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A CONTINUED FRACTION EXPANSION FOR A ¢g-TANGENT
FUNCTION:
AN ELEMENTARY PROOF

HELMUT PRODINGER

ABSTRACT. We prove a continued fraction expansion for a certain g-tangent func-
tion that was conjectured by the present writer, then proved by Fulmek, now in a
completely elementary way.

1. INTRODUCTION

In [3], the present writer defined the following g-trigonometric functions
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Here, we use standard g-notation:
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These g-functions are variations of Jackson’s [2] g-sine and g-cosine functions.
For the ¢g-tangent function tan,(z) = zz;“((z)), the following continued fraction expan-
q
sion was conjectured in [3]:
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Here, the powers of ¢ are of the form (=1)""'n(n —1)/2 —n+ 1.

In [1], this statement was proven using heavy machinery from g-analysis.

Happily, after about 8 years, I was now successful to provide a complete elementary
proof that I will present in the next section.
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2. THE PROOF
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Therefore we may identify numerators and denominators, and put a; = b;_; and
bi+122 = Ciy1b; — bi_y.
The initial conditions are

b_y =cos,(z) and by = Z
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The constants C; guarantee that all the b; are power series, i.e., they make the constant
term in Cj,1b; —b;_; disappear. Our goal is to show that C; = [2i —1] ¢~} {i-D/2—i+1
are the (unique) numbers that do this. We are proving the claim by proving the
following explicit formula for b;:
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Note that the C; are uniquely determined by the imposed condition, and since the b;
are power series, we are done once we prove this formula by induction. The first two
instances satisfy this, and we do the induction step now:
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The last bracket in this expression can be simplified for ¢ even:
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—q q

and for ¢ odd: -y
" (1 - ™).
Putting everything together, we arrive at
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Notice that the constant term vanishes, whence
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which is the announced formula.
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