated. For each of
these, we render the problem applicable by setting most pn’s to 0. That is, we
solve a sequence of problems involving an increasing number of pn, and hope
to identify a pattern.

However, far more satisfying are the cases where there is sufficient form
and structure which can be exploited to find exact results. We shall be more
specific about precisely the “form and structure” we can exploit in a moment.
First we remark that one important such class comes from symmetric series
arising from plethysms. In this case, we can reduce the Kronecker product of
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functions each with an infinite number of pn variables to a finite number of
symbolic calculations.

For example, if two symmetric functions F and G can be expressed respec-
tively in the form

F (p1, p2, . . .) =
∏
n≥1

fn(pn) and G(p1, p2, . . .) =
∏
n≥1

gn(pn),

then one can easily deduce that

(3) F ∗G =
∏
n≥1

fn(pn) ∗ gn(pn).

Essentially this follows from the fact that the Kronecker product of two power
sum symmetric functions of differing order is 0. If, furthermore, the fn and gn

are such that one can describe them in a finite way using D-finite functions,
we can apply this method.

Series which arise as plethysms of the form H[u] or E[u], where u is a poly-
nomial in the pi, are precisely of this form. For example the sum of all Schur
functions is of this type:

S =
∑

λ

sλ = H[p1 +
1

2
p2

1 −
1

2
p2] = exp

(∑
n

p2
n

2n
+

p2n−1

2n− 1

)
.

Thus,

S =

( ∏
n even

exp

(
p2

n

2n

))(∏
n odd

exp

(
p2

n

2n
+
pn

n

))
We assign fn as follows

f2n = exp

(
p2

2n

4n

)
and f2n−1 = exp

(
p2

2n−1

2
+

p2n−1

2n− 1

)
.

Thus, to compute S∗S, we compute in turn g2n = f2n∗f2n, and g2n+1 = f2n+1∗
f2n+1. We find g2n by determining the differential equation that it satisfies,
using itensor de adapted to handle a formal parameter. The adaptation
amounts to performing a scalar product with adjunction formula p� = n∂ for
a formal parameter n. This gives

(1− p2
n)
∂gn(pn)

∂pn

+ pngn(pn) = 0, for even n.

We then solve for gn. We do likewise for odd n, and then the identity in the
introduction follows.

Carbonara et al. [1] are interested in the trace of
∑

n

(∑
λ`n,µ`n,λ<µ sλ ∗ sµ

)
given by

∑
n (
∑

λ`n sλ ∗ sλ). It is not immediately clear to me if our method
could be adapted directly to this kind of calculation.
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2.2. A family of identities. We now apply the above approach to create a
number of different identities. The following table summarizes results. These
formulas for H,E, S, SE−1 and SH−1 are all derived in Macdonald [7]:

H =
∑
hnt

n = exp
(∑

n
pn

n

)
E =

∑
ent

n = exp
(∑

n(−1)n+1 pn

n

)
S =

∑
λ sλt

|λ| = exp
(∑

n
p2

nt2n

2n
+ p2n−1t2n−1

2n−1

)
SE−1 =

∑
λ all parts odd sλt

|λ|

SH−1 =
∑

λ′all parts even sλt
|λ|

Theorem 2.1. Given the above definitions for H,E and S. Then, there is the
following multiplication table for the Kronecker product,

∗ H E S SH−1 SE−1

H H E S SH−1 SE−1

E H S SE−1 SH−1

S GModd GN GN
SH−1 GMeven GP
SE−1 GMeven

.

The products are expressed in terms of the following:

Modd(even) = exp
(∑

n odd(even)
pn

n(1−pn)

)
N = exp

(∑
n

p2
n

2n(1−p2
n)

)
P = exp

(∑
n even

pn

n(1+pn)

)
G =

∏
n≥1 (1− p2

n)
−1/2

.

A Maple worksheet with the calculations behind the above table is available
at the author’s website. We welcome all suggestions for other series of interest.
It would be equally easy to treat plethysms of the form H[φ] for some sym-
metric polynomial φ. A preliminary review of the work of Scharf, Thibon, and
Wybourne, for example [10, 11] suggests that there may be more to do with
series of the form

∑
n s(n,λ2,...,λk)z

n, for fixed λ2, . . . , λk if they can be shown to
be D-finite.

We are able to compute, with this method, expressions satisfied by some
powers of S =

∑
λ sλ, with respect to the Kronecker product, for example

S ∗ S ∗ S, but these result in differential equations which we are presently
unable to solve into explicit expressions.
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Conclusion

The symbolic application of tensor product calculation yields, rather easily,
families of Kronecker product identities. It is possible that these identities
could be exploited for group theoretic gain, however, this remains to be in-
vestigated, as does finding connections between our formulas, and that of the
trace co-characters.
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